搜档网
当前位置:搜档网 › 高频电子线路实验报告5——频率调制(变容二极管)

高频电子线路实验报告5——频率调制(变容二极管)

高频电子线路实验报告5——频率调制(变容二极管)
高频电子线路实验报告5——频率调制(变容二极管)

实验报告

课程名称高频电子线路

专业班级

姓名

学号

电气与信息学院

和谐勤奋求是创新

⑤把调频器单元的调频输出端12P02连接到鉴频器单元的输入端(

13K02拨向相位鉴频,便可在鉴频器单元的输出端

频信号。如果没有波形或波形不好,应调整12W01和13W01。

⑥将示波器CH1接调制信号源(可接在调制模块中的12TP03

,比较两个波形有何不同。改变调制信号源的幅度,观测鉴频器解调输出有何变化。调整调制信号源的频率,观测鉴频器输出波形的变化。

实验报告要求

.根据实验数据,在坐标纸上画出静态调制特性曲线,说明曲线斜率受哪些因素影响。

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

高频电子线路实验报告变容二极管调频

太原理工大学现代科技学院高频电子线路课程实验报告 专业班级测控1001班 学号 姓名 指导教师

实验四 变容二极管调频 一、实验目的 1、掌握变容二极管调频的工作原理; 2、学会测量变容二极管的Cj ~V 特性曲线; 3、学会测量调频信号的频偏及调制灵敏度。 二、实验仪器 1、双踪示波器一台 2、频率特性扫频仪(选项)一台 三、实验原理与线路 1、实验原理 (1)变容二极管调频原理 所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡信号)的瞬 时频率,使其按调制信号的规律变化。 设调制信号:()t V t Ω=ΩΩcos υ ,载波振荡电压为:()t A t a o o ωcos = 根据定义,调频时载波的瞬时频率()t ω随()t Ωυ成线性变化,即 ()t t V K t o f o Ω?+=Ω+=Ωcos cos ωωωω (6-1) 则调频波的数字表达式如下: ()??? ? ?? ΩΩ+=Ωt V K t A t a f o o f sin cos ω 或 ()() t m t A t a f o o f Ω+=sin cos ω (6-2) 式中:Ω=?V K f ω 是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。比例常 数Kf 亦称调制灵敏度,代表单位调制电压所产生的频偏。 式中:F f V K m f f ?=Ω?=Ω=Ωω称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了 调制深度。由上公式可见,调频波是一等幅的疏密波,可以用示波器观察其波形。 如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路 图6—1所示。

变容二极管调频课程设计..

成绩评定表

课程设计任务书

目录 摘要 (4) 1.引言 (5) 2. Protel 99 SE 简介 (6) 3.实验步骤 (7) 3.1 Protel 99 SE 绘图环境设置 (7) 3.1.1新建一个设计库 (7) 3.1.2添加元件库 (10) 3.2绘制原理图 (12) 3.2.1选取元件 (12) 3.2.2摆放元件 (13) 3.2.3元件连接 (13) 3.2.4放置输入/输出点 (14) 3.2.5更改元件属性 (15) 3.2.6 ERC(电气规则检查) (16) 3.3 PCB制图 (16) 3.3.1自动生成PCB文件 (16) 3.3.2自动布线 (18) 3.4仿真应用 (20) 4.课设总结 (22) 5.参考文献 (22)

摘要 本次课设的要求和目的是掌握Protel的应用。本文以Protel99SE为例,详细具体地介绍这个软件的用法与应用。文章首先介绍了Protel99SE基本知识,然后提出需用该软件解决的实际问题,结合实际问题一步步介绍Protel99SE的用法,如:基础原理图设计,印制电路板基础,PCB元件的制作,电路仿真分析,综合案例演练等。接着分析应用Protel99SE软件的过程中可能遇到的问题及一些应对方法。课设最后进行总结,检查课设的完整性和彻底性,检验自己对Protel99SE软件的掌握程度及应用情况。

Protel 99 SE应用课程设计 ——变容二极管的调频电路 1·引言 人类社会已进入到高度发达的信息化社会,信息社会的发展离不开电子产品的进步。现代电子产品在性能提高、复杂度增大的同时,价格却一直呈下降趋势,而且产品更新换代的步伐也越来越快,实现这种进步的主要原因就是生产制造技术和电子设计技术的发展。前者以微细加工技术为代表,目前已进展到深亚微米阶段,可以在几平方厘米的芯片上集成数千万个晶体管;后者的核心就是EDA技术。EDA是指以计算机为工作平台,融合了应用电子技术、计算机技术、智能化技术最新成果而研制成的电子CAD通用软件包,主要能辅助进行三方面的设计工作:IC设计,电子电路设计以及PCB设计。其中最基本也是最常用的是以PCB设计为目的的电路设计、仿真和验证技术。 PCB设计业界称为电子装联设计。从最近两年的统计数据来看,中国大陆的电子装联产品占世界市场份额第一。Protel软件最成功的地方就是其PCB设计功能。其中Protel 99 SE 版本在PCB设计方面已经比较成熟,价廉物美、容易上手、功能满足基本需求,这是用户选择它的真正原因。

高频电子线路实验说明书

高频电子线路实验 说明书

实验要求(电信111班) l.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。 4.高频电路实验注意: 1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。 2)由于高频电路频率较高,分布参数及相互感应的影响较大。因此在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。 3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。找出原因、排除故障,经指导教师同意再继续实验。 6.实验过程中需要改接线时,应关断电源后才能拆、接线。 7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。 8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 9.实验后每个同学必须按要求独立完成实验报告。 实验一调谐放大器 一、实验目的

1、熟悉电子元器件和高频电路实验箱。 2、熟悉谐振回路的幅频特性分析一通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1、双踪示波器 2、扫频仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、实验电路中,若电感量L=1uh,回路总电容C=220pf (分布电容包括在内),计算回路中心频率 f 0 。图1-1 单调谐回路谐振放大器原理图 四、实验内容及步骤 (一)单调谐回路谐振放大器

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

变容二极管实验报告

变容二极管调频与鉴频实验 实验报告 姓名: 学号: 班级: 日期:

变容二极管调频与鉴频实验(模块3、5) 一、实验目的 1)、了解变容二极管调频器的电路结构与电路工作原理。 2)、掌握调频器的调制特性及其测量方法。 3)、观察寄生调幅现象,了解其产生的原因及其消除方法。二、实验原理 调频即为载波的瞬时频率受调制信号的控制。其频率的变化量与调制信号成线性关系。常用变容二极管实现调频。 变容二极管调频电路如下图所示。从J2处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从J1处输出为调频波(FM)。C15为变容二级管的高频通路,L1为音频信号提供低频通路,L1和C23又可阻止高频振荡进入调制信号源。

鉴频器 (1)鉴频是调频的逆过程,广泛采用的鉴频电路是相位鉴频器。鉴频原理是:先将调频波经过一个线性移相网络变换成调频调相波,然后再与原调频波一起加到一个相位检波器进行鉴频。因此,实现鉴频的核心部件是相位检波器。 相位检波又分为叠加型相位检波和乘积型相位检波,利用模拟乘法器的相乘原理可实现乘积型相位检波,其基本原理是:在乘法器的 一个输入端输入调频波)(t v s ,设其表达式为: ]sin cos[)(t m w V t v f c sm s Ω+= 式中,f m 为调频系数,Ω?=/ωf m 或f f m f /?=,其中ω?为调制信号产生的频偏。另一输入端输入经线性移相网络移相后的调频调相波)('t v s ,设其表达式为 )]}(2[sin cos{)(''ω?π ω++Ω+=t m V t v f c sm s )](sin sin[' ω?ω+Ω+=t m V f c sm 式中,第一项为高频分量,可以被滤波器滤掉。第二项是所需要

高频变容二极管调频器

深圳大学实验报告课程名称:通信电子线路 实验项目名称:变容二极管调频器学院:信息工程学院 专业: 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务部制

实验目的与要求: 1.熟悉电子元器件和高频电子线路实验系统。 2.掌握用变容二极管调频振荡器实现FM的方法。 3.了解变容二极管串接电容的数值对FM波产生的影响。 4.理解静态调制特性、动态调制特性概念和测试方法。 方法、步骤: 1.实验准备 ⑴在箱体右下方插上实验板4。接通实验箱上电源开关,此时箱体上±12V、±5V电 源指示灯点亮。 ⑵把实验板4上变容二极管调频振荡器单元(简称调频器单元)的电源开关(K2) 拨到ON位置,就接通了+12V电源(相应指示灯亮),即可开始实验。 2.静态调制特性测量 输入IN端先不接音频信号,将频率计接到调频器单元OUT端的C点(在本单元最右 边中部)。调节W2使得BG2射极到地之间的电压为4V(即集电极电流I c0=1mA,因为 R7=1kΩ),此后应保持不变。 ⑴电容C3(=100pF)不接(开关K1置OFF)时的测量 调整W l使得振荡频率f0=6.5MHz(用频率计测量),用万用表测量此时A点(在调频 器单元最左边中部)电位值,填入表8.1中。然后重新调节电位器W l,使A点电位在0.5~ 8V范围内变化,并把相应的频率值填入表8.1。最后仍需将振荡频率调回到6.5MHz。 ⑵电容C3接入(开关K1置ON)时的测量:同上,将对应的频率填入表8.1。最后仍 需将振荡频率调回到6.5MHz。 ⑶调节W2以改变BG2级工作点电压,观测它对于调频器输出波形的影响。最后仍 需将BG2射极到地之间的电压调回到4V ⑷调节W3以改变输出(OUT)电压幅度,观测它对于调频器输出波形的影响。 表8.1 V A(V) 0.5 1 2 3 4 5 6 7 8 f0(MHz)不接C3 6.5 空格接入C3空格 6.5 3.动态调制特性测量 ⑴实验准备 ①先把相位鉴频器单元(简称鉴频器单元)中的+12V电源接通(开关K7置ON,相应指示灯亮),再把鉴频器单元电路中的K2、K3、K5置ON位置,K1、K4、K6置OFF 位置(此时三个固定电容C5、C9、C10接通,三个可变电容C4、C11、C12断开,从而鉴

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

实验五FM调频波信调制

实验五 FM 调频波信号调制 一、仿真实验目的 (1)掌握变容二极管调频电路的原理。 (2)了解调频电路的调制特性及测量方法。 (3)观察调频波波形,观察调制信号振幅对频偏的影响。 (4)观察寄生调幅现象,了解其产生及消除的方法。 二、FM 调制原理(变容二极管调频电路) 调频即为载波的瞬时频率受调制信号的控制。许多中小功率的发射机都采用变容二极管直接调频技术,直接调频法即在工作于发射载频的LC 振荡回路上直接调频,具体采用的方法是用模拟基带信号控制振荡回路变容二极管的大小,使振荡器输出信号的瞬时频率随基带信号做线性变化。其频率的变化量与调制信号成线性关系。 变容二极管j C 通过耦合电容1C 并接在N LC 回路的两端,形成振荡回路总电容的一部分。因而,振荡回路的总电容C 为:j N C C C += 振荡频率为: ) (2121j N C C L LC f +==ππ 变容二极管是一种电抗可变的非线性元件,通过改变外加反向电压可以改变空间电荷区的宽度,从而改变势垒电容的大小。变容二极管在反向偏置直接调频电路中,不能工作于正向偏压区,必须加上一个大于调制信号振幅的反向直流偏压。 变容二极管调频产生的调频信号的调制指数较大,但载频稳定性较差。除了这种方法还可直接用锁相环产生调制指数较大,载频很稳定的调频信号。 三、仿真电路 变容二极管调频电路如图所示。该电路为一种针对克拉泼电路做的一种改进型电容三端式电路——西勒电路。变容二极管的结电容以部分接入的形式纳入在回路中。该高频等效电路未考虑负载电阻。 所以,振荡频率f 0=1/2πN LC 。西勒电路在分立元件系统或集成高频电路系统中均获得广泛的应用。 调频波:从示波器上看到的波形频率变化不明显,从频率计(XFC1)可看出频率不停变化。载波信号80kHz ,调制信号3kHz ,从示波器看不出明显的调频波频率的变化。调频广播载波频率范围是(88~108)MHz ,低频调制信号最高20kHz,从载波波形也看不出频率的变化。 FM 调频波信号调制电路图 FM 调频波信号波形图 四、实验步骤和测试内容 (1) 测试变容二极管的静态调制特性,即拿掉3V ,保留直流电压1V ,观察02=V 以及取其它值时振荡频率的变化,这时的振荡器属于压控振荡器。 (2)观察调频波波 形。 (3)观察调制 信号振幅对频偏的影响,观察寄生调幅现象。 五、实验报告要求

压控振荡器实验报告

微波与天线实验报告 实验名称:压控振荡器 实验指导:黎鹏老师 一、实验目的: 1.了解变容二极管的基本原理与压控振荡器的设计方法。 2.利用实验模组的实际测量使学生了解压控振荡器的特性。 3.学会使用微波软件对压控振荡器进行设计和仿真,并分析结果。 二、预习内容: 1.熟悉VCO的原理的理论知识。 2.熟悉VCO的设计的有关的理论知识。

三、实验设备: 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 压控振荡器模组1组RF2KM9-1A 3 50Ω BNC及1MΩ BNC 连接线4条CA-1、CA-2 、CA-3、CA-4 4 直流电源连接线1条DC-1 5 MICROWAVE软件1套微波软件 四、实验步骤 1、硬件测量: 1.对MOD-9,压控振荡器的频率测量以了解压控振荡电路的特性。 2.准备电脑、测量软件、RF-2000,相关模组,若干小器件等。 3.测量步骤: MOD-9之P1端子的频率测量: ⑴设定 RF-2000测量模式:COUNTER MODE. ⑵用DC-1连接线将RF-2000后面12VDC 输出端子与待测模组之12VDC 输入端子连接起来。 ⑶针对模组P1端子做频率测量。 ⑷调整模组之旋钮,并记录所量测频率值: 最大_623_______ MHZ。 最小___876_____ MHZ。 4.实验记录:填写各项数据即可。 5.硬件测量的结果建议如下为合格: RF2KM9-1A MOD-9 fo 600-900MHZ Pout≥5dBm 6.待测模组方框图: 2、软件仿真: 1、进入微波软件。 2、在原理图上设计好相应的电路,设置好端口,完成频率设置、尺寸规范、 器件的加载、仿真图型等等的设置。

变容二极管调频实验报告(高频电子线路实验报告)

变容二极管调频实验 一、实验目的 1、掌握变容二极管调频电路的原理。 2、了解调频调制特性及测量方法。 3、观察寄生调幅现象,了解其产生及消除的方法。 二、实验内容 1、测试变容二极管的静态调制特性。 2、观察调频波波形。 3、观察调制信号振幅时对频偏的影响。 4、观察寄生调幅现象。 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、 3 号板1块 4、双踪示波器1台 5、万用表1块 6、频偏仪(选用)1台 四、实验原理及电路 1、变容二极管工作原理 调频即为载波的瞬时频率受调制信号的控制。其频率的变化量与调制信号成线性关系。常用变容二极管实现调频。 变容二极管调频电路如图1所示。从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。本电路中使用的是飞利浦公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V的区间内,变容二极管的容值可由35P到8P左右的变化。电压和容值成反比,也就是TP6的电平越高,振荡频率越高。

图2表示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。在(a )中,U 0是加到二极管的直流电压,当u =U 0时,电容值为C 0。u Ω是调制电压,当u Ω为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当u Ω为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。在图(b )中,对应于静止状态,变容二极管的电容为C 0,此时振荡频率为f 0。 因为LC f π21= ,所以电容小时,振荡频率高,而电容大时,振荡频率低。从图(a ) 中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LC f π21= ,f 和C 的关系也是非线性。不难看出,C-u 和f-C 的 非线性关系起着抵消作用,即得到f-u 的关系趋于线性(见图(c ))。

实验四 变容二极管调频

实验四变容二极管调频 一.实验目的 1、掌握变容二极管调频的工作原理。 2、学会测量静态特性曲线,理解动态特性的含义。 3、学会测量调频信号的频偏及调制灵敏度。 4、观察寄生调幅现象。 二.实验原理 1、变容二极管调频原理 所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡)的瞬时频率,使其按调制信息的规律变化。 设调制信号:υΩ(t)= VΩcosΩt,载波振荡电压为:a ( t ) = A o cosωo t 根据定义,调频时载波的瞬时频率ω(t)随υΩ(t)成线性变化,即 ω(t)= ωo + K f VΩcosΩt =ωo + ΔωcosΩt (4-1) 则调频波的数字表达式如下: a f (t) = A o cos(ωo t+ ΩΩ V K f sinΩt) 或a f (t) = A o cos(ωo t+ m f sinΩt) (4-2) 式中:Δω= K f VΩ是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。比例常数K f亦称调制灵敏度,代表单位调制电压所产生的频偏。 式中:m f = K f VΩ/Ω= Δω/Ω =Δf / F 称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图4-1所示。 图4-1 变容二极管调频原理电路 变容二极管C j通过耦合电容C1并接在LC N回路的两端,形成振荡回路总电容的一部分。因而,振荡回路的总电容C为: C = C N + C j(4-3) 加在变容二极管上的反向偏压为: V R = V Q(直流反偏)+υΩ(调制电压)+υo(高频振荡,可忽略)

实验十三 变容二极管调频实验

实验十三变容二极管调频实验 一、实验目的 1.掌握变容二极管调频电路的原理。 2.了解调频调制特性及测量方法。 3.观察寄生调幅现象,了解其产生及消除的方法。 二、实验内容 1.测试变容二极管的静态调制特性。 2.观察调频波波形。 3.观察调制信号振幅时对频偏的影响。 4.观察寄生调幅现象。 三、实验原理及电路 1.变容二极管工作原理 调频即为载波的瞬时频率受调制信号的控制。其频率的变化量与调制信号成线性关系。常用变容二极管实现调频。 变容二极管调频电路如图13-1所示。从J2处加入调制信号,使变容二 图13-1 变容二极管调频 极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从J1处输出为调频 70

71 f f

72 波(FM )。C 15为变容二级管的高频通路,L 1为音频信号提供低频通路,L 1和C 23又可阻止高频振荡进入调制信号源。 图13-2示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。在(a )中,U 0是加到二极管的直流电压,当u =U 0时,电容值为C 0。u Ω是调制电压,当u Ω为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当u Ω为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。在图(b )中,对应于静止状态,变容二极管的电容为C 0,此时振荡频率为f 0。 因为LC f π21= ,所以电容小时,振荡频率高,而电容大时,振荡频率 低。从图(a )中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LC f π21= ,f 和C 的关系也是非线性。不难看出,C-u 和f-C 的非线性关系起着抵消作用,即得到f-u 的关系趋于线性(见图(c ))。 2. 变容二极管调频器获得线性调制的条件 设回路电感为L ,回路的电容是变容二极管的电容C (暂时不考虑杂散电容及其它与变容二极管相串联或并联电容的影响),则振荡频率为 LC f π21= 。为了获得线性调制,频率振荡应该与调制电压成线性关系, 用数学表示为Au f =,式中A 是一个常数。由以上二式可得 LC Au π21 = ,将上式两边平方并移项可得2 2 22)2(1-== Bu u LA C π,这即是变容二极管调频器获得线性调制的条件。这就是说,当电容C 与电压u 的平方成反比时,振荡频率就与调制电压成正比。 3. 调频灵敏度 调频灵敏度f S 定义为每单位调制电压所产生的频偏。 设回路电容的C-u 曲线可表示为n Bu C -=,式中B 为一管子结构即电路串、并固定电容有关的参数。将上式代入振荡频率的表示式LC f π21=中,可得

电容三点式振荡器与变容二极管直接调频电路设计

咼频实验报告(二) --- 电容三点式振荡器与 变容二极管直接调频电路设计 组员 座位号16 __________________ i

实验时间__________ 周一上午 ________ 目录 一、实验目的 (3) 二、实验原理 (3) 2.1 电容三点式振荡器基本原理 (3) 2.2 变容二极管调频原理 (5) 2.3 寄生调制现象 (8) 2.4 主要性能参数及其测试方法 (9) 三、实验内容 (10) 四、实验参数设计 (11) 五、实验参数测试 (14) 六、思考题 (15) ii

实验目的 1. 掌握电容三点式LC 振荡电路的基本原理。 2. 掌握电容三点式LC 振荡电路的工程设计方法。 3. 了解高频电路中分布参数的影响及高频电路的测量方法。 4. 熟悉静态工作点、反馈系数、等效 Q 值对振荡器振荡幅度和频谱纯度的影响。 5. 掌握变容二极管调频电路基本原理、调频基本参数及特性曲线的测量方法。 实验原理 2.1电容三点式振荡器基本原理 电容三点式振荡器基本结构如图所示: 在谐振频率上,必有 X i + X 2 + X 3 =0,由于晶体管的 V b 与V c 反相,而根据振荡器的 振荡条件|T| = 1,要求V be = — V ce ,即i X i = i X 2,所以要求 X i 与X 2为同性质的电抗。 综合上述两个条件,可以得到晶体管 LC 振荡器的一般构成法则如下:在发射极上连 接的两个电抗为同性质电抗,另一个为异性质电抗。 原理电路如图3.2所示: 图3.2原理电路 共基极实际电路如图3.3所示: Xi ―I X 2 I — 图3.1电容三点式振荡器基本结构 C1 C2 图3.3共基极实际电路

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

变容二极管调频振荡器

课程名称通信电子线路 实验项目变容二极管调频振荡器成绩 学院信息专业通信工程学号姓名李越 实验时间2016.06.04实验室3501指导教师谢汝生 1.实验目的 1.熟悉变容二极管调频振荡器电路原理及构成。 2.了解调频器调制特性及测量方法。 2.实验设备 1.双踪示波器(RIGOL DS5062CA数字存储示波器) 2.频率计(AT-F1000-C数字频率计) 3.万用表(DT9205数字万用表) 4.清华科教TPE-GP2型高频电路实验箱及G4实验板

3.实验电路及基本原理分析 实验原理: 在调制中,载波信号的频率或相位随调制信号而变,称为调频(FM)或调相(PM),在这两种调制过程中,载波信号的幅度都保持不变,而频率或相位的变化都表现为相角的变化,故二者统称为角度调制或调角。 调频就是用调制信号电压去控制载波的频率,可分为直接调频和间接调频两种。直接调频就是用调制电压直接去控制载波振荡器的频率,产生调频信号。间接调频就是保持振荡器的频率不变,而用调制电压去改变载波输出的相位,即调相。 变容二级管是利用半导体PN结的结电容随外加反向电压而变化的特性制成的一种半导体二极管,它是一种电压控制可变电抗元件,在其PN结上反偏压越大,则结电容越小。若将变容二极管接在谐振电路两端作为回路振荡电容,使其反向偏压受调制信号的控制,则其容值随调制信号电压的变化而变化,整个振荡器的回路的振荡频率将随着调制信号的变化而变化,从而得变容二极管调频振荡器。 本实验所用电路如图所示,为变容二极管部分接入振荡回路的直接调频电路。变容二极管全部接入作为回路的总电容时,其最大的优点是调制信号对振荡频率的调变能力强,即调制灵敏度高,较小的调制度就能产生较大的相对频偏,但同时因温度等外界因素变化引起的载波频率不稳定也必然相对增加。为了克服上述缺点,采用变容二极管部分接入振荡回路的直接调频电路,此时由于变容二极管仅是回路总电容的一部分,因而调制信号对振荡频率的调变能力将比变容二极管全部接入时小,但因温度等变化引起的载波频率不稳定的情况却有较大改善,载波频率稳定度有较大提高。

变容二极管频率调制电路实验

实验八 变容二极管频率调制电路实验 1、 实验目的: 1. 了解变容二极管调频器电路原理和测试方法; 2. 了解调频器调制特性及主要性能参数的测量方法; 3. 观察寄生调幅现象,了解其产生原因及消除方法。 2、 预习要求: 1. 复习变容二极管的非线性特性,及变容二极管调频振荡器调制 特性; 2. 复习角度调制的原理和变容二极管调频电路的组成形式. 3、 实验电路说明: 本实验电路如图8-1所示。 图8-1 本电路由LC正弦波振荡器与变容二极管调频电路两部分组成。图中晶体三极管组成电容三点式振荡器。C1为基极耦合电容,Q的静态工作点由W1、R1、R2及R4共同决定。L1、C5与C2、C3组成并联谐振回路。调频电路由变容二极管D1及耦合电容C6组成,W2、R6与R7为变容二极管提供静态时的反向直流偏置电压,R5为隔离电阻。C7与高频扼流圈L2给调制信号提供通路,C8起高频滤波作用。 四、实验仪器: 1. 双踪示波器 2. 万用表 3. 频率计 4. 实验箱及频率调制、解调模块 五、实验内容及步骤: 1. 静态调制特性测量 1)接通电源; 2)输入端不接调制信号,将频率计接到TP1端,示波器接至TP2观察波形; 3)调节W1使振荡器起振,且波形不失真,振荡器频率约为5.6MHz 左右;

4)调节W2使TP3处的电压变化(Ud—二极管电压),将对应的频率填入表5-1。 Ud(V) f0(MHz) 表8-1 2. 动态测试: 调节频率调制电路的f0 =6.5MHz,从P1端输入F=2KHz的调制信号Um,,在输出TP1端观察Um与调频波上下频偏的关系(用频率分析仪测量⊿f(MHz)),将对应的频率填入表5-2。 Um(V)00.10.20.30.40.50.60.70.80.9 ⊿f(MHz) 上 ⊿f(MHz) 下 表8-2 6、 实验报告要求: 1. 整理各项实验所得的数据和波形,绘制静态调制特性曲线; 2. 求出调制灵敏度S。

变容二极管调频电路

变容二极管调频电路 实现调频的方法很多,大致可分为两类,一类是直接调频,另一类是间接调频。直接调频是用调制信号电压直接去控制自激振荡器的振荡频率(实质上是改变振荡器的定频元件),变容二极管调频便属于此类。间接调频则是利用频率和相位之间的关系,将调制信号进行适当处理(如积分)后,再对高频振荡进行调相,以达到调频的目的。两种调频法各有优缺点。间接调频器间接调频的优点是载波频率比较稳定,但电路较复杂,频移小,且寄生调幅较大,通常需多次倍频使频移增加。对调频器的基本要求是调频频移大,调频特性好,寄生调幅小。调频器广泛用于调频广播、电视伴音、微波通信、锁相电路和扫频仪等电子设备 直接调频的稳定性较差,但得到的频偏大,线路简单,故应用较广;间接调频稳定性较高,但不易获得较大的频偏。常用的变容二极管直接调频电路如图Z0916(a)所示。 图中D为变容二极管,C2、L1、和C3组成低通滤滤器,以保证调制信号顺利加到调频级上,同时也防止调制信号影响高频振荡回路,或高频信号反串入调制信号电路中。调制级本身由两组电源供电。

对高频振荡信号来说,L1可看作开路,电源EB的交流电位为零,R1与C3并联;如果将隔直电容C4近似看作短路,R2看作开路,则可得到 图(b)所示的高频等效电路。不难看出,它是一个电感三点式振荡电路。变容二极管D的结电容Cj,充当了振荡回路中的电抗元件之一。所以振荡频率取决于电感L2和变容二极 变容二极管的正极直流接地(L2对直流可视为短路),负极通过R1接+EB,使变容二极管获得一固定的反偏压,这一反偏压的大小与稳定,对调频信号的线性和中心频率的稳定性及精度,起着决定性作用。

PSK调制解调实验报告范文

PSK调制解调实验报告范文 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控

(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一)PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关 A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关 B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输

变容二极管调频实验

变容二极管调频实验和电容耦合相位鉴频 器实验 一 实验目的 1. 进一步学习掌握频率调制相关理论。 2. 掌握用变容二极管调频振荡器实现FM 的电路原理和方法。 3. 理解变容二极管静态调制特性、动态调制特性概念并掌握测试方法。 4. 进一步学习掌握频率解调相关理论。 5. 了解电容耦合回路相位鉴频器的工作原理。 6. 了解鉴频特性(S 形曲线的调试与测试方法)。 二、实验使用仪器 1.变容二极管调频振荡电路实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源 5. 电容耦合相位鉴频器实验板 三、实验基本原理与电路 (一)变容二极管调频电路 R4 R6 R5 R3 T1 C9 RW2 C7 C6 C4* C5* CV1 L C2* R8 R10 T2 C10 C13 C12 R11 LED +12 K D R2 R1 RW1 C1 R9 C8 R7 J2 C3* TP1 变容二极管调频 J1 RW3 IN1 OUT TP2 C11 A6-0808 电路原理: 晶体管T1构成了电容三点式振荡电路 ,其中电容C6,C7是正反馈电容,反馈系数等于6 67 +C F C C ,晶体管的基极接了一个电容C9到地,因此晶体管构成共基极组态的放大

电路。其中电阻RW2,R3,R4是基极的直流偏置电阻,电阻R53决定晶体管的集电极电压,电阻R6决定晶体管的射极静态的直流电流Ie 。 电容满足675,C C C >>,可变电容CV1和电感L 相并联,改变可变电容CV1,可改变振荡频率。电容C2也是一个小电容,当跳线J1连接上后,变容二极管D (型号为BB910)就接入振荡电路中,滑动变阻器RW1和电阻R1构成分压电路,为变容二极管D 提供直流反偏电压,改变滑动变阻器RW1抽头位置可以改变变容二极管D 的直流反偏电压。电阻R2是隔离电阻,通常取R2》R1,在实验中可以取300K Ω以上。电容C3是已知电容值的固定电阻,当跳线J2连接上,跳线J1断开时,振荡回路的振荡频率固定,电容C3是为测量变容二极管的结电容提供帮助的。调制信号从IN1输入,电容C1是输入隔直电容。电容C11是一个小电容,对高频振荡信号相当于短路,对低频调制信号相当于开路,从而保证低频调制信号可以加在变容二极管D 的两端,而振荡回路中的高频信号不会反射到低频调制信号输入端。 振荡信号从晶体管的射极引出,后一级晶体管构成共射极电压放大,起到隔离和缓冲的作用。 (二)电容耦合相位鉴频器电路 C1 R2 T C8 R5 LED1 +12 C7 R4 R8 R3 C3 C2 CV1 L1 C4 C5L2 CV2 CV3 D3 D4 R6 R7 C6 RW1 D2D1 R1 电容耦合相位鉴频 K TP2INT TP4 OUT TP1 TP3 A7-0808 本实验采用的是相位鉴频器。相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间的相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度的变化。 相位鉴频器由频相转换电路和鉴相器两部分组成。输入的调频信号经正、反向并联二极管D1、D2限幅之后,加到放大器T 的基极上。放大管的负载是频相转换电路,该电路

相关主题