搜档网
当前位置:搜档网 › 钢板桩支护计算手册

钢板桩支护计算手册

钢板桩支护计算手册
钢板桩支护计算手册

精心整理

支护计算书

一.设计资料

该项目的支护结构非主体结构的一部分;开挖深度为9.7m<10m;在等于开挖深度的水平距离内无临近建筑物。故可以认为该坑的安全等级为二级。重要性系数取γ0=1.0。

地面标高:-0.5m

基础底面标高:-10.2m

开挖深度:9.7m

2.支点力T c1

设支点位于地面以下4m ,即支点处标高为-4,5m

对反弯点处弯矩为0

3.嵌固深度h d

求最小h d ,用软件解如下方程

161.66*(x+5.7)+(29.45*x+41.04)*(x-1.8)*(x-1.8)/6+19.296*(x-1.39)-1.2*(15.19+275.74+4.125)*x-1.2*845.57=0

解得h d =7.500m

五.弯矩计算 119.73kP

a

根据《建筑基坑支护技术规程》(JGJ120-99)的规定按下列规定计算其设计值: 截面弯矩设计值M

M =1.25γ0M c

式中γ0——重要性系数,取1.0

1. 锚固点弯矩设计值

2. 剪力为0处弯矩设计值(开挖面上方)

设地面到该点距离为2h

3. 剪力为0处弯矩设计值(开挖面下方)

1231231.2.设锚杆锚固长度为10m ,其中点到地面距离为8.31m ,直径为14cm 。

水平分力kN T T c d 49.2425.115.1=?=

若取K=1.50,则

修正为12m

最后确定的锚固段长度为12m 。

3.钢拉杆截面选择

取361φ,则其抗拉强度设计值:

满足要求。

七.围檩受力计算

围檩受到拉锚和钢板桩传来作用力,可按简支梁计算。

选用两排[18的槽钢,333104.2411027.120mm W ?=??= 满足要求。

共需要376m 的[18热轧轻型槽钢。

七.抗倾覆验算

满足要求。

钢板桩基坑支护计算书

钢板桩基坑支护计算书

一、结构计算依据 1、国家现行的建筑结构设计规范、规程行业标准以及广东省建筑行 业强制性标准规范、规程。

2、提供的地质勘察报告。 3、工程性质为管线构筑物,管道埋深4.8~4.7米。 4、本工程设计,抗震设防烈度为六度。 5、管顶地面荷载取值为:城-A级。 6、本工程地下水位最小埋深为2.0m。 7、本工程基坑计算采用理正深基坑支护结构计算软件。

二、基槽支护内支撑计算 (1)内支撑计算 内支撑采用25H 型钢 A=92.18cm 2 i x =10.8cm i y =6.29cm Ix=10800cm 4 Iy=3650cm 4 Wx=864cm 3 ] [126.11529 .6725][13.678 .10725λλλλ===<=== y y x i l i l x 查得 464 .0768 .0==y x ?? 内支撑N=468.80kN ,考虑自重作用,M x =8.04N ·m MPa f A N fy y 215][6.1091018.92464.01080.4682 3 =<=???=?=? MPa f Wx Mx A N fx x 215][05.5810 7.1361004.810117768.01080.4684 6 23=<=??+???=+?=?

(2)围檩计算 取第二道围檩计算,按2跨连续梁计算,采用30H 型钢 A=94.5cm 2 i x =13.1cm i y =7.49cm Ix=20500cm 4 Iy=6750cm 4 Wx=1370cm 3 [ 计算结果 ] 挡土侧支座负弯距为:M max =0.85×243.3kN·m=206.8kN·m,跨中弯矩为M max =183.4kN·m 支座处: MPa cm m kN Wx M 9.15013708.206max 13 =?==σ,考虑钢板桩结构自身的抗弯作用,可满足安全要求。 跨中:][87.13313704.183max 23 σσ<=?== MPa cm m kN Wx M 三、基槽支护工程计算书 支护结构受力计算 5.3米深支护计算

钢板桩支护计算书

钢板桩支护计算书 以开挖深度3.5米和宽度1.1米为准计算一设计资料 1桩顶高程H: 1.900m 施工水位H2: 1.600m 管道沟槽支护方式二(适用于深度5- 5_ 空吕米) 2 地面标高H): 2.40m 开挖底面标咼H3:-1.100m 开挖深度H: 3.500m 3 土的容重加全平均值丫1:18.3KN/m? 原地面 来 O S AVI -HI V

土浮容重丫’ :10.0KN/m3 内摩擦角加全平均值①:20.10 ° 2 4 均布荷q:20.0KN/m2 5 每段基坑开挖长a=10.0m 基坑开挖宽b=1.1m 二外力计算 1 作用于板桩上的土压力强度及压力分布图 k a二tg2(45 ° - ? /2)=tg 2(45-20.10/2)=0.49 22 k p=tg 2(45° +? /2)=tg 2(45+20.10/2)=2.05 板桩外侧均布荷载换算填土高度h, h=q/r=20.0/18.3=1.09m 桩顶以上土压力强度Pa1 Pa i=r x( h+0.25)Ka=18.3 x (1.09+0.25) x 0.49=12.0KN/m2水位土压力强度Pa2 Pa 2=r x (h+3.5 -3.00 )Ka 2 =18. 3 x(1.09+3.5 -3.00 ) x 0.49=14.3KN/m2 开挖面土压力强度Pa3 Pa 3=[r x (h+3.5 -3.00 )+(r-rw)(3.00 +3.40)}Ka =[18.3 x (1.09+3.6 -3.00 )+(18.3-10) x (3.00 2 +3.40)] x 0.49=40.28KN/m2 三确定内支撑层数及间距 按等弯距布置确定各层支撑的30#B型钢板桩 能承受的最大弯距确定板桩顶悬臂端的最大允许跨度h:

深基坑钢板桩支护计算

. 1、工程简介 越南沿海火力发电厂3期连接井位于电厂厂区,距东边的煤灰堆场约100m,连接井最南侧距海边约30m~40m。现根据施工需要,将连接井及部分陆域段钢管段设置成干施工区域,即将全部连接井及部分陆域钢管段区域逐层开挖成深基坑,然后在基坑进行施工工作。基层四采用CDM桩或者钢板桩进行支护。干施工区域平面图如下所示 图1.1干施工区域平面图

+1.30-0.70 图1.2 基坑支护典型断面图(供参考) 2、设计资料 1、钢板桩桩顶高程为+3.3m ; 2、地面标高为+2.5m ,开挖面标高-5.9m ,开挖深度8.4m ,钢板桩底标高-14.7m 。 3、坑外土体的天然容重γ为16.5KN/m 2,摩擦角为Φ=8.5度,粘聚力c=10KPa ; 4、地面超载q :按20 KN/m 2考虑; 5、钢板桩暂设拉森Ⅳ400× U 型钢板桩,W=2270cm 3,[δ]=200MPa,桩长18m 。

3力计算 3.1支撑层数及间距 按等弯矩布置确定各层支撑的间距,则钢板桩顶部悬臂端的最大允跨度为: m 603.2mm 2603742 .05.162270102006r ][653a =≈????==K W h δ h 1=1.11h=1.11×2.603m=2.89m h 2=0.88h=0.88×2.603m=2.29m 根据现场施工需要和工程经济性,确定采用两层支撑,第一层h=1.2m ,支撑标高+1.3m ;第二层支撑h 1=2m ,支撑标高-0.7m 。 3.2作用在钢板桩上的土压力强度及压力分布 主动土压力系数 Ka=tan 2(45°-φ/2)= tan 2(45°-8.5°/2)= 0.742 被动土压力系数 Kp=tan 2(45°+φ/2)=tan 2(45°+8.5°/2)=1.347 工况一:安装第一层支撑后,基坑土体开挖至-0.7m (第二层支撑标高)。 1、主动土压力:a a a P =qK γzK + ①z=0m P a =20×0.742+16.5×0×0.742=14.84KN/m 2 ②z=3.2m (地面到基坑底距离)) P a =20×0.742+16.5×3.2×0.742=54.02KN/m 2 2、被动土压力:p p P =γzK ①z=3.2m(地面到基坑底距离)

基坑支护(钢板桩)设计及计算书

目录 1 计算依据 (1) 2 工程概况 (1) 3 地质情况 (1) 4 设计施工方案概述 (1) 5 围堰结构计算 (2) 5.1 设计计算参数 (2) 5.1.1材料设计指标 (2) 5.1.2单元内支撑支撑刚度计算 (3) 5.1.3单元内支撑材料抗力计算 (3) 5.1.4 设计安全等级 (4) 5.2 拉森钢板桩封闭支护结构设计分析 (4) 5.2.1 开挖过程结构分析 (4) 5.2.2 拉森钢板桩单元计算分析结果 (4) 5.2.3 内支撑应力和变形计算 (18) 5.2.4支护结构强度验算 (19) 5.2.4 支撑型钢强度、稳定性验算 (23)

基坑拉森钢板桩围堰设计及计算书 1 计算依据 1.2 《特大桥承台基坑拉森钢板桩围堰设计图》; 1.3 《建筑施工计算手册》; 1.4 《钢结构设计规范》(GB500017-2003); 1.5 《理正深基坑软件7.0版》; 1.6 《基坑工程设计规程》(DBJ08-61-97) 1.7 《建筑基坑支护技术规程》(JGJ120-2012) 1.8 《建筑基坑工程技术规范》(YB9258-97) 2 工程概况 桥址处为荒地、民房,地势平坦,交通便利。根据现场调查,特大桥1#承台施工为最不利基坑,承台尺寸为4.85×5.7×2m,开挖后深度4.209m。 3 地质情况 根据工程地质勘测报告,承台处的地质情况如表1。 表3-1 承台地质情况 取样 编号厚度(m)名称 重度 (kN/m3) 粘聚力 (Kpa) 摩擦角(。) 侧摩阻力 (Kpa) 1 1.25 杂填土17.7 11.00 7.20 30.0 2 4.25 淤泥质土17. 3 13.00 6.00 22.0 3 6.20 粉砂18.0 45.00 --- 40.0 4 4.60 粘性土19.8 49.00 --- 65.0 5 21.60 粉砂19. 6 47.00 --- 70.0 4 设计施工方案概述 使用9m拉森Ⅳ钢板桩对基坑进行封闭支护,钢围檩设于承台顶标高以上1.509m,钢板桩顶往下1m处,围檩采用H400×400×13×21mm型钢,围檩长边下方设置不少于3个牛腿,上方采用直径8mm钢丝绳兜吊在拉伸钢板桩上,斜角撑采用H400×400×13×21mm型钢,斜撑两端与围檩型钢焊接牢固。基坑尺寸控制原则为自承台外轮廓外扩1.2m,为保证承台模板与钢筋的顺利施工,围檩斜角撑的位置应避免阻碍模板与钢筋的吊装施工。

钢板桩支护计算书

钢板桩支护计算书 Document number:PBGCG-0857-BTDO-0089-PTT1998

目录 1 计算依据 (1) 2 工程概况 (1) 3 结构设计 (1) 总体思路 (1) 钢板桩结构设计 (1) 4 材料主要参数及截面特性 (3) 5 计算结果 (3) 钢板桩计算 (4) 抗隆起验算 (5) 6 结论 (6)

仪征碧桂园地下车库钢板桩支护计算书 1 计算依据 ⑴《建筑施工计算手册》(中国建筑工业出版社) ⑵《土力学》(中国铁道出版社) ⑶《建筑力学》(中国建材工业出版社) 2 工程概况 仪征碧桂园一期工程位于仪征市天宁大道与文兴路交汇处西北隅,一期工程 主要由7栋32F(栋号为1~4#、7#、12#、13#)、5栋18F(栋号为5#、6#、 8#、10#、11#)住宅楼和4栋1~2F商业楼(栋号为8-1#、8-2#、10-1#、11- 1#)及1栋2F综合楼(栋号为9#)组成(栋号均为勘查院编号),其中高层住 宅楼为框架剪力墙结构,综合楼和商业楼为框架结构。在高层住宅楼下部均设一层地下室。场地地面整平标高与场区南侧文兴路大致相平。 地质情况自上而下依次为:①2素填土,②1淤泥质粉质粘土,②4淤泥质粉质粘土夹粉砂,③1含淤泥质粉质粘土夹粉砂,④1强风化泥质粉砂岩,④2中风化泥质粉砂岩。 3 结构设计 总体思路 地下车库基坑开挖采用钢板桩支护,围堰平面设置为单排。靠市政道路侧钢板桩开挖深度为,采用12m/根长拉森Ⅳ型钢板桩,为阻挡围堰外雨水流入,钢板桩顶高出原地面,四周设置高的护栏。 钢板桩结构设计 靠市政道路侧钢板桩平面及立面设计见图、图。

理正7.0钢板桩支护计算书讲课稿

---------------------------------------------------------------------- [ 支护方案 ] ---------------------------------------------------------------------- 排桩支护 ---------------------------------------------------------------------- [ 基本信息 ]

---------------------------------------------------------------------- [ 超载信息 ] ---------------------------------------------------------------------- [ 附加水平力信息 ] ---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ----------------------------------------------------------------------

[ 土压力模型及系数调整 ] ---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型: ---------------------------------------------------------------------- [ 工况信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 设计结果 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ] ---------------------------------------------------------------------- 各工况:

拉森钢板桩设计计算书

拉森钢板桩设计计算书 Prepared on 24 November 2020

拉森钢板桩设计计算书 (1)钢板桩的设置位置要符合设计要求,便于基础施工,即在基础最突出 的边缘外留有支模、拆模的余地。 (2)基坑护壁钢板桩的平面布置形状应尽量平直整齐,避免不规则的转 角,以便标准钢板桩的利用和支撑设置。各周边尺寸尽量符合板桩模数。 (3)整个基础施工期间,在挖土、吊运、扎钢筋、浇筑混凝土等施工作业 中,严禁碰撞支撑,禁止任意拆除支撑,禁止在支撑上任意切割、电焊,也不 应在支撑上搁置重物。 差的钢板桩应尽量不用。 ---------------------------------------------------------------- ------ 弹性法土压力模型: 经典法土压力模型: 层号土类名称水土水压力主动土压力被动土压力被动土压力 调整系数调整系数调整系数最大值(kPa) 1 杂填土合算 2 圆砾合算 3 中砂合算 4 粘性土分算 - [ 工况信息 ] --------------------------------------------------------------------- 工况工况深度支锚 号类型(m) 道号 1 开挖--- 2 加撑--- 1.内撑 3 开挖--- 4 加撑--- 2.内撑 5 开挖---

---------------------------------------------------------------------- [ 设计结果 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ] ---------------------------------------------------------------------- 各工况: 内力包络图: 2、拉森钢板桩型号的选择与验算 由上节弯矩图可见钢板桩桩身最大弯矩标准值为M max=·m。 选取SP-Ⅳ型号的拉森钢板桩,每延米W=2270cm3。由《钢结构设计规范》3.4.1条知钢板桩的强度设计值为215N/mm2,安全系数取2。由于地下水较丰富,所以采用双层拉森钢板桩,每延米W=4540cm3。考虑两层钢板桩的折减系数为。则桩身最大应力为: 由于<215××=86MPa,所以满足要求! 拉森钢板桩技术参数表

钢板桩设计计算

钢板桩设计计算及施工方案 本标段施工范围内共有75个承台,分8种类型: A类承台:下部采用9根φ1.0 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺), 厚2.4m。主要适用于30+30m跨径组合; B类承台: 下部采用9根φ1.2m 钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺), 厚2.6m。主要适用于40+40m跨径组合; C类承台: 下部采用8根φ1.0 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺), 厚2.4m。主要适用于25+25m跨径组合; D类承台: 下部采用8根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺), 厚2.6m。主要适用于30+40m跨径组合; E类承台: 下部采用6根φ1.2 m钻孔灌注桩,承台尺寸为8.4×5.34m(横×顺), 厚2.5m。主要适用于25+30m跨径组合(斜交20°); F类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.34m(横×顺), 厚2.6m。主要适用于33.5+33.5m跨径组合(斜交20°); G类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.872m(横×顺), 厚3.0m。主要适用于40+40m跨径组合(斜交40°); H类承台: 下部采用10根φ1.0m钻孔灌注桩,承台尺寸为27.0×4.5m(横×顺), 厚 1.5m。主要适用于桥台基础;拟采用拉森Ⅳ型钢板桩实施围护,以确保基坑安全开挖、承台结构和墩身结构的顺利施工。 二、地质情况 根据地质勘察报告显示:勘察深度范围内(河床底至钻孔桩底)可分为7个地质单元层,钢板桩深度主要在:⑴层为近代人工堆填土,⑵黄~灰黄色粘土和灰黄~灰色砂质粉土,(3)灰色粉质粘土 三、钢板桩施工方案 1、钢板桩的选用

拉森钢板桩支护方案计算书

桂林市西二环路道路建设工程排水管道 深基坑开挖施工方案计算书 一、工程概况 桂林市西二环路二合同段污水管道工程的起点K12+655,终点K17+748,埋设管道为聚氯乙烯双壁波纹管(Ф500)和钢筋砼管(Ф800),基础采用粗砂垫层,基础至管顶上50cm范围为粗砂回填,其上为级配碎石回填至路床;起点管道底部标高为150.277m,管道平均埋深为5.2米左右,最深为7.8米,地下水位较高,其中有局部里程段3.5m厚土层以下是流沙层,开挖时垮塌较严重,为防止开挖时坍塌事故发生,特制定该方案,施工范围为K12+655~K14+724段左侧污水管。 本段施工段地质为松散耕土、粉质粘土,地下水位高,遇水容易形成流砂。 二、方案计算依据 1、《桂林市西二环路道路建设工程(二期)施工图设计第三册(修改版-B)》(桂林市市政综合设计院)。 2、《市政排水管道工程及附属设施》(06MS201)。 3、《埋地聚乙烯排水管管道工程技术规程》(CECS164:2004)。 4、《钢结构施工计算手册》(中国建筑工业出版社)。 5、《简明施工计算手册》(中国建筑工业出版社)。 三、施工方案简述 1、钢板桩支护布置 钢板桩采用拉森ISP-Ⅳ型钢板桩,其长度为12米/根,每个施工段50m需260根钢板桩。根据施工段一般稳定水位154.0m和目前水位情况,取施工水位为154.00m。根据管沟开挖深度(4.7m),钢板桩支护设置1道型钢圈梁和支撑。以K14+100左侧排污管道钢板桩支护为例,桩顶标高为157.83m,桩底标高为148.83m,依次穿越松散耕土→粉质粘土层。 2、钢板桩结构尺寸及截面参数 拉森ISP-Ⅳ型钢板桩计算参数如下表所示:

钢板桩设计计算样本

钢板桩设计计算及施工方案 本标段施工范畴内共有75个承台,分8种类型: A类承台:下部采用9根φ1.0 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺),厚2.4m。重要合用于30+30m跨径组合; B类承台:下部采用9根φ1.2m 钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺),厚2.6m。重要合用于40+40m跨径组合; C类承台:下部采用8根φ1.0 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺),厚2.4m。重要合用于25+25m跨径组合; D类承台:下部采用8根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺),厚2.6m。重要合用于30+40m跨径组合; E类承台:下部采用6根φ1.2 m钻孔灌注桩,承台尺寸为8.4×5.34m(横×顺),厚2.5m。重要合用于25+30m跨径组合(斜交20°); F类承台:下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.34m(横×顺),厚2.6m。重要合用于33.5+33.5m跨径组合(斜交20°); G类承台:下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.872m(横×顺),厚3.0m。重要合用于40+40m跨径组合(斜交40°); H类承台:下部采用10根φ1.0m钻孔灌注桩,承台尺寸为27.0×4.5m(横×顺),厚 1.5m。重要合用于桥台基本;拟采用拉森Ⅳ型钢板桩实行围护,以保证基坑安全开挖、承台构造和墩身构造顺利施工。 二、地质状况 依照地质勘察报告显示:勘察深度范畴内(河床底至钻孔桩底)可分为7个地质单元层,钢板桩深度重要在:⑴层为近代人工堆填土,⑵黄~灰黄色粘土和灰黄~灰色砂质粉土,(3)灰色粉质粘土 三、钢板桩施工方案

拉森钢板桩基坑支护方案设计和计算

3、拉森钢板桩基坑支护方案设计和计算 、基本情况 城展路环城河桥桥台位于河岸上,基坑开挖深度较小;桥墩长24m,宽1.7m,右偏角90°,系梁底标高为0.0m,河床底标高0.0m,因此基坑底部尺寸考虑1m施工操作面要求,布置为长26m,宽3.7m,不需土方开挖。 环城河常水位2.6m,1/20洪水位3.27m,河床底标高0.0m,河底为淤泥土。考虑选择枯水期施工,堰顶标高为3.5m。 、支护方案设计 支护采用拉森钢板桩围堰支护,围堰平行河岸布置,平面布置详见附图。堰体采用拉森钢板桩Ⅳ型,桩长12米,内部水平围檩由单根(500×300mm)H型钢组成,支撑杆设置在钢板桩顶部,由直径为600mm,壁厚为8mm钢管组成。 整个基坑开挖完成后,沿基坑四周挖出一条200×200mm排水沟,在基坑对角设500×500×500mm集水坑,用泥浆泵将集水坑内渗水及时排出基坑。 布置图:

4、基坑稳定性验算 、桥墩基坑稳定性验算 钢板桩长度为12米,桩顶支撑,标高3.5米,入土长度8.5米。基坑开挖宽度26米,坑底标高0.0米。基坑采用拉森钢板桩支护,

围檩由单根(500×300mm)H型钢组成,设单道桩顶支撑,支撑采用直径为600mm,壁厚为8mm钢管作为支撑导梁,钢管与H型钢进行嵌固相连并焊接。验算钢板桩长度,选择钢板桩和导梁型号,验算基底稳定性。 采用理正深基坑软件对支护结构和围囹支撑体系等变形与内力整体计算分析;支护结构的抗倾覆稳定性、抗隆起、抗管涌、嵌固深度采用理正深基坑支护结构设计软件单元计算进行分析。 4.1.1、设计标准及参数 1、基坑设计等级及设计系数 二级,重要性系数:; 支护结构结构重要性系数:; 构件计算综合性系数:。 2 、材料力学性能指标 1、单元分析工况定义 (1)、工况1:打钢板桩,水面以下3.5m; (2)、工况2:在桩顶以下0.5m处安装第一道内支撑; (3)、工况3:抽水; 2、单元计算

钢板桩支护计算手册

钢板桩支护计算手册文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

支护计算书 一.设计资料 该项目的支护结构非主体结构的一部分;开挖深度为9.7m<10m ;在等于开挖深度的水平距离内无临近建筑物。故可以认为该坑的安全等级为二级。重要性系数取γ0=1.0。 地面标高:-0.5m 基础底面标高:-10.2m 开挖深度:9.7m 地下水位:-1.5m 地面均布荷载:20kN/m 2 土层:地表层有1m 厚的杂填土,其下为均质粉质粘土 基坑外侧的粘土都看做饱和粘土;基坑内侧因为排水,看做有1.8m 深含水量16%的粘土,其下为饱和粘土。 二.选择支护形式 由于土质较好,水位较高,开挖深度一般,故选择钢板桩加单层土层锚杆支护。 三.土压力计算 1.竖向土压力的计算 公式:j mj rk z γσ= 基坑外侧:

基坑内侧: 2.主动土压力的计算 取0'2 a e 主动土压力零点: 主动土压力示意图 3.被动土压力的计算 4.土压力总和 开挖面以上只有主动土压力。 开挖面以下: 再往下,每米增加29.45kpa 的负向土压力。 1m 条带中,土压力分块的合力 压力区块 压力合力(kN ) 距上端距离(m ) 距下端距离(m ) 119.73k

四.嵌固深度计算 1.反弯点 解得h=0.569m 2.支点力T c1 设支点位于地面以下4m,即支点处标高为-4,5m 对反弯点处弯矩为0 3.嵌固深度h d 用软件解如下方程 求最小h d, 161.66*(x+5.7)+(29.45*x+41.04)*(x-1.8)*(x-1.8)/6+19.296*(x-1.39)- 1.2*(15.19+275.74+4.125)*x-1.2*845.57=0 =7.500m 解得h d 五.弯矩计算 根据《建筑基坑支护技术规程》(JGJ120-99)的规定按下列规定计算其设计值:截面弯矩设计值M M=1.25γ0M c 式中γ ——重要性系数,取1.0 1.锚固点弯矩设计值 2.剪力为0处弯矩设计值(开挖面上方) 设地面到该点距离为 h 2 3.剪力为0处弯矩设计值(开挖面下方) 设开挖面到该点距离为 h 3

钢板桩基坑支护设计计算书

跨沪宁铁路既有线112#墩承台基坑 支护设计计算书 京沪高速铁路土建六标项目经理部 2008年10月26日 京沪高速铁路蕴藻浜特大桥黄渡桥段跨既有沪宁铁路 112#墩承台开挖钢板桩支护设计-、设计依据 1.铁路桥涵设计基本规范(TB1000 2.1-2005); 2.客运专线铁路桥涵工程施工技术指南(TZ213-2005);

3.《铁路路基支挡结构设计规范》TB 10025-2001 4.《新建时速300-350公里客运专线铁路设计暂行规定》铁建设[2007] 47 5.《北京至上海高速铁路徐州至上海段施工图蕴藻浜特大桥曹安黄渡桥段》; 6.铁道部及上海铁路局相关文件; 7. 钢结构设计规范(GB 50017-2003); 8.桥涵(上、下册)交通部第一公路工程局; 9.简明施工计算手册(第三版); 10.基坑工程手册; 二、工程概况 京沪高铁土建六标段在京沪高铁DK1290+441.860~DK1290+541.860处跨越既有线沪宁铁路,在该处桥型布置为60m+100m+60m连续梁。沪宁铁路长度仅为全国铁路营运线的2%,但它承担着全国10.2%的铁路客运量和7.2%的货物周转量,运输密度是全国铁路平均水平的4倍,经我作业工区值班人员统计24小时内有228趟火车通过,车辆集中时车流密集时段沪宁铁路平均5分钟有一辆,其中包括250km/h动车组。 表1 京沪高铁与既有线相关数据统计表 1. 工程地质特征 墩台处位于长江三角洲平原区,均为第四系地层覆盖,系江河、湖泊、海相沉积形成,为黏土、粉质黏土夹粉细砂层。 2. 水文特征

长江以南地区的水文主要特征:地表水丰富,各主要河流均常年有水。河流受季节影响明显,雨季水量较丰沛,河流靠大气降水补给,部分河流接受生活用水和工业废水的排放,排泄方式以泾流、蒸发为主。 沿线地下水类型有孔隙潜水、基岩裂隙水。地下水位埋深一般在0.4~5.0m,局部埋深大于10m,大气降水为地下水的主要补给来源。 三、钢板桩设计 1.承台结构 112#、墩承台高7m,采用两层结构,底层与上层均为八角形结构。底层平面尺寸为18.2m×18.2m,层高4m,四角均为4.6m的45°倒角。上层为平面尺寸为11.5m×11.5m,层高3m,四角为长2.64m的45°倒角。承台结构如下图1所示。

钢板桩设计计算

I40钢板桩设计计算及施工方案 本标段施工范围内共有75个承台,分8种类型: A类承台:下部采用8根φ1.0 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺), 厚2m。主要适用于32+32m跨径组合; B类承台: 下部采用10根φ1.25m 钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺), 厚2.6m。主要适用于24+32m跨径组合; C类承台: 下部采用15根φ1.5 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺), 厚2.4m。主要适用于80m跨径组合; D类承台: 下部采用8根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺), 厚2.6m。主要适用于30+40m跨径组合; E类承台: 下部采用6根φ1.2 m钻孔灌注桩,承台尺寸为8.4×5.34m(横×顺), 厚2.5m。主要适用于25+30m跨径组合(斜交20°); F类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.34m(横×顺), 厚2.6m。主要适用于33.5+33.5m跨径组合(斜交20°); G类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.872m(横×顺), 厚3.0m。主要适用于40+40m跨径组合(斜交40°); H类承台: 下部采用10根φ1.0m钻孔灌注桩,承台尺寸为27.0×4.5m(横×顺), 厚1.5m。主要适用于桥台基础;拟采用I型钢板桩实施围护,以确保基坑安全开挖、承台结构和墩身结构的顺利施工。 二、地质情况 根据地质勘察报告显示:勘察深度范围内(河床底至钻孔桩底)可分为7个地质单元层,钢板桩深度主要在:⑴层为近代人工堆填土,⑵黄~灰黄色粘土和灰黄~灰色砂质粉土,(3)灰色粉质粘土

拉森钢板桩围堰支护计算说明修订稿

拉森钢板桩围堰支护计 算说明 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

拉森钢板桩支护计算单 一、 检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m ,开挖尺寸×,筑岛顶标高:495m ;常水位标高:+;承台顶标高:+;承台底标高:489m ;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m3,内摩擦角φ=15o ,卵石重度γ= KN/m3,内摩擦角φ=36o ,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m2, 且距离围堰距离为米。 钢板桩最小嵌入深度t ,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ平均=(*+*)/= KN/m3 φ平均=(15*+36*)/= 主动土压力系数:K a =-45Tan 2 ( φ/2)=; 被动土压力系数:K p =+45Tan 2 ( φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p

h= K——为被动土压力的修正系数,取。2)、计算支点力米处:P。= 基坑底钢板桩受力米处: 如图: 剪力图 弯矩图最小嵌入深度t: t=。

t 。= h K -KK P 6a P 0 +?(γ= t=。= 已知外界荷载:q =Ka*30=m2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ=1000*1340=<175 Mpa 满足要求。 2、多层支护 多层支护最小嵌入深度h :h=*h o =*n o *H=**= 第一层支撑设在+79m 处,第二层支撑设在+处, 已知外界荷载:q =Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m 处时,相当于悬臂式支护结构,钢板桩最大弯矩M max =*m ,满足拉森钢板桩的承载要求,设立第一层支撑结构。 2)、工况二:当基坑开挖到第二层支撑+77m 处时,相当于单支点支护结构。支点力T1=,钢板桩最大弯矩M max =*m

拉森钢板桩设计计算书

拉森钢板桩设计计算书 (1)钢板桩的设置位置要符合设计要求,便于基础施工,即在基础最突出的边缘外留有支模、拆模的余地。 (2)基坑护壁钢板桩的平面布置形状应尽量平直整齐,避免不规则的转角,以便标准钢板桩的利用和支撑设置。各周边尺寸尽量符合板桩模数。 (3)整个基础施工期间,在挖土、吊运、扎钢筋、浇筑混凝土等施工作业中,严禁碰撞支撑,禁止任意拆除支撑,禁止在支撑上任意切割、电焊,也不应在支撑上搁置重物。 2 工艺流程 根据施工图及高程放设沉桩定位线→引孔的施工→沉桩位置沟槽开挖1m 深→根据定位线设置沉桩导梁→整修、平整施工机械行走道路→钢板桩插入和预打→静压钢板桩→静压机行走路线处沟槽的平整→钢管桩的静压施工→挖除地表面 1.0m厚土及放坡→开挖至第一道围檩位置→设置围檩及支撑→开挖至第二道围檩位置→设置围檩及支撑→土方开挖→割除并吊出上部的钢管桩(可根据钢管桩每节的长短进行工序的调整)→施工桥台至第二道支撑下0.5m处→填土及拆除第二道围檩及支撑→施工桥台至第一道支撑下0.5m处→填土及拆除第一道围檩及支撑→主体结构施工完成→回填土→拔除钢板桩→在桩的缝隙处用细砂回填密实 在施工过程中采用集水明排方式排出坑底汇水。 3 操作工艺 (1)打桩机械 主机采用静压机,噪音及振动较小。围檩、支撑、板桩吊装采用25t汽车吊。板桩围堰施工采用测量定位、屏风式打入的施工方法。 (2)钢板桩的检验及矫正 对进场的钢板桩按出厂标准进行检验,应对外观质量进行检验,包括长度、宽度、厚度、高度等是否符合设计要求,有无表面缺陷,端头矩形比,垂直度和锁口形状等。验收标准:①高度允许偏差±8mm;②宽度绝对偏差+10mm;③弯曲和挠度用2m长锁口榉板顺利通过全长挠度<1%;④桩端平面应平整;⑤钢板背面及锁口应光滑无阻。

钢板桩计算

钢板桩计算 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

深基坑拉森钢板桩计算 计算依据为《建筑施工计算手册》。挡土钢板桩根据基坑挖土深度、土质情况、地质条件和邻近建筑管线情况,选用多锚(支撑)板桩形式,对坑壁支护, 以便基坑开挖。根据现场实际情况,基坑深度~米,现按开挖深度米计算,宽米, 钢板桩施工深度按9m计算,单层支撑,撑杆每隔3m一道。从剖面可知,沟槽施工 关系到素填层、粉质粘土及淤泥质中砂层。求得其加权平均值为:坑内、外土 的天然容重加全平均值1γ,2γ均为:20KN/m3;内摩擦角加全平均值Φ:20°; 粘聚力加全平均值c=10。 多支撑式板桩计算,钢板桩选用拉森Ⅲ型钢板桩,每延长米截面矩 W=1600cm3/m,[f]=200Mpa。支撑图附在后页。 一、内力计算 (1)作用于板桩上的土压力强度及压力分布见下图 板桩外侧均布荷载换算填土高度h0, h0=q/r=20=1.0m。 (2)计算反弯点位置。 假定钢板桩上土压力为零的点为反弯点,设其位于开挖面以下y处,则有:整理得: 式中,1γ,2γ——坑内外土层的容重加权平均值; H——基坑开挖深度; Ka——主动土压力系数; Kpi——放大后的被动土压力系数。

(3)按简支梁计算等值梁的最大弯矩和支点反力,其受力简图如下图所示。 由0Q M =∑得: 解得: R=m Q=+×5/2+× =m (4)计算钢板桩的最小入土深度。 根据公式得: 由公式得:最小入土深度 t=×(+)= H 桩总长=+= <9m(拉森钢板桩),符合要求。 (4)板桩稳定性验算 板桩入土深度除保证本身的稳定外,还应保证基坑底部在施工期间不会出现隆起和管涌现象。 A 、基坑底后隆起验算 当墙背后的土柱重量超过基坑底面以下的地基承载力时,地基上的塑性平衡状态便受到破坏,墙背后的土就会发生从墙脚下向基坑内流动,基坑底面向上隆起,坑顶下陷的现象。为防止这种现象发生,应验算挡墙入土深度能否满足抵抗基坑底隆起的要求。 Ks=(γtNq+cNc)/[ γ(h+t)+q] 式中 t ——墙体入土深度(m ); 取t= h ——基坑开挖深度(m ); 取h= γ——坑底及墙后土体的密度(KN/m 3); M max 29.8KN/m 2钢板桩受力简图44.8KN/m

深基坑钢板桩支护计算

1、工程简介 越南沿海火力发电厂3期连接井位丁电厂厂区内,距东边的煤灰堆场约100m,连接井最南侧距海边约30m~40m。现根据施工需要,将连接井及部分陆域段钢管段设置成干施工区域,即将全部连接井及部分陆域钢管段区域逐层开挖成深基坑,然后在基坑进行施工工作。基层四周采用CDM桩或者钢板桩进行支 护。干施工区域平■面图如下所示

2、设计资料 1、钢板桩桩顶高程为+3.3m; 2、地面标局为+2.5m,开挖面标rlj -5.9m,开挖深度8.4m,钢板桩底标局-14.7m。 3、坑内外土体的天然容重丫为16.5KN/m2,内摩擦角为O=8.5度,粘聚力 c=10KPa; 2 二 4、地面超载q:按20 KN/m 考虑; 5、钢板桩暂设拉森IV 400X70 U型钢板桩,W=2270cm3, [ g=200MPa,桩长18m。3内力计算 3.1支撑层数及间距 按等弯矩布置确定各层支撑的间距,则钢板桩顶部悬臂端的最大允许跨度为:

h i =1.11h=1.11 2603m=2.89m h 2=0.88h=0.88 2603m=2.29m 根据现场施工需要和工程经济性,确定采用两层支撑,第一层 h=1.2m,支 撑标高+1.3m;第二层支撑h i =2m,支撑标高-0.7m 。 3.2作用在钢板桩上的土压力强度及压力分布 主动土压力系数 Ka=tan2(45 ° - 4 /2)= tan2(45 ° 1、主动土压力:P a =qKa + ^K a ① z=0m P a =20X 0.742+16.5X 0X 0.742=14.84KN/m 2 ② z=3.2m (地面到基坑底距离)) _ __ _______ __ __ ______________ ___ _ ____ 2 P a =20 X 0.742+16.5X 3.2 X 0.742=54.02KN/m 2 2、被动土压力:P p =rK p ① z=3.2m (地面到基坑底距离) — 一 ,一一 一一、 一 一 2 P p =16.5X (3.2-3.2) X 1.347=0KN/m 2 ② z=17.2m (地面到钢板桩底距离) — 一 ,一一 一、 一 一 2 P p =16.5X ( 17.2-3.2) X 1.347=311.157KN/m 2 3、 计算反弯点位置: 假定钢板桩上土压力为零的点为反弯点,则有: P a =P p P a =20X 0.742+16.5X zX 0.742=P P =16.5X (z-3.2) X 1.347 z=8. 61m 4、 等值梁法计算内力: 钢板桩AD 段简化为连续简支梁,用力矩分配法计算各支点和跨中的弯矩,16.5 0.742 :2603mm = 2.603m -8.5° /2)= 0.742 2/, 被动土压力系数 Kp=tan2(45° +4 /2)=tan (45 +8.5° /2)=1.347 工况一:安装第一层支撑后,基坑内土体开挖至 -0.7m (第二层支撑标高)。

钢板桩设计计算精编版

钢板桩设计计算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

钢板桩设计计算及施工方案 本标段施工范围内共有75个承台,分8种类型: A类承台:下部采用9根φ1.0 m钻孔灌注桩,承台尺寸为×7m(横×顺), 厚2.4m。主要适用于30+30m跨径组合; B类承台: 下部采用9根φ1.2m 钻孔灌注桩,承台尺寸为×8.2m(横×顺), 厚2.6m。主要适用于40+40m跨径组合; C类承台: 下部采用8根φ1.0 m钻孔灌注桩,承台尺寸为×7m(横×顺), 厚2.4m。主要适用于25+25m跨径组合; D类承台: 下部采用8根φ1.2 m钻孔灌注桩,承台尺寸为×8.2m(横×顺), 厚2.6m。主要适用于30+40m跨径组合; E类承台: 下部采用6根φ1.2 m钻孔灌注桩,承台尺寸为×5.34m(横×顺), 厚2.5m。主要适用于25+30m跨径组合(斜交20°); F类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为×8.34m(横×顺), 厚2.6m。主要适用于+33.5m跨径组合(斜交20°); G类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为×8.872m(横×顺), 厚3.0m。主要适用于40+40m跨径组合(斜交40°); H类承台: 下部采用10根φ1.0m钻孔灌注桩,承台尺寸为×4.5m(横×顺), 厚1.5m。主要适用于桥台基础;拟采用拉森Ⅳ型钢板桩实施围护,以确 保基坑安全开挖、承台结构和墩身结构的顺利施工。 二、地质情况 根据地质勘察报告显示:勘察深度范围内(河床底至钻孔桩 底)可分为7个地质单元层,钢板桩深度主要在:⑴层为近代人工 堆填土,⑵黄~灰黄色粘土和灰黄~灰色砂质粉土,(3)灰色粉质粘 土 三、钢板桩施工方案 1、钢板桩的选用

(完整版)拉森钢板桩基坑支护方案设计和计算

3、拉森钢板桩基坑支护方案设计和计算 3.1、基本情况 城展路环城河桥桥台位于河岸上,基坑开挖深度较小;桥墩长24m,宽1.7m,右偏角90°,系梁底标高为0.0m,河床底标高0.0m,因此基坑底部尺寸考虑1m施工操作面要求,布置为长26m,宽3.7m,不需土方开挖。 环城河常水位2.6m,1/20洪水位3.27m,河床底标高0.0m,河底为淤泥土。考虑选择枯水期施工,堰顶标高为3.5m。 3.2、支护方案设计 支护采用拉森钢板桩围堰支护,围堰平行河岸布置,平面布置详见附图。堰体采用拉森钢板桩Ⅳ型,桩长12米,内部水平围檩由单根(500×300mm)H型钢组成,支撑杆设置在钢板桩顶部,由直径为600mm,壁厚为8mm钢管组成。 整个基坑开挖完成后,沿基坑四周挖出一条200×200mm排水沟,在基坑对角设500×500×500mm集水坑,用泥浆泵将集水坑内渗水及时排出基坑。 布置图:

4、基坑稳定性验算 4.1、桥墩基坑稳定性验算 钢板桩长度为12米,桩顶支撑,标高3.5米,入土长度8.5米。基坑开挖宽度26米,坑底标高0.0米。基坑采用拉森钢板桩支护,

围檩由单根(500×300mm)H型钢组成,设单道桩顶支撑,支撑采用直径为600mm,壁厚为8mm钢管作为支撑导梁,钢管与H型钢进行嵌固相连并焊接。验算钢板桩长度,选择钢板桩和导梁型号,验算基底稳定性。 采用理正深基坑软件对支护结构和围囹支撑体系等变形与内力整体计算分析;支护结构的抗倾覆稳定性、抗隆起、抗管涌、嵌固深度采用理正深基坑支护结构设计软件单元计算进行分析。 4.1.1、设计标准及参数 1、基坑设计等级及设计系数 二级,重要性系数:1.0; 支护结构结构重要性系数:1.0; 构件计算综合性系数:1.25。 2 、材料力学性能指标 1、单元分析工况定义 (1)、工况1:打钢板桩,水面以下3.5m; (2)、工况2:在桩顶以下0.5m处安装第一道内支撑; (3)、工况3:抽水; 2、单元计算 [ 支护方案 ] ---------------------------------------------------------------------- 连续墙支护

相关主题