搜档网
当前位置:搜档网 › 图形的平移与旋转教案

图形的平移与旋转教案

图形的平移与旋转教案
图形的平移与旋转教案

第三章图形的平移与旋转教案

3.1生活中的平移

教学目标:

知识目标:认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

能力目标:①通过探究式的学习,培养学生的归纳总结与猜想的数学能力,培养学生的逆向思维能力。通过知识的拓展,培养学生的分析问题与解决问题的能力;②让学生经历观察、分析、操作、欣赏以及抽象概括等过程;经历探索图形平移性质的过程,以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

情感目标:①在探究式的教学活动中,培养学生主动探索,勇于发现的科学精神;通过多种途径,培养学生细致、严谨、求实的学习习惯;渗透由特殊到一般,化未知为已知的辩证唯物主义思想;②引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验。有意识的培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力及审美意识的发展;③通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值。通过同学间的合作交流,培养学生的协作能力与学习的自主性。

教学重点:探究平移变换的基本要素,画简单图形的平移图。

教学难点:决定平移的两个主要因素。

教学过程设计:

一、引入并确定目标

展示与平移有关的图片,借助实物演示平移,用几何画板演示两个图形的平移。

学生分组讨论,如何将所看到的现象用简洁的语言叙述。

二、探究新知

分析平移定义,探讨“沿某一方向”的意义,其实质是沿直线运动。

学生讨论“沿某一方向”的意义。

展示图片,让学生讨论图中的运动各在那种情况下是平移,图中还有哪些图形可以通过平移得到。

学生分组讨论:

(1)能否通过平移得到。

(2)能平移得到的其基本图形是什么?有哪些方法?

让学生列举生活中的平移实例,对理解有偏差的加以纠正。

展示静态图片,让学生观察图中具有特殊位置关系的线段,归纳猜想所能得到的结论;利用几何画板实验验证猜想。

小组同学讨论自己所能得到的结论。

三、发展应用

例1 如图所示,△ABE 沿射线XY 方向平移一定距离后成为△CDF 。找出图中平行且相等的线段和全等的三角形。

变式练习:如图所示,∠DEF 是∠ABC 经过平移得到的,∠ABC =33o,求∠DEF 的度数。

独立思考解答,组内相互交流。

例2 如图所示,将∠ABC 沿射线XY 平移至∠A /B /C /,

且BC 与A /B /交点为D ,图中有哪些相等的角?

组内讨论,讨论解题思路,独立写出答案。

四、延伸应用

1、运用所过的轴对称及图形的平移知识设计一幅图案,或画出生活中所见到的图案。

2、如图所示有两个村庄A 和B 被一条河隔开,现要架一座桥(桥与河岸垂直),请你设计一种方案,使由A 到B 的路程最短。

五、反思总结:

组织学生小结,并作适当的补充。

教学后记:

_________________________________________ _________________________________________ _________________________________________ _________________________________________

C B F E

B C D E F

3.2简单的平移作图(1)

教学目标:

知识目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,学会平移作图,掌握作图技巧。

能力目标:通过对图形的观察、分析、对比平移前后的图形特征,动手操作,发展学生的动手能力。

情感目标:通过作图及与其他人的合作,培养学生对图形的欣赏意识。

教学重点:平移图形的规律,作图的顺序;

教学难点:平行线的作法及对应点的连结。

教学设计:

一、复习引入:

提问:1、什么叫平移?2、平移有哪些性质?3、决定平移的两大要素是什么?

二、探究新知:

提出问题:经过平移,线段AB 的端点移到了点D ,你能作

出线段AB 平移后的图形吗?

学生讨论并交流对多边形特征的认识。

引导学生归纳总结作图的方法。

教材上的例1,帮学生分析如何解决这个问题?还有其他的方法吗?

例1 如图,经过平移,△ABC 的顶点A 移到了点D ,请作出平移后的三角形。

分析:因为A 与D 是对应点,而平移

的对应点的连线段平行且相等所以平移

方向——射线AD ,平移距离——线段AD

的长。

作法:

1、分别过点B 、C 沿AD 方向作线段BE 、CF ,使它们与AD 平行且相等;

2、顺次连结D 、E 、F ;

则△DEF 即为所求。

首先听老师讲解,然后自己独立解决问题。学生思考后独立完

成,畅所欲言,互相补充,然后选择一个比较好的方法。

教材上的例2,让学生先讨论,再给予讲解。将字母A 按箭头所

指的方向平移3厘米,作出平移后的图形。

小组讨论,并给予解决。

三、课堂练习:

教材62页的“随堂练习”。

学生讨论并独立完成。

B C D B C E F

B C

D

四、发展延伸:

例如图,已知Rt△ABC中,∠C=90o,BC=4,AC=4,

(1)若平移距离为3,求△ABC与△A′BC′的重叠部分的面

积;

(2)若平移距离为x(0≤x≤4),求△ABC与△A′B′C′的重

叠部分的面积y,并写出y与x的关系式。

说明:这里应用了平移的定义及对应线段平行的性质。

小组内的同学可以相互讨论交流。讨论解题思路,独立写出答案。

五、课堂小结:

在教师的引导下,学生总结本节课的主要内容和作图是应该注意事项。

学生畅所欲言,互相补充,完善本节课的学习。

教学后记:

___________________________________________________________________________________________________________________________

_________________________________________

3.2简单的平移作图(2)

教学目标:

知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

能力目标:①,在实践操作过程中,逐步探索图形之间的平移关系;②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

教学重点:图形连续变化的特点;

教学难点:图形的划分。

教学设计:

一、创设情景,探究新知:

1.教材上小狗的图案。

提问:(1)这个图案有什么特点?

(2)它可以通过什么“基本图案”,经过怎样的平移而形成?

(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

小组讨论,派代表回答。(答案可以多种)

让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

2.看磁性黑板,展示教材64页图3-9。

提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

展示教材64页3-10,提问:左图是一种“工”字形砖,右图是怎样通过左图得到的?

小组讨论,派代表到台上给大家讲解。

气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

3.教材65页图3-11。

提问:这个图可以看做是什么“基本图案”通过平移得到的?

畅所欲言,互相补充。

二、课堂小结:

在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

例子一定要和大家接触紧密、典型。

小组讨论。

三、课堂练习:

教材65页“随堂练习”。

小组讨论完成。

答案不惟一,对于每种答案,教师都要给予充分的肯定。

教学反思:

____________________________________________________________________________________________________________________________________________________________________

3.3生活中的旋转

教学目标

教学知识点:1.旋转的定义;2.旋转的基本性质.

能力训练要求:1.通过具体实例认识旋转,理解旋转的基本涵义;2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.

情感与价值观要求:1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识;2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.教学重点:旋转的基本性质.

教学难点:探索旋转的基本性质.

教学过程:

一、巧设情景问题,引入课题

日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景).(1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

1.在这些转动的现象中,它们都是绕着一个点转动的.

2.每个物体的转动都是向同一个方向转动.

3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrot a te),这节课我们就来探讨生活中的旋转.

二、讲授新课

在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrot a te).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点

...

...同时都按相

同的方式转动相同的角度

............在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具

有不改变图形的大小和形状

...........的特征.

议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠B OE.

(2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.

(3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.

(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.

(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?

由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转

动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.

例1 (课本68页例1)

书上68页做一做

三、课堂练习

课本P69随堂练习.

1.解:旋转5次得到,旋转的角度分别等于60o、120o、180o、240o、300o.

四、课时小结

五、课后作业:

课本P69习题3.4 1、2、3.

六、活动与探究

1.分析图中的旋转现象.

过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.

结果:旋转现象为:

整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心

位置,按照同一方向连续旋转45o、90o、135o、180o、225o、270o、315o前后的

图形共同组成的.

整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90o、180o、270o前后的图形共同组成的.

整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180o前后的图形共同组成的.

2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的

过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让

学生仔细观察图形,分析图形,找出关系.

结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.

整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90o、180o、270o.前后的图形共同组成的.

整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180o前后的图形共同组成的.

教学反思:

____________________________________________________________________________________________________________________________________________________________________

3.4简单的旋转作图

教学目标:

教学知识点:1.简单平面图形旋转后的图形的作法;2.确定一个三角形旋转后的位置的条件.

能力训练要求:1.经历对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能;2.能够按要求作出简单平面图形旋转后的图形.

情感与价值观要求:1.通过画图,进一步培养学生的动手操作能力;2.在对具有旋转特征的图形进行观察、分析、画图过程中,进一步发展学生的审美观念.

教学重点:简单平面图形旋转后的图形的作法.

教学难点:简单平面图形旋转后的图形的作法.

教学过程:

一、巧设情景问题,引入课题

上节课我们探讨了生活中的旋转,那什么样的运动是旋转呢?

旋转有什么性质呢?

大家来看一面小旗子(出示小旗子,然后一边演示一边叙述),把这面小旗子绕旗杆底端旋转90o后,这时小旗子的位置发生了变化,形成了新的图案,你能把这时的图案画出来吗?在原图上找了四个点,即O点、A点、B点、C点,如图(教师把该生所画的图在投影上放影)这四个点可以是能表示这面小旗子的关键点.因为旋转前后两个图形的对应点到旋转中心的距离相等,对应点与旋转中心的连线所组成的旋转角彼此相等,所以根据已知:要把这面小旗绕O 点按顺时针旋转90o.我在方格中找到点A、B、C的对应点A′、B′、C′,然后连接,就得到了所求作的图形.

同学们在作图过程中,基本掌握了作图的一个要点:找图形的关键点。

这面小旗子是结构简单的平面图形,在方格纸上大家能画出它绕点旋转后的图形,那么在没有方格纸或旋转角不是特殊角的情况下,能否也画出简单平面图形旋转后的图形呢?

这节课我们就来研究:简单的旋转作图.

二、讲授新课

我们通过一例题来说明简单图形旋转后的图形的作法。

例1

如图,△ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点

B、C对应点的位置,以及旋转后的三角形.

分析:一般作图题,在分析如何求作时,都要先假设已经把

所求作的图形作出来,然后再根据性质,确定如何操作.

假设顶点B、C的对应点分别为点E、点F,则∠BOE、∠COF、∠AOD都是旋转角.△DEF 就是△ABC绕点O旋转后的三角形.根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则∠BO E=∠COF=∠AOD,OE=OB,OF=OC,这样即可求作出旋转后的图形.

通过分析知道如何作出△DEF,现在大家拿出直尺和圆规,我们共同来把这一旋转后的图

B C

D

O

形作出来,要注意把痕迹保留下来.

(教师一边叙述,板书作法,一边强调正确使用直尺、圆规,同时作图;学生作图)本题还有没有其他作法,可以作出△ABC绕O点旋转后的图形△DEF吗?

(同学们讨论、归纳)

答:1.可以先作出点B的对应点E,连结DE,然后以点D、E为圆心,分别以AC、BC为半径画弧,两弧交于点F,连结DF、EF,则△DEF就是△ABC绕点O旋转后的图形.2.也可以先作出点C的对应点F,然后连结DF.因为△ABC与△DEF全等,所以既可以用两边夹角,也可以用两角夹边,找到点B的对应点E,即△DEF.

接下来,大家来看课本71页想一想:

答:还需要知道绕哪个点旋转,旋转的角度是多少?就是要知道旋转中心和旋转角.由此我们可以知道,要确定一个三角形旋转后的位置的条件为:

(1)三角形原来的位置;(2)旋转中心;(3)旋转角.

这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个三角形绕点旋转后的位置,进而作出它旋转后的图形.

下面我们来通过练习进一步熟悉简单平面图形旋转后的图形的作法.

三、课堂练习

课本P71随堂练习.

解:如下图,先确定字母N的四个端点绕它右下侧的顶点按顺时针方向旋转90o后的位置,然后连线.

四、课时小结

本节课我们通过作平面图形旋转后的图形,进一步理解了旋转的性质,并且还知道要确定一个三角形旋转后的位置,需要有:①此三角形原来的位置;②旋转中心;③旋转角等三个条件.

在作图时,要正确运用直尺和圆规,进而准确作出旋转后的图形.要注意语言的表达.五、课后作业:

课本P71习题3.51、2.

教学反思:

____________________________________________________________________________________________________________________________________________________________________

3.5它们是怎样变过来的

教学目标:

知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

能力目标:①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能;②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。

情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。

教学重点:图形之间的变换关系(轴对称、平移、旋转及其组合);

教学难点:综合利用各种变换关系观察图形的形成。

教学疑点:基本图案不同,形成方式不同。

教学过程设计:

1、情境导入

播放自制图形形成的影片。

2、充分利用本课时引入开放性的问题:图中由四部分组成,每

部分都包括两个小“十”字,其中一部分能经过适当的旋转得到其他

三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?

问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十

简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由

教师进行适当归纳小结:

(1)整个图形可以看做是由一个“十”字组成部分通过连续七次平移前后的图形共同组成;

(2)整个图形也可以看做是由左边的两个“十”字组成的部分通过三次放置形成的;

(3)整个图形不定期可以看做把左边的两个“十”字组成的部分先通过平移一次形成左右四个“十”字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;

(4)整个图形还可以看做把左边的两个“十”字组成的部分通过二次轴对称形成的。

……(学生可能还有其他不同描述,教师应予以肯定)

3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。

4、利用“想一想”你能将图中的左图,通过平移或旋转得到右图

吗?

学生议论或动手操作会发现这是不可能的,教材意图十分明确,

要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。

5、例1怎样将右图中的甲图变成乙图案?

通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)

例2怎样将图中右边的图案变成左边的图案?

留给学生充足的时间讨论交流。

明确可以通过不同的办法达到同样的效果,激励学生动手动脑。

6、学习小结

(1)内容总结

两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)

(2)方法归纳

①了解并知道图案变化的一般方法。

②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。

7、目标检测

右图是由三个正三角形拼成的,它可以看做由其中一个三角形

经过怎样的变换而得到?

8、延伸拓展

(1)、链接生活

链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换)

链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)

(2)实践探索:①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合);②巩固练习课本74页中的习题3.6。

教学反思:

____________________________________________________________________________________________________________________________________________________________________

3.6简单的图案设计

教学目标:

知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

教学重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

教学难点:分析典型图案的设计意图。

教学疑点:在设计的图案中清晰地表现自己的设计意图

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本例1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

(五)延伸拓展

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

课后反思:

____________________________________________________________________________________________________________________________________________________________________

八年级下册图形的平移与旋转教案

个性化教学辅导教案 学科:数学任课教师:黄老师授课时间:2014 年04 月13 日(星期日) 姓名梁治安年级八年级性别男总课时____第___课 教学 目标 知识点:平移的概念、性质、平移作图;旋转的概念、性质,简单的旋转作图。 难点重点重点:1、平移的概念、性质、平移作图;旋转的概念、性质,简单的旋转作图2、简单的图案设计。 难点:图案设计的方法;轴对称、平移、旋转三种变换的组合。 课堂教学过程课前 检查作业完成情况:优□良□中□差□建议__________________________________________ 过 程 平移的概念和性质 在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。 平移不改变图形的形状和大小。 一个图形和它经过的平移所得到的图形中,对应点所连的线段平行,且相等,对应线段平行且相等,对应角相等。 旋转的概念和性质: 在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。旋转不改变形状和大小。 一个图形和它经过旋转得到的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等。 知识点一、平移的概念: 1.在平面内将一个图形沿______移动一定的距离,这样的图形运动称为平移,平移不改变图形的_______和__________. 知识点二、平移的性质 2、经过平移,_________,__________分别相等, 对应点所连的线段_____________. 【基础训练】

A ′ 1.以下现象:①电梯的升降运动;②飞机在地面沿直线滑行; ③风车的转动,④汽车轮胎的转动.其中属于平移的是( ) A .②③ B 、②④ C .①② D .①④ 2、如下左图,△ABC 经过平移到△DEF 的位置,则下列说法: ①AB ∥DE ,AD=CF=BE ; ②∠ACB=∠DEF ; ③平移的方向是点C 到点E 的方向; ④平移距离为线段BE 的长. 其中说法正确的有( ) A.个 B.2个 C.3个 D.4个 3、如下右图,在等边△ABC 中,D 、E 、F 分别是边BC 、AC 、AB 的中点,则△AFE 经过平移可以得到( ) A.△DEF B.△FBD C.△EDC D. △FBD 和△EDC 4.下列图形属于平移位置变换的是( ) . 5.下列图形中,是由(1)仅通过平移得到的是( ) 6.如图,△ABC 平移后得到△A ′B ′C ′,线段AB 与线段A ′B ′的位置关系是 . 7.在1题中,与线段AA ′平行且相等的线段有 . A . B . C . D .

初二图形的平移与旋转提高同步讲义

学科教师辅导讲义 体系搭建 一、平移 1、平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。 平移不改变图形的形状和大小,只改变图形的位置。 2、平移的性质:①一个图形和它经过平移所得的图形中,对应点所连的线段平行且相等; ②对应线段平行且相等,对应角相等。 3、平移作图的步骤与方法: 一般步骤:(1)分析题目要求,找出平移的方向和平移的距离; (2)分析所作的图形,找出构成图形的关键点; (3)沿一定的方向,按一定的距离平移各个关键点; (4)连接所作的各个关键点,并标上相应的字母; (5)写出结论。 平移作图的方法:“对应点连接法”和“全等图形法” 4、图形的坐标变化与平移: (1)纵坐标保持不变,横坐标分别加k ①当k为正数时,原图形形状、大小不变,向右平移k个单位长度; ②当k为负数时,原图形形状、大小不变,向左平移k个单位长度;

三、中心对称 1、两个图形形成中心对称的概念及性质 (1)概念:如果把一个图形绕着某一点旋转180?,他能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心。 (2)两个图形形成中心对称的性质 ①成中心对称的两个图形中,对称点所连线段经过对称中心,且被对称中心平分。 ②关于中心对称的两个图形之间的对应线段平行且相等或在同一条直线上且相等,对应角相等。 2、作成中心对称图形的一般步骤 (1)作出已知图形各顶点(或决定图形形状的关键点)关于中心的对称点——连接关键点和中心,并延长一倍确定关键点的对称点。 (2)把各对称点按已知图形的连接方式依次连接起来,则所得到的图形就是已知图形关于对称中心对称的图形。 3、中心对称图形 把一个图形绕某个点旋转180?,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。 4、中心对称图形的性质 中心对称图形上的每一对对应点所连成的线段都被对称中心平分。 考点一:图形平移类的问题 例1、如图,将周长为10cm的△ABC沿射线BC方向平移lcm后得到△DEF,则四边形ABFD的周长为()A.11cm B.12cm C.13cm D.14cm

新北师大版第三章图形的平移与旋转知识点与同步练习

2015年春北师大版八年级数学下册 第三章《图形的平移与旋转》知识点与同步练习 知识点一、平移的概念: 1.在平面内将一个图形沿移动一定的距离,这样的图形运动称为平移。平移不改变图形的和. 注意:1、前提在同一平面内,物体在曲面上运动不称之为平移2、必须是沿同一个不变的方向移动3、图形平移是有平移的方向和距离决定的 知识点二、平移的性质 2、经过平移,,分别相等,对应点所连的线段. 【基础训练】 1.以下现象:①电梯的升降运动;②飞机在地面沿直线滑行;③风车的转动,④汽车轮胎的转动.其中属于平移的是()A.②③B、②④C.①②D.①④ 2、如下左图,△经过平移到△的位置,则下列说法:①∥,;②∠∠;③平移的方向是点C到点E的方向;④平移距离为线段的长. 其中说法正确的有() A.个 B.2个 C.3个 D.4个 3、如下右图,在等边△中,D、E、F分别是边、、的中点,则△经过平移可以得到()A.△ B.△ C.△ D. △和△ 4.下列图形属于平移位置变换的是( ) .

5.下列图形中,是由(1)仅通过平移得到的是( ) 6.如图,△平移后得到△A ′B ′C ′,线段与线段A ′B ′的位置关系是 . 7.在1题中,与线段′平行且相等的线段有 . 8、将长度为5 的线段向上平移10所得线段长度是 ( ) A 、10 B 、5 C 、0 D 、无法确定 9.如图,O 是正六边形的中心,下列图形中可由△平移得到的是( ? )A .△ B .△ C .△ D .△ 10.将面积为122的等腰直角△向右上方平移20,得到△,则△是 三角形,它的面积是 2. 11.如图7,四边形是由四边形平移得到的,已知5,∠70°,则( )A .5,∠70° B .5,∠70°C .5,∠70° D .5,∠70° 13、在图示的方格纸中(1)作出△关于对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的? 二、图形的旋转: A . B . C . D . A A ′ C ′ B ′

新北师大版八年级下册第三章图形的平移与旋转讲义及中考题

第三章图形的平移与旋转 知识点一、平移的概念: 移动一定的距离,这样1. ____________________________________ 在平面内将一个图形沿 的图形运动称为平移。 移不改变图形的 __________ 和 _______________ . 注意:1、前提在同一平面内,物体在曲面上运动不称之为平移 2、必须是沿同一个不变的方向移动 3、图形平移是有平移的方向和距离决定的 知识点二、平移的性质 2、经过平移,_____________ , _______________ 分别相等, 对应点所连的线段____________________ . 【基础训练】新课标第-网 1?以下现彖:①电梯的升降运动;②飞机在地面沿直线滑行; ③风车的转动,④汽车轮胎的转动.其中属于平移的是( A .②③B、②④ C .①② D .①④ 2、如下左图,△ ABC经过平移到△ DEF的位置,则下列说法: ① AB // DE , AD=CF=BE ; ②/ ACB= / DEF ; ③平移的方向是点C到点E的方向; ④平移距离为线段BE的长.

其中说法正确的有()A?个B 2个C. 3个D. 4个

5?下列图形中,是由(1)仅通过平移得到的是( A B , C,线段AB 与线段力B'的位置关系是 7. 3、如下右图,在等边厶ABC 中,D 、E 、 AFE 经过平移可以得到( ) A. △ DEF B. △ FBD C. △ EDC F 分别是边BC 、AC 、AB 的中点,则厶 6.如图,△ ABC 平 移后得到厶 在1题 5 D

图形的平移与旋转--知识讲解

图形的平移与旋转--知识讲解 【学习目标】 1、理解平移的概念,掌握图形的平移所具有的对应点的连线的特征,理解平移前后对应边角的关系,能按要求作出简单的平面图形平移后的图形; 2、掌握旋转的概念,探索它的基本性质,能够按要求作出简单平面图形旋转后的图形; 3、掌握旋转对称图形、中心对称图形和中心对称的概念,理解他们的区别和联系,并会判别给出的图形是旋转对称图形还是中心对称图形; 4、会画出给定条件的旋转对称图形或中心对称图形以及会画已知图形关于已知点成中心对称的图形. 【要点梳理】 要点一、平移的概念与性质 平移的概念 将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移. 如图:平移三角形ABC 就可以得到三角形A′B′C′,点A和点A′,点B 和B′,点C 和点C′是对应点,线段AB和AB′,BC 和B′C′,AC 和A′C′是对应线段,∠A与∠A′,∠B与∠B′∠C与∠C′是对应角. 平移的性质 图形平移后,对应点之间的距离、对应线段的长度、对应角的大小相等. 图形平移后,图形的大小、形状都不变. 要点诠释: 1、平移后各对应点之间的距离叫做图形平移的距离. 2、平移的两个要素:平移的方向和平移的距离. 要点二、旋转的概念与性质 旋转的概念 在平面内,将一个图形上的所有点绕一个定点按照某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心(如点O ),转动的角度叫做旋转角(如∠AO A′). 如图:三角形A′B′C′是三角形ABC 绕点O 旋转所得,则点A和点A′,点B 和B′,点C 和点C′是对应点,线段AB和AB′,BC 和B′C′,AC 和A′C′是对应线段,∠A OA ′,∠BOB′,∠COC′是旋转角. 要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度. 旋转的性质 (1)对应点到旋转中心的距离相等(OA= OA′); (2)对应线段的长度相等(AB=AB′); (3)对应点与旋转中心所连线段的夹角等于旋转角(∠AOA′); 要点诠释: 1、图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转. 2、旋转前后图形的大小和形状没有改变. 要点三、旋转的作图 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形. 要点诠释: 作图的步骤: (1)连接图形中的每一个关键点与旋转中心; (2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角); (3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点; O

(完整版)北师大版数学八年级下册图形的平移与旋转单元测试题

《图形的平移与旋转》 【巩固练习】 一、选择题 1. 以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称 图形的有(). A.4个 B.5个 C.6个 D.3个 2.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动; ④传送带上瓶装饮料的移动,其中属于平移的是(). A.①③ B.①② C.②③ D.②④ 3.(2015?番禺区一模)下列图形可以由一个图形经过平移变换得到的是() A. B. C. D. 4.如图,O是正六边形ABCDEF的中心,下列图形可由△OBC平移得到的是(). A.△OCD B.△OAB C.△OAF D.△OEF 5.如图,∠DOE为直角,如果△ABC关于OD的对称图形是△A′B′C′,△A′B′C′关于OE的对称图 形是△A″B″C″,则△ABC与△A″B″C″的关系是(). A.以∠DOE的平分线成轴对称; B.关于点O成中心对称 C.平移关系; D.不具备任何关系 第4题第5题第6题 6.如图所示,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,则AB边的取值范围是(). A.l<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19 7. 下列变换中,哪一个是平移().

8.如图所示,将一个含30°的直角三角板ABC绕点A选择,使得点B,A,C在同一条直线上,则三角板 ABC旋转的角度是 ( ). A.60° B.90° C.120° D.150° 二、填空题 9.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为. 10. 如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是__________cm2. 11. 如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB 边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________. 第10题第11题第12题 12. 如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与 AC上的点B1重合,则AC= cm. 13.如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB’C’,点C’恰好落在边AB上,连接BB’, 则∠BB’C’= . 第13题第14题

图形的平移与旋转教案

第三章图形的平移与旋转教案 3.1生活中的平移 教学目标: 知识目标:认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。 能力目标:①通过探究式的学习,培养学生的归纳总结与猜想的数学能力,培养学生的逆向思维能力。通过知识的拓展,培养学生的分析问题与解决问题的能力;②让学生经历观察、分析、操作、欣赏以及抽象概括等过程;经历探索图形平移性质的过程,以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。 情感目标:①在探究式的教学活动中,培养学生主动探索,勇于发现的科学精神;通过多种途径,培养学生细致、严谨、求实的学习习惯;渗透由特殊到一般,化未知为已知的辩证唯物主义思想;②引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验。有意识的培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力及审美意识的发展;③通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值。通过同学间的合作交流,培养学生的协作能力与学习的自主性。 教学重点:探究平移变换的基本要素,画简单图形的平移图。 教学难点:决定平移的两个主要因素。 教学过程设计: 一、引入并确定目标 展示与平移有关的图片,借助实物演示平移,用几何画板演示两个图形的平移。 学生分组讨论,如何将所看到的现象用简洁的语言叙述。 二、探究新知 分析平移定义,探讨“沿某一方向”的意义,其实质是沿直线运动。 学生讨论“沿某一方向”的意义。 展示图片,让学生讨论图中的运动各在那种情况下是平移,图中还有哪些图形可以通过平移得到。 学生分组讨论: (1)能否通过平移得到。 (2)能平移得到的其基本图形是什么?有哪些方法? 让学生列举生活中的平移实例,对理解有偏差的加以纠正。 展示静态图片,让学生观察图中具有特殊位置关系的线段,归纳猜想所能得到的结论;利用几何画板实验验证猜想。 小组同学讨论自己所能得到的结论。

八年级数学图形的平移与旋转同步讲义

图形的平移与旋转考点1:图形的平移 【知识要点】 1、什么叫平移? 2、平移有哪些性质? 3、决定平移的两大要素是什么? 4、(1)生活中的图形是由什么构成的? (2)怎样确定一个图形平移后的位置?

【典型例题】 【考题1-1】(深圳南山)平移方格纸中的图形,如图1-3-1,使A点平移到A′点处,画出平移后的图形,并写上一句贴切、诙谐的解说词. 【考题1-2】(宁安)图1-3-2,在10 ×5的正方形网格 中,每个小正方形的边长均为单位1,将△ABC向右平移4 个单位,得到△A’B’C’,再把△A′B′C′绕点A′逆 时针旋转 90○得到△A″B″C″请你画出△A′B′C′,和 △A″B″C″(不要求写画法)

【考题1-3】(成都郸县)在图1-3-5的网格中按要求画出 图象,并回答问题. (1)先画出面ABC向下平移5格后的△A;B1C1,再画出△ ABC以O点为旋转中心,沿顺时针方向旋转90○后的△A2B2C2 (2)在与同学交流时,你打算如何描述(1)中所画的 △A2B2C2的位置? 【考题1-4】(海口)观察图1-3-8图案,在 A、B、C、D四幅图案中,能通过图案图1-3-7的平移得到的是()

【大展身手】 1.将长度为3cm的线段向上平移20cm,所得线段的长度是() A.3cm B.23cm C.20cm D.17cm 2.以下现象:①电梯的升降运动;②飞机在地面沿直线滑行;③风车的转动,④汽车轮胎的转动.其中属于平移的是() A.②③B、②④C.①②D.①④ 3.如图1―3―12图案中可以看作由图案自身的一部分经过平移后而得到的是() 4.下列说法正确的是() A.由平移得到的两个图形的对应点连线长度不一定相等 B.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向的平移” C.小明第一次乘观光电梯,随着电梯向上升,他高兴地对同伴说:“太棒了,我现在比大楼还高呢,我长高了!” D.在图形平移过程中,图形上可能会有不动点 5.如果同一平面的两个图形通过平移,不论其起始位置如何,总能完全重合,则这两个图形是() A.两个点B.两个半径相等的圆 C.两个点或两个半径相等的圆D.两个等边三角形 6.关于平移的说法,下列正确的是() A.经过平移对应线段相等B.经过平移对应角可能会改变 C.经过平移对应点所连的线段不相等D.经过平移图形会改变 7.如图1―3―13,∠B是由∠A平移得到的,且∠A=3 0○,∠B的度数是() A.60○B.30○ ○○

图形的平移与旋转知识点

第三章图形的平移与旋转复习要点 专点一:图形的平移 1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是由移动的方向和距离决定的。 2.平移的性质: (1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。 (2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。 (3)平移后两图形的对应点所连的线段平行且相等。 专点二:图形的旋转 ` 1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。 2.旋转的性质: (1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。 (2)旋转后的图形与原来的图形的对应线段相等,对应角相等。 (3)经过旋转,图形上的每一点都绕着旋转中心沿相同的方向转动了相同的角度。 (4)任意一对对应点与旋转中心的距离相等。 考点三、中心对称 ( 1、定义 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 2、性质 (1)关于中心对称的两个图形是全等形。 (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定

^ 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 4、中心对称图形 把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。 考点四、坐标系中对称点的特征 1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y) 2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y) 3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y) : 专点五:利用轴对称、旋转和平移作图 1.平移作图的一般步骤: (1)确定平移的方向和距离; (2)确定构成图形的关键点(线段两个端点,三角形三个顶点,n边形n 个顶点); (3)按照平移的方向和距离平移各个关键点; (4)顺次连接各个关键点的对应点,所得的图形就是平移后的图形。 2.旋转作图的一般步骤: * (1)确定旋转中心、旋转角及旋转方向; (2)确定原图形的关键点; (3)旋转个关键点,得到对应点; (4)依次连接各关键点的对应点,所得的图形就是旋转后的图形。 3.图形之间的变换关系: 在图形变换中,最常见的变换有轴对称、平移、旋转,它们都是把一个图形变成另外一个图形,并且这些变换都只是改变图形的位置,不改变图形的形状和大小。

新北师大版八年级下一元一次不等式和图形的平移与旋转培优题

一元一次不等式提高练习 【例题求解】 【例题1】(1)已知关于x 的不等式组?? ?>-≥-0 25a x x 无解,则a 的取值范围是是___________。 (2)已知不等式03≤-a x 的正整数解恰好是1、2、3,则a 的取值范围是___________。 【例题2】如果关于x 的不等式组?? ?<-≥-0 60 7n x m x 的整数解仅为1、2、3,那么适合这个不等 式组的整数对(m ,n )共有_____对。 【例题3】解下列不等式(组) (1)n x m +<+332 (2)1022-≤-x x (3)求不等式321≤-+-x x 的所有整数解。 【例题4】已知三个非负数a 、b 、c 满足132523=-+=+c b a bc a 和,若c b a m 73-+=。求m 的最大值与最小值。 【课堂练习】 1、 若关于不等式组??? ??<++>+0 1456m x x x 的解集为4-<-321 2b x a x 的解集是11<<-x ,则)1)((-+b a a 的值是_____________。 3、 已知0

5、 若01<<<-b a ,则下列式子正确的是____________。 A 、-a<-b B 、 b a 1 1< C 、 b a < D 、22b a > 6、若方程组?? ?=++=+3 41 4y x k y x 的解满足条件10<++b ax 的解集是3 1 +2 2 (2)312≤-x (3)?? ? ??+≥->+<-x x x x x 312113250104 (4)11->-ax ax 9、已知方程组???=+=-6 2 y mx y x ,若方程组有非负整数解,求正整数m 的的值。 10、如果?? ?==2 1y x 是关于x 、y 的方程08)12(2 =+--+--by ax by ax 的解,求不等式组 ????? +<-+>--3 34133x ax b x a x ax 的解集。 11、已知非负实数x 、y ,x 满足4 3 3221-=-=-z y x ,记w=3x+4y+5z ,求w 的最大值与最小值。

图形的平移与旋转练习题及答案全套

情景再现: 你对以上图片熟悉吗?请你回答以下几个问题: (1)汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗? (2)传送带上的物品,比如带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米? (3)以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗? 1.如图1,面积为5平方厘米的梯形A ′B ′C ′D ′是梯形ABCD 经过平移得到的且 ∠ABC =90°.那么梯形ABCD 的面积为________,∠A ′B ′C =________. 图1 2.在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1) § 图形的平移与旋转

得到的 . 图2 3.请将图3中的“小鱼”向左平移5格. 图3 4.请欣赏下面的图形4,它是由若干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗? 一、填空: 1、如下左图,△ABC 经过平移到△A ′B ′C ′的位置,则平移的方向是______,平移的距离是______,约厘米______. 2、如下中图,线段AB 是线段CD 经过平移得到的,则线段AC 与BC 的关系为( ) A.相交 B.平行 C.相等 D.平行且相等 § 图形的平移与旋转

3、如下右图,△ABC经过平移得到△DEF,请写出图中相等的线段______,互相平行的线段______,相等的角______.(在两个三角形的内角中找) 4、如下左图,四边形ABCD平移后得到四边形EFGH,则:①画出平移方向,平移距离是_______;(精确到0.1cm) ②HE=_________,∠A=_______,∠A=_______. ③DH=_________=_______A=_______. 5、如下右图,△ABC平移后得到了△DEF,(1)若∠A=28o,∠E=72o,BC=2,则∠1=____o,∠F=____o,EF=____o;(2)在图中A、B、C、D、E、F六点中,选取点_______和点_______,使连结两点的线段与AE平行. 6、如图,请画出△ABC向左平移4格后的△A 1B1C1,然后再画出△A1B1C1向上平移3格后的△A2B2C2,若把△A2B2C2看成是△ABC 经过一次平移而得到的,那么平移的方向是______,距离是____的长度. 二、选择题: 7、如下左图,△ABC经过平移到△DEF的位置,则下列说法: ①AB∥DE,AD=CF=BE;②∠ACB=∠DEF; ③平移的方向是点C到点E的方向; ④平移距离为线段BE的长. 其中说法正确的有() A.个个个个 8、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,则△AFE经过平移可以得到() A.△DEF B.△FBD C.△EDC D.△FBD和△EDC 三、探究升级: 1、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1. 3、△ABC经过平移后得到△DEF,这时,我们可以说△ABC与△DEF是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.

三年级平移与旋转

辅导讲义 教学内容 一、专题精讲 平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移。平移不改变图形的形状和大小。 把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。旋转也不改变图形的形状和大小。 在实际生活中,随处可见平移和旋转,蒋嘉怡同学你能举出一些例子吗? 平移: 旋转: 我们来看下面的问题,连一连。 升旗时国旗的运动钟摆的运动 在算盘上拨珠平移电梯的运动 风扇叶片的运动火车在铁轨上飞驰 光盘在电脑里的运动旋转汽车方向盘 轮船在水里航行飞机螺旋桨 例1:观察并操作

1、向()平移了()格。 2、把小船向上平移5格。 3、把三角形先向右平移4格,再向下平移3格。例2:填空 1、长方形向()平移了()格。 2、六边形向()平移了()格。 3、五角星向()平移了()格。 例3:操作

1、把图中长方形向上平移2格; 2、把图中三角形向右平移3格; 3、把图中平行四边形向左平移5格。 二、专题过关 检测题1:填空(每空4分) 1、水龙头的运动方式是(),汽车轮子的运动方式是(),微波炉内托盘的运动是()。 2、连线 钟摆的运动自行车轮的运动 在算盘上拨珠平移电梯的运动 风扇叶片的运动火车在铁轨上飞驰 光盘在电脑里的运动旋转汽车方向盘 地球自转地球公转 检测题2:判断(每空4分) 1、平移不改变图形的形状,但会改变图形的大小。() 2、图形经过旋转后,大小不会改变。()

检测题3:操作(每小题10分) 1、 (1)把小船向上平移三格。 (2)把小屋向左平移两格,再向下平移五格。 2、 (1)三角形向()平移了()格。 (2)画出小鱼向右平移7格后的图形。 三、学法提炼 1、平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移。平移不改变图形的形状和大小。 2、把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。旋转也不改变图形的形状和大小。

八年级下册图形的平移与旋转

八年级下册图形的平移与旋转

A B D E F 例1 如图,已知Rt △ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到如图所示位置: (1)若平移距离为3,求 △ABC 与△/ //C B A 的重叠 部分的面积; (2)若平移位置为x (0≤ x ≤4),求△ABC 与△ ///C B A 的重叠部分的面积 解:(1)由题意得CC ′=3,BC=4,所以BC ′=1; 重叠部分是一个等腰直角三角形,所以其面积为:2 11121=?? (2)2 )4(21x y -= 【方法技巧】 平移要注意起点和终点,平移的方向和距离。 【变式演练】 1、如图,将周长为8的△ABC 沿BC 方向平移1个单位得到 △DEF ,则四边形ABFD 的周长为 2、由图中左侧三角形仅经过一次平移、旋转或

轴对称变换,不能得到的图形是( ) 考点二 平移和旋转的应用 例2 如图8,方格纸中的每个小方格都是边长为1个单位的正方形,Rt △ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为(-4,1),点B 的坐标为(-1,1). (1)先将Rt △ABC 向右平移5个单位,再向下平移1个单位后得到Rt △A 1B 1C 1.试在图中画出图形Rt △A 1B 1C 1.,并写出A 1的坐标; (2)将Rt △A 1B 1C 1.,绕点A 1顺时针旋转90°后得到Rt △A 2B 2C 2,试在图中画出图形Rt △A 2B 2C 2,并计算Rt △A 1B 1C 1在上述旋转过程中C 1.所经过的路程. 分析:(1)根据平移的性质画 出经过两次平移后的图形 Rt △A 1B 1C 1.即可写出A 1的坐 标; (2)根据以点A 1为中(A (C (D ) (B ) 第2题图

初二下册第三章图形的平移与旋转讲义及中考题

初二下册第三章图形的平移与旋转讲义及中考 题 知识点一、平移的概念: 1.在平面内将一个图形沿______移动一定的距离,如此的图形运动称为平移。平移不改变图形的_______和__________. 注意:1、前提在同一平面内,物体在曲面上运动不称之为平移 2、必须是沿同一个不变的方向移动 3、图形平移是有平移的方向和距离决定的 知识点二、平移的性质 2、通过平移,_________,__________分别相等, 对应点所连的线段_____________. 【基础训练】 1.以下现象:①电梯的升降运动;②飞机在地面沿直线滑行; ③风车的转动,④汽车轮胎的转动.其中属于平移的是() A.②③B、②④C.①②D.①④ 2、如下左图,△ABC通过平移到△DEF的位置,则下列说法: ①AB∥DE,AD=CF=BE;②∠ACB=∠DEF; ③平移的方向是点C到点E的方向; ④平移距离为线段BE的长. 其中说法正确的有() A.个 B.2个 C.3个 D.4个3、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,则△AFE通过平移能够得到() A.△DEF B.△FBD C.△EDC D. △FBD和△EDC 4.下列图形属于平移位置变换的是( ) . 5.下列图形中,是由(1)仅通过平移得到的是( ) 6.如图,△ABC平 移后得到△A′B′C′,线段AB与线段A′B′的位置关系是. 7.在1题中,与线段AA′平行且相等的线段有.A.B.C. D. A′

A C ′ B′ 8、将长度为5cm 的线段向上平移10cm所得线段长度是() A、10cm B、5cm C、0cm D、无法确定 9.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到 的是(? ) A.△COD B.△OAB C.△OAF D.△OEF 10.将面积为12cm2的等腰直角△ABC向右上方平移20cm,得到△MNP, 则△MNP是三角形,它的面积是cm2. 11.如图7,四边形EF GH是由四边形ABCD平移得到的, 已知AD=5,∠B=70°,则() A.FG=5,∠G=70°B.EH=5,∠F=70° C.EF=5,∠F=70°D.EF=5,∠E=70° 13、(2020湖南郴州)在图示的方格纸中 (1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由 △A1B1C1通过如何样的平移得到的? 二、图形的旋转: 知识点一、旋转的定义. 在平面内将一个图形__________________________________,如此的图 形运动称为旋转,那个定点称为旋转中心,转动的角称为旋转角,旋转 不改变图形的_______和__________. 知识点二、旋转的性质 1、通过旋转后的图形与原图形的对应线段______,对应角_______ 2、对应点到旋转中心的距离______ ′’

北师版初二数学图形的平移与旋转全章同步讲义

第一节图形的平移与旋转考点1:图形的平移 【知识要点】 1、什么叫平移? 2、平移有哪些性质? 3、决定平移的两大要素是什么? 4、(1)生活中的图形是由什么构成的? (2)怎样确定一个图形平移后的位置? 【典型例题】 【考题1-1】(深圳南山)平移方格纸中的图形,如图1-3-1,使A点平移到A′点处,画出平移后的图形,并写上一句贴切、诙谐的解说词.

【考题1-2】(宁安)图1-3-2,在10 ×5的正方形网格 中,每个小正方形的边长均为单位1,将△ABC向右平移4 个单位,得到△A’B’C’,再把△A′B′C′绕点A′逆 时针旋转 90○得到△A″B″C″请你画出△A′B′C′,和 △A″B″C″(不要求写画法) 【考题1-3】(成都郸县)在图1-3-5的网格中按要求画出 图象,并回答问题. (1)先画出面ABC向下平移5格后的△A;B1C1,再画出△ ABC以O点为旋转中心,沿顺时针方向旋转90○后的△A2B2C2 (2)在与同学交流时,你打算如何描述(1)中所画的 △A2B2C2的位置? 【考题1-4】(海口)观察图1-3-8图案,在 A、B、C、D四幅图案中,能通过图案图1-3-7的平移得到的是()

【大展身手】 1.将长度为3cm的线段向上平移20cm,所得线段的长度是() A.3cm B.23cm C.20cm D.17cm 2.以下现象:①电梯的升降运动;②飞机在地面沿直线滑行;③风车的转动,④汽车轮胎的转动.其中属于平移的是() A.②③B、②④C.①②D.①④ 3.如图1―3―12图案中可以看作由图案自身的一部分经过平移后而得到的是() 4.下列说法正确的是() A.由平移得到的两个图形的对应点连线长度不一定相等 B.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向的平移” C.小明第一次乘观光电梯,随着电梯向上升,他高兴地对同伴说:“太棒了,我现在比大楼还高呢,我长高了!” D.在图形平移过程中,图形上可能会有不动点 5.如果同一平面的两个图形通过平移,不论其起始位置如何,总能完全重合,则这两个图形是() A.两个点B.两个半径相等的圆 C.两个点或两个半径相等的圆D.两个等边三角形 6.关于平移的说法,下列正确的是() A.经过平移对应线段相等B.经过平移对应角可能会改变 C.经过平移对应点所连的线段不相等D.经过平移图形会改变 7.如图1―3―13,∠B是由∠A平移得到的,且∠A=3 0○,∠B的度数是() A.60○B.30○ C.90○D.45○ 8.平移不改变图形的________,只改变图形的位置. 9.将线段AB向右平移3cm,得到线段CD,如果AB=5㎝,则 CD=___________ 10.如图1―3―14,四边形ABCD平移后得到四边形 EFGH,填

第三章《图形的平移与旋转》专题复习(含答案)

第三章《图形的平移与旋转》专题专练 专题一 图形的平移概念 重点知识回顾 1.平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形变换称为平移. 注意:(1)平移过程中,对应线段可能在一条直线上. (2)平移过程中,对应点所连的线段也可能在一条直线上. 2.平移的两个基本要素: “平移的方向”和“平移的距离”.图形的平移是由它的移动方向和移动距离决定的.当图形平移的方向没有指明时,就需要认真观察图形的形状和位置的变化特征,根据平移的性质先确定平移的方向,再确定对应点、对应线段和对应角. 3.图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出平移性质的依据. 典型例题剖析 例1 生活中有很多平移的例子,下列物体的运动是平移的是( ) A.水中小鱼的游动 B.天空中划过的流星的运动 C.出膛的子弹沿水平直线的运动 D.小华在跳高时的运动 分析:正确判断物体是否为平移运动关键是理解和掌握平移的概念和特征.看物体是否在同一个平面内运动,是否沿某个方向平行移动一定的距离,而“水中小鱼的游动”、“天空中划过的流星的运动”、“小华在跳高时的运动”显然不符合平移的概念,只有“出膛的子弹沿水平直线的运动”才是平移运动. 点悟:识别平移现象的关键是抓住平移的特征:物体必须在平面内运动,在曲面上运动物体一定不是平移,平移是直线的运动,平移只与物体的位置有关,与速度无关,平移只关注物体的位置变化. 例2 (2008年福建省泉州市)在图1的方格纸中,ABC △向右平移 格后得到111A B C △. 分析:因为△A 1B 1C 1是△ABC 平移后得到的图形,所以点A 1与点 A 、 B 1与B 、 C 1与C 分别是对应点,故只需随便数一数一对对应点之间的格数,即为平移 图1

《图形的平移与旋转》单元测试题

八年级第三章《图形的平移与旋转》单元测试题 班级 姓名 学号 成绩 一、选择题:(每小题4分,共32分) 1、将图 形按顺时针方向旋转900 后的图形是( ) A B C D 2、图案(A )-(D )中能够通过平移图案(1)得到的是( ) . (1) (A ) (B ) (C ) (D ) 3、如图可以看作正△OAB 绕点O 通过( )旋转所得到的 A 、3次 B 、4次 C 、5次 D 、6次 4、如右图,ΔABC 和ΔADE 均为正三角形,则图中 可看作是旋转关系的三角形是( ) A 、ΔABC 和ΔADE B 、ΔAB C 和ΔABD C 、ΔAB D 和ΔAC E D 、ΔACE 和ΔADE 5、如图,△ABC 和△DEF 中,一个三角形经过平移可得到另一 个三角形,则下列说法中不正确的是( ). A 、A B ∥FD ,AB =FD B 、∠ACB =∠FED C 、B D =C E D 、平移距离为线段CD 的长度 6、如图,将△ABC 绕点A 旋转后得到△ADE ,则旋转方式是( ). A 、顺时针旋转90° B 、逆时针旋转90° C 、顺时针旋转45° D 、逆时针旋转45° 7、如图,△ABC 是等边三角形,D 为BC 边上的点,∠BAD =15°, △ABD 经旋转后到达△ACE 的位置,那么旋转了( ).

A 、75° B 、60° C 、45° D 、15° 8、将一圆形纸片对折后再对折,得到图3,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( ) 二、填空题:(每小题4分,共24分) 11、平移不改变图形的 和 ,只改变图形的 。 12、经过旋转,对应点到旋转中心的距离___________. 13、图(1)绕着中心最小旋转 能与自身重合。 14、如图,四边形ABCD 平移到四边形A'B'C'D' 的位置,这时可把四边形A'B'C'D' 看作先将四边形ABCD 向右平移 格,再向下平移2格。 15、钟表的分针匀速旋转一周需要60分,它的旋转中心是 ___________,经过25分,分针旋转___________度。 16、如图,把大小相等的两个长方形拼成L 形图案, 则∠FCA = 度。 三、解答题:(17~20每小题5分,21~24每小题6分,共44分)https://www.sodocs.net/doc/5316896847.html, 17、如图,经过平移,△ABC 的顶点A 移到了点D ,请作出平移后的三角形。 图3 A B C D 图(1)

平移和旋转讲义(二年级下)

知识讲解 【知识点一】平移现象 观察下面得运动现象,您有什么发现? 过程讲解 1、观图,明确物体运动得特点 (1)观光缆车与推拉门就是沿水平方向得直线运动,而观光梯就是沿竖直方向得 直线运动。 (2)运动过程中三个物体得大小、形状与方向都没有发生变化。 (3)三个物体得位置都发生了变化。 2、明确“平移”得意义 像推拉门、观光缆车与观光梯那样,无论就是沿水平方向得运动,还就是沿竖直 方向得运动,在运动过程中,物体本身得方向不发生改变,把这种运动现象称为平移。 3、列举生活中得平移现象 生活中得平移现象有很多,例如:火车站、飞机场运送行李得传送带上行李得移动;电视机在流水线上得移动;电梯得上升、下降;抽屉得推与拉…… 归纳总结 物体或图形沿直线运动,而本身得方向不发生改变时,这种运动现象就就是平移。【知识点二】通过平移能够相互重合得图形得特点 移一移,下面哪几座小房子可以通过平移相互重合? 过程讲解 1、观察小房子得特点 这几座小房子得形状、大小完全相同,但方向不完全相同,只有①④⑤这几座小 房子得方向相同。 2、找出通过平移能够相互重合得小房子 根据平移得特点,物体在平移时,位置发生变化,但方向不发生改变,所以可知 ①④⑤这几座小房子通过上、下、左、右得平移能够相互重合。 归纳总结 只有形状、大小、方向完全相同得图形通过平移才能够相互重合。 【知识点三】旋转现象 观察下面得运动现象,您有什么发现? 过程讲解 1、观图,明确物体运动得特点 风车、旋转小飞机与直升机螺旋桨得转动,都就是绕着同一个点(或轴)来做圆周 运动得。 2、明确“旋转”得意义 像这样,物体绕着一个点或轴进行圆周运动得现象就就是旋转。 3、列举生活中得旋转现象 生活中得旋转现象有很多,例如:钟表上指针得转动;电风扇扇叶得转动;司机开 车时方向盘得转动……

相关主题