搜档网
当前位置:搜档网 › 水泥中氯离子对钢筋的腐蚀

水泥中氯离子对钢筋的腐蚀

水泥中氯离子对钢筋的腐蚀
水泥中氯离子对钢筋的腐蚀

氯离子对钢筋腐蚀机理的影响

[摘要] 氯化物的侵入是引起混凝土中钢筋腐蚀的最主要原因之一,氯离子能破坏钢筋表面钝化膜而引起钢筋局部腐蚀,对腐蚀过程具有催化作用。但只有混凝土中氯离子的浓度达到一定的临界值后,钢筋才会发生腐蚀。由于影响因素多,至今难以确定统一的氯离子浓度临界值。着重阐述了钢筋腐蚀行为和氯离子的去钝化机理、混凝土中氯离子的来源和保护钢筋的措施及其研究进

展。

[关键词] 钢筋混凝土;钢筋;腐蚀;氯离子

0 前言

钢筋在混凝土高碱性环境中的钝态条件被破坏,便被腐蚀。钢筋钝化膜破坏机理主要是混凝土的碳化和氯化物侵入,这两种因素既影响混凝土孔隙液的pH值,又影响钢筋的电位值,因而直接影响钢筋的稳定性。因氯化物的侵蚀引起钢筋混凝土构筑物破坏而造成重大损失的现象非常严重。北京西直门立交桥于1979年建成投入使用,不到20a钢筋混凝土的腐蚀已十分严重,不得不进行改建。引起西直门立交桥过早破坏的原因是多方面的,但长期在冬季向立交桥撒含氯化物除冰盐引起钢筋腐蚀使立交桥结构受到破坏是突出的因素。台湾四面环海,许多钢筋混凝土构筑物受破坏以及不断发生的“海砂屋”事件,也是氯化物侵蚀所引起的。目前,中国大陆也存在“海砂屋”现象。氯离子的侵蚀引起钢筋局部腐蚀是最有害的,对此,各国都给予了高度的重视。由于钢筋混凝土结构的复杂性和研究条件的差异,研究结果和结论并不完全一致,许多问题还有待深入研究。本工作主要对国内外氯离子与钢筋腐蚀系的研究进展和防止氯化物侵蚀的措施进行评述。

1 钢筋腐蚀与氯离子去钝化机理

钢筋混凝土是多相、不均质的特殊复杂体系,钢筋表面具有电化学不均匀性,存在着电位较负的阳极区和电位较正的阴极区;一般钢筋表面总处于混凝土孔隙液膜中,即钢筋表面阳极区和阴极区之间存在电解质溶液;由于混凝土的多孔性,

其构筑物总是透气和透水的,即通常氧可以通过毛细孔道达到钢筋表面作为氧化剂接受钢筋发生腐蚀产生的自由电子。因此,钢筋表面存在活化状态,则可构成腐蚀电池,钢筋就会发生电化学腐蚀。但在正常情况下,钢筋在混凝土中不会发生腐蚀。这是因为钢筋表面在碱性混凝土孔隙液中生成钝化膜,发生阳极钝化阻止了钢筋的腐蚀。因此,长期保持混凝土固有的高碱性是保护钢筋不受腐蚀、保证钢筋混凝土构筑物耐久性的有效途径。但是,在氯离子侵蚀严重的情况下钢筋的腐蚀还是时有发生。

混凝土中钢筋的腐蚀是电化学腐蚀,但有其特殊性。钢筋腐蚀的先决条件是表面去钝化。通常认为其基本反应是在阳极区铁失去电子变为铁离子,导致铁的溶解。铁离子可进一步反应生成氢氧化物和氧化物,在阴极区进行氧的还原反应。由于腐蚀产生的多种形式的氢氧化物和氧化物的体积比铁原来的体积大好几倍,因此,可造成混凝土结构的膨胀开裂,进一步促进钢筋的腐蚀。

氯离子是极强的去钝化剂,关于氯离子的去钝化机理认识还不一致,有人认为是氯离子易渗入钝化膜,也有人认为是Cl-优先于氧和OH-被钢吸附。一般认为,在不均质的混凝土中氯离子能够破坏钢筋表面钝化膜,使钢筋发生局部腐蚀。在阳极区铁发生腐蚀生成铁离子,当钢筋/混凝土界面环境存在氯离子时,在腐蚀电池产生的电场作用下,氯离子不断向阳极区迁移、富集。Fe2+和Cl-生成可溶于水的FeCl2,然后向阳极区外扩散,与本体溶液或阴极区的OH-生成俗称“褐锈”的Pe(OH)2,遇孔隙液中的水和氧很快又转化成其他形式的锈。FeCl2生成Pe(OH)2后,同时放出Cl-,新的Cl-又向阳极区迁移,带出更多的Fe2+。Cl-不构成腐蚀产物,在腐蚀中也未被消耗,如此反复对腐蚀起催化作用。可见C1-对钢筋的腐蚀起着阳极去极化作用,加速钢筋的阳极反应,促进钢筋局部腐蚀,这是氯离子侵蚀钢筋的特点。此外,氯化物对混凝土也有侵蚀作用。

汪鹰等采用X射线光电子能谱(XPS)等方法,考察在含与不含氯离子的模拟混凝土孔隙液中钢筋表面钝化膜的变化时发现,在含氯离子的溶液中,钝化膜中有氯元素,膜内层有FeCl2,氯离子对钝化膜的破坏机理可能是先吸附后穿透进入膜中,在钢筋表面Pe2+和Cl-反应生成FeCl2,从而使钝化膜局部溶解,钢筋发生点腐蚀。

采用扫描微电极法、扫描隧道显微镜(STM)、原子力显微镜(AFM)、电化学交流阻抗(ElS)和其他电化学测试技术,研究氯离子对钢筋在模拟混凝土孔隙液或混凝土中腐蚀行为的影响发现,钢筋在纯饱和Ca(OH)2溶液中,表面电位分布处于动态平衡,虽有不稳定的微腐蚀点存在,但未发展成宏观腐蚀点,钢筋表面维持钝性。当介质中pH值下降和外加一定含量的氯离子后,钢筋表面微区电位分布即发生变化,出现固定的突出电位峰,钢筋表面钝化膜受到局部破坏发生点腐蚀;AFM和原位STM观测钢筋在不同介质条件下模拟混凝土孔隙液中的表面微观形貌表明,在纯正模拟液中钢筋表面膜较连续完整,而在一定pH值下添加一定浓度的Cl-后,钢筋表面钝化膜粗糙和受破坏,发生点蚀;把钢筋混凝土试样浸泡于NaCl溶液中,随着Cl-浓度的增加或浸泡时间的延长,钢筋的腐蚀电位负移,腐蚀电流密度升高,钢筋发生腐蚀反应到一定程度后主要受氧的传输过程控制。混凝土中的氯化物可分为溶解于混凝土孔隙液中游离的Cl-和水泥水化产物结合的氯化物,这两种形式一般在混凝土中同时存在,保持化学平衡,其中只有游离的Cl-对钢筋有去钝化作用。但是,研究氯离子对钢筋腐蚀的影响时,应考虑混凝土中氯化物的总量和孔隙液中游离Cl-的含量以及两者的关系。不同水泥和混凝土拌合物及其拌合方式对混凝土结合氯化物的能力都有影响,并影响到钢筋的稳定性。

2 钢筋腐蚀的氯化物浓度临界值

通常,钢筋腐蚀的可能性随混凝土中氯化物含量的增加而增大,但不是混凝土含有氯化物钢筋就会发生腐蚀。在一定的钢筋混凝土体系中,只有当氯离子浓度达到临界值,且具备其他必要条件(水和氧)时,钢筋表面才会去钝化而发生腐蚀。由于钢筋混凝土体系复杂、腐蚀的影响因素较多,且氯化物临界值的测试方法不统一,因此,氯化物浓度的临界值仍无统一定论。根据上述钢筋钝化与Cl-去钝化机理,混凝土中钢筋能否维持钝化取决于其所处的介质OH-和Cl-在钢筋/混凝土界面上争夺Pe2+谁占优势。如果OH-浓度高,则钝化占优势或者说引起钢筋腐蚀的氯离子临界值也跟着提高,反之,则去钝化占优势。因此,氯离子引起混凝土中钢筋的去钝化不只取决于Cl-浓度,更主要的是[C1-]/[OH-]值。也就是说,混凝土中钢筋腐蚀的氯化物临界值是随条件而变的,最重要的条件之一是孔隙液中的pH值,水泥的组分也有影响。低渗透性的混凝土结构可延长氯化物达到临界值的时间。

Hausmann研究了不同pH值的碱溶液及饱和氢氧化钙溶液中氯化物浓度与钢筋腐蚀的关系,总结出在pH值为11.60~12.40范围内引起钢筋腐蚀的[Cl-]/[OH-]值约为0.60。后来,Haus-mann进一步研究认为大部分钢筋混凝土中[C1-]

/[OH-]的临界值为0.66~1.40。

Hussain等研究了在不同组分水泥砂浆中钢筋腐蚀的氯化物临界浓度,发现[Cl-]/[OH-]临界值随孔溶液的pH值的减小而增大,pH值为13.26~13.36时,其临界值在1.28~2.00内变化,比他人在碱溶液测得的数值要高。还有研究认为钢筋腐蚀的氯离子临界值随胶凝材料中的Ca3Al206即C3A含

量的增加而提高。

3 氯离子的来源

钢筋混凝土中氯离子的来源可分为来自生产水泥和拌制混凝土所用原材料及其过程中氯化物的引进和外界氯化物的侵入两种途径。对前一种根据水泥和混凝土的用途,对氯化物的含量和污染可严格控制;而后一种则与水泥组分、混凝土拌制工艺、工程质量、混凝土厚度及密实性和环境中氯化物的污染程

度等因素有关,较难严格避免。

3.1 水泥和混凝土原材料

使用含氯原材料均会使钢筋混凝土受到氯离子污染,为此,对混凝土拌合物

中氯化物的总含量有相应规定。

大多数品种的水泥在生产过程中所用原材料的氯含量极低,熟料中几乎不含氯化物,这部分水泥原料对钢筋的耐蚀性无不良影响。为了改善水泥的制造工艺,提高水泥的使用性能,在生产过程中,往往加入一定量的氯化物或含氯化物外加剂,如水泥生料中掺人含有氯的矿化剂;水泥立窑上为改善水泥的安定性采用由HCl等配制成的安定性液;粒化高炉矿渣用海水排湿淬冷、粉煤灰用

海水排湿,则可能含有较多的氯化物。

拌制混凝土时如使用不洁净的水或海砂将使混凝土引入较多的氯

离子。

混凝土外加剂是除组成混凝土的各种原材料或混合材料之外,另行加入的材料,即在拌制混凝土过程中掺人用以改善混凝土各种性能的化学物质,

如减水剂、密实剂、抗冻剂、缓凝剂、早强剂等,其中一部分外加剂采用氯化物或含氯化物的化学试剂,如氯化钠、氯化钙普通早强剂、氯化钠抗冻剂等,使混

凝土中氯离子含量增加。

3.2 海洋环境和沿海区域

海水含有大量氯盐,对海洋环境中的钢铁具有强腐蚀性。一般把海洋腐蚀环境分为海洋大气区、浪花飞溅区、潮差区、海水全浸区和海底泥土区。

暴露于海洋环境的钢筋混凝土构筑物,其暴露条件不同,氯化物侵入的机理也不同。在这些海洋环境中,氯离子可通过扩散或(和)毛细管的吸收作

用,迁移到混凝土内部直至钢筋表面。

处于水下部分或潮差区的饱水部分构筑物一直接触海水,主要是饱水混凝土里外氯离子浓度差引起的离子扩散。这一区域又有充足的氧,因而钢筋

受腐蚀的机遇最大。

处于海上大气区和近海地区的钢筋混凝土被侵蚀的主要因素是风带来细小的盐粒沉积于结构物表面,由于盐吸湿形成液膜,使构筑物受到氯离子污染。通常深入内陆盐量迅速下降,影响变小。

3.3 除冰盐

冬季为防止公路结冰,常向道路、桥梁和立交桥路面撒盐或盐水溶化冰雪。早期大量使用的除冰盐是氯化钠和氯化钙,氯盐化冰雪性能好,价格便宜。但使用氯化物除冰盐,易造成桥梁、道路混凝土结构的严重破坏。

3.4 盐碱地和盐湖

我国存在着大面积的盐碱地和部分盐湖,沿海地区的盐碱地以含氯盐为主,其他地区的盐碱地和盐湖一般含有氯盐的混合盐。盐碱地的土壤中一般含有较高含量的氯化物,对钢筋混凝土构筑物有较强的侵蚀作用。如大港油田地处渤海湾,大港油田沿海区域的滨海盐渍土壤对钢筋混凝土构筑物的腐蚀十分严重。钢筋混凝土筑物的腐蚀状况主要取决于土壤中Cl-的含量,含量越高,腐蚀越严重。油田沿海区域的土壤对钢筋混凝土构筑物的腐蚀比大气腐蚀的危害大得

多。

3.5 化学污染

化学污染主要来自工业环境和污水中的氯化物。处于氯碱工业等强腐蚀工业环境中的钢筋混凝土腐蚀破坏严重,有的结构物寿命只有十几年。

3.6 其他途径

除上述来源外,还有其他一些因素也会引起钢筋混凝土受氯化物的污染。例如,火灾后钢筋混凝土构筑物常为氯化物所污染,C1-可侵入混凝土内部的钢筋表面起腐蚀破坏。钢筋在使用前存放于露天中,有时也会受到含有氯化

物的生活污水等的污染。

4 防止氯离子侵蚀混凝土中钢筋的措施

防止氯离子侵蚀钢筋混凝土可采用基本措施和补充措施两类。前者旨在提高混凝土的性能,以增加对钢筋的防护功能,后者主要指基本措施在环境侵蚀作用下难以保证对钢筋的有效保护时增加其他防护措施。

4.1 控制原材料中氯化物的含量

除按照施工质量的要求(规范)选择合适的原材料外,严格控制材料的氯化物含量和避免氯化物的污染是混凝土中氯离子不超标的前提条件。

混凝土的原材料主要有水泥、水、砂、石子和外加剂等,因特殊需要在生产过程引入氯化物的水泥要严格控制氯含量,并对其使用范围有所限制。饮用水、天然的洁净淡水及河砂一般含氯盐量很少,可直接用于拌制混凝土;钢筋混凝土工程不允许使用海水;对海砂应检验其氯盐含量,符合标准规定的才能使用,而且最好还要采取防钢筋腐蚀(如加钢筋阻锈剂)的措施;混凝土中掺用的外加剂要符合有关标准。对于预应力混凝土结构,我国规定严禁使用含氯化物的外加剂。关于混凝土及其原材料氯离子含量的限制,还有相关标准,如对在潮湿并含有氯离子环境中的钢筋混凝土,氯化物总含量不得超过水泥重量的0.1%。但是,我国目前的相关标准还不够健全,在实际工程中也未得到严格的执行。

4.2 提高混凝土对钢筋的防护性能

正常情况下,正确设计和施工的优质钢筋混凝土结构具有长期抵制环境介质侵蚀的功能。因此,最大限度提高混凝土本身的低渗透性和保持对钢筋的防护性能,是预防混凝土中钢筋腐蚀的措施中最有效和经济的根本方法。提高混凝土对钢筋防护性能的主要方法有:在设计、施工中考虑和采取护筋措施;适

当增加混凝土保护层的厚度;改善?昆凝土结构,如选择优质原材料、引人外加

剂,合理施工;使用新型混凝土等。

4.3 采用耐腐蚀钢筋

研制合金钢是改变钢筋对腐蚀敏感性的方法之一。合金元素包括铜、铬、镍、钨等,其中铬最常用,其他金属也用于与铬一起组成合金。铬使铁易形成更致密和结合力强的氧化膜,在高碱性条件下比普通钢筋具有更高的防腐蚀性能;镍对于提高钢筋抗盐腐蚀是很有用的;奥氏体不锈钢在氯化物浓度较高

的环境中比铁素体具有更好的耐蚀性。

在钢表面施加覆盖层已广泛应用于钢筋的防腐蚀,如海洋和近岸结构物、厂房、桥梁和高速公路等,钢筋表面覆盖层包括金属与非金属两种形式。

金属覆盖层大体可分为钝化膜型(如铬基镀层)和牺牲型(如镀锌层)两种。前一种镀层在钢筋服役、生产、运输和施工等过程中,如受局部破坏将使基体金属相对于阴极钝化膜作为阳极而发生局部腐蚀,而后一种则是作为牺牲阳极对基体金属起防护作用,即使镀层发生局部破坏钢筋仍可受到保护。其中,镀

锌钢筋获得了较广泛的应用。

非金属覆盖层主要是有机涂层,包括环氧涂层、聚氯乙烯、聚丙烯和聚氨酯等,其中以环氧涂层最常用。环氧涂层钢筋是在抛光净化的钢筋表面热喷涂一层致密、坚韧的膜。涂层可以极大地提高钢筋的防腐蚀性能,有效抵制侵蚀性介质,适合于含氯离子的环境。但有研究表明,环氧涂层使钢筋与混凝土的附着强度减少约15%~25%,而且环氧涂层钢筋在使用过程中对其质量要求高,

使其应用受到了一定的限制。

4.4 应用钢筋阻锈剂

钢筋阻锈剂即为抑制钢腐蚀的缓蚀剂,拌制混凝土时掺加阻锈剂是防止钢筋腐蚀的一种经济而有效的方法。最早开发的钢筋阻锈剂是亚硝酸盐,特别是亚硝酸钙对提高防腐蚀性能很有效,至今常作为复合阻锈剂的重要组分。亚硝酸钠用于防止混凝土中钢筋的点腐蚀,也曾被认为是良好的阻锈剂,但会使混凝土的强度损失,钠离子有促进碱集料反应的危险,而且它是阳极型阻锈剂,用量不足反而会促进钢筋局部腐蚀,加上亚硝酸钠有毒,因而,不能得到广泛的应用。除亚硝酸盐外,Na2PO3F、Na3PO4和Na2PO4等也可用于作为钢筋阻锈剂。

近年来,有机阻锈剂的应用又发展成为抑制混凝土中钢筋腐蚀的有效方法,其主

要是胺与酯组成的水基有机外加剂。

目前,钢筋阻锈剂的研究仍在发展,不断有新的和多功能的复合型阻锈剂获得了开发和应用,其中迁移型阻锈剂是一种较为新颖的有机阻剂。这种阻锈剂一般是胺与链烯胺及有机酸或无机酸的盐,和单氟磷酸钠一样可以渗人混凝土使受侵蚀的钢筋再钝化,无损高效地修补被氯盐污染的钢筋混凝土,其前景

见好。

与国际上发达国家相比,国内对钢筋阻锈剂的研究和应用较少。随着钢筋混凝土腐蚀问题的日益突出以及人们认识的提高,钢筋阻锈剂在我国将有

良好的应用市场。

4.5 电化学保护

钢筋混凝土结构的电化学保护包括阴极保护和电化学处理。阴极保护能直接抑制钢筋自身的电化学腐蚀过程,尤其适用于易受碳化和氯化物污染的混凝土中钢筋的保护,是目前保护混凝土中钢筋最有效且经济的方法之一。阴极保护法可分为牺牲阳极保护法和外加电流阴极保护法。

前者是采用比钢电位更负的铝合金等作为阳极与钢筋电连接,*自身的腐蚀提供自由电子实现对钢筋的保护;后者则是以直流电源的负极与被保护的钢筋连接,正极与难溶性的辅助阳极相接,提供保护电流使钢筋发生阴极极化而受到保护。牺牲阳极保护法阳极材料的估计寿命较短,一般不用于新混凝土结构,且阳极提供的电流有限,只能保护阳极附近较小范围的钢筋,因而该方法不大适用于暴露于大气中的钢筋混凝土结构。外加电流阴极保护法的应用较广泛,发展较迅速,近10a已应用于新的钢筋混凝土结构。目前,阴极保护法的研究主

要致力于开发新的优质阳极材料。

电化学处理与外加电流阴极保护法相似,也是以钢筋为阴极,通以低压直流电流达到保护钢筋的目的。其区别在于电化学处理是在短期内施加大的阴极电流密度,使钢筋表面发生电极反应产生OH-,提高钢筋附近混凝土孔隙液的pH值,同时,*离子迁移排走钢筋周围的CI-,使其浓度低于临界值。因此,电化学处理可用于碳化混凝土和氯化物污染引起钢筋腐蚀的场合。该技术可以无损地恢复钢筋钝态,其经济和社会效益显著。

4.6 混凝土表面处理

硬化后的混凝土总是存在着空隙,为环境中水、二氧化碳和氯离子等介质的侵蚀提供了通道。因此,通过混凝土表面处理,提高混凝土层的抗渗性也是保护钢筋的一项补充措施。混凝土表面处理主要为混凝土的脱水处理、镶面板和表面涂覆。脱水处理是在混凝土刚浇捣成型后,用真空脱水模板对混凝土表层进行真空脱水,排走混凝土中多余的水分和空气,使混凝土表层更为密实,提高抗氯化物等介质的渗透。在混凝土表面涂覆涂料作为抵制侵蚀性介质渗入混凝土的第一道防线是一种经济、简便和有效的方法。表面涂覆一般可分为浸入型和隔离型,前者通过将涂料吸人到混凝土表层,降低混凝土的吸水性;后者则在混凝土表面成膜,形成隔离层。由于涂料的耐久性不佳,因此其对钢筋混凝土结构

往往只能提供暂时性的保护。

5 结论

(1)氯离子的侵蚀是引起混凝土中钢筋腐蚀的主要原因。氯离子是极强的去钝化剂,一定条件下其浓度达到临界值,钢筋就会去钝化而腐蚀。

(2)氯离子来源广泛。我国的海岸线长,沿海地区钢筋混凝土结构受海洋环境的影响较大,北方公路除冰盐的应用是造成氯化物污染的重要原因。

(3)为防止钢筋的腐蚀,首先应提高混凝土的护筋性,其次必须采取一些补充措施来抑制氯离子的侵蚀。采用钢筋阻锈剂和电化学阴极保护是较为

经济和有效的保护钢筋的方法。

2009-09-27 11:42

混凝土是现代紧重要的建筑材料之一,广泛用于大坝、桥梁、地板、贮槽和建筑等。坚硬的混凝土本身也耐腐蚀的材料,经常用于钢结构的保护,但是混凝土也有反应性,比如说在酸性环境中,所以它的表面也需要涂料的保护。

混凝土是由硅酸盐水泥、填充骨料、水和助剂等混合后经水合浇注而成。水泥的基本化学组成为3CaO?SiO2和β-2CaO?SiO2,以及少量的3CaO?Al2O3、

4CaO?Al2O3?Fe2O3或者是一些铁相的固体溶液MgO、CaO以及其痕量化合物。除了加入骨料增强其耐磨性,还使用钢筋骨架来增加混凝土构件的强度,这种混凝土叫作钢筋混凝土。

混凝土的固化通常经过28天后可以达到最初的物理性能,国外有时候采用蒸汽来加速水合反应,混凝土构件的固化通常只要几个小时就可以完成。

混凝土涂层需具备防护和装饰两方面功能。由于暴露於日晒、雨淋、大气污染等的长期作用下,钢筋混凝土的腐蚀如果不引起重视和采取措施,就会带来严重后果。

引起混凝土内加强钢筋腐蚀最为主要的原因是混凝土的碳化和氯化物的渗透量。

1. 混凝土的碳化

钢筋混凝土的发明与发展的主要因素之一是水泥浆具有保护钢筋免受腐蚀的能力。钢筋混凝土中水泥的水化产物——氢氧化钙是一种高碱性物质,pH值在12.5以上,混凝土中钢筋与该溶液接触,表面会形成氧化亚铁面膜,它可以钝化钢筋,阻止氧接触钢筋,对钢筋起到保护作用。这种钝化作用在碱性环境中是很稳定的。当水份通过孔洞形态的混凝土,在里面形成氢氧化钙。氢氧化钙是一个碱性环境,由于外来的酸性气体,如二氧化碳渗入混凝土与氢氧化钙发生化学反应,变成碳酸钙,整个反应称为碳化作用。

CO2+H2O+Ca(OH) →CaCO3+2H2O

混凝土内钢筋的腐蚀

当大量的碳酸钙形成时,混凝土内部碱性环境受到破坏,达到一定程度时,如pH在9以下时,钝态铁的保护层就失去作用,混凝土内的钢筋因为没有受到碱性环境的保护而产生锈蚀。

混凝土的碳化因素很多,例如,水泥本身的质量,施工时水分及水泥比例,固化时间及环境等等。而多孔的混凝土比一般混凝土碳化速度快,有时甚至快十倍,此外施工也是一个十分重要的问题,例如水泥层外层与钢筋之间的距离(水泥壁)过小等。

2. 氯化物的渗透

混凝土施工时往往会加入一些含有氯化物的预混合料,例如污染的水源,砂石等等。混凝土固化后,在大气环境中的氯化物污染是难以避免。

为了防止冰雪对车辆行驶造成的事故危害,二十世纪50~60年代,以美国为主的西方国家开始大量使用防冰盐,当时对“盐害”认识不足,70~80年代,防

冰盐所带来的腐蚀破坏大量表现出来,美国56.7万座高速公路桥已有半数以上遭腐蚀和需要修复,至少已有50座桥出现了应力腐蚀断裂现象,为修复道路、桥梁等,美国已花费上千亿美元。至本世纪末还需花费400亿美元,因修复和不安全等带来的间接损失就难以预计了。英国为修复因防冰盐腐蚀破坏的桥梁,已花费62亿英磅,德国每年花费4亿马克,北欧、加拿大等国,均有受氯离子是一种穿透力极强的腐蚀介质,当接触到钢铁表面,便迅速破坏钢铁表面的钝化层,即使在强碱性环境中,氯离子Cl-引起的点锈腐蚀依然会发生,同时由于不论是气态还是液态的水往往会渗透到混凝土里面,而这种水并非纯水,而是含有一些杂质的电解液,电化学作用导致锈蚀加快进行。当氯离子渗透到达钢筋表面,氯离子浓度较高的局部保护膜破坏,成为活化态.在氧和水充足的条件下,活化的钢筋表面形成一个小阳极,未活化的钢筋表面成为阴极,结果阳极金属铁溶解,形成腐蚀坑,一般称这种腐蚀为点腐蚀.这个过程主要有下列反应:

Fe2++2Cl-+2H2OFe(OH)2+2HCl

4Fe(OH)2+O2+2H2O4Fe(OH)3(铁锈)

Fe(OH)3若继续失水就形成水化氧化物FeOH(即为红锈),一部分氧化不完全的变成Fe3O4(即为黑锈),在钢筋表面形成锈层。由于铁锈层呈多孔状,即使锈层较厚,其阻挡进一步腐蚀的效果也不大,因而腐蚀将不断向内部发展。

国际上还没有一致公认的引起混凝土中钢筋腐蚀的氯化物界限值,当结构处于干湿交替状态下或常年湿度大于80%时,通常认为在氯化物含量与混凝土的重量比达到0.2%以上时,就比较危险。

第五节桥梁的腐蚀防护措施

一.涂料保护

钢铁的大敌就是腐蚀,而涂料正是钢铁桥梁防腐蚀的最方便有效的方法之一。比如悉尼港口大桥在建设时的涂漆工作量就相当繁重,每度漆约有80000公升,涂装面积相当于60个足球场那么大。

从电化学腐蚀的原理分析,我们可以了解到钢铁发生电化学腐蚀必须具备几个基本条件:

(1)钢铁作为腐蚀阳极,其电位最低

(2)低电阻的电解质溶液,从外面渗入或残存在底漆与钢铁的界面上

(3)足够的氧气参与腐蚀过程,并维持在一定水平上

采用涂料来保护钢铁,就是要提高其腐蚀电位,由腐蚀阳极成为阴极,隔绝电解质以免形成腐蚀电池。漆膜的耐腐蚀性一个重要原因就是涂层作为一种高聚物薄膜,能够不同程度地阻缓腐蚀因子水、氧所和离子的透过,从而发挥防锈防腐蚀的作用。此外,涂层漆膜对腐蚀介质的稳定性,与底材的附着力以及相应的机械性能对于涂层的防腐蚀性能都有着重要的影响。

涂料对钢铁的保护作用主要有有三种,屏蔽作用、缓蚀作用和阴极保护作用。

1. 屏蔽作用

涂料经过良好的施工,覆盖在钢铁表面,能有效地隔绝钢铁与外界腐蚀环境的接触。也就是说,涂料阻止了大气中的氧气、水汽和其它腐蚀性离子对钢铁的侵蚀。

所有涂料都有着基本的屏蔽作用。

2. 缓蚀作用

防锈底漆的防锈作用在很大程度上依靠防锈颜料的作用。铬酸锌、磷酸锌和红

丹等对钢铁有着缓蚀作用。以磷酸锌为例,它具有形成碱式络合物的能力,可以与漆基的极性基团(羟基或羧基)进一步络合,生成稳定的交联络合物,不仅增强了漆膜的耐水性和附着力,同时在钢铁表面形成了牢固的铁-锌-磷酸盐络合物,阻止锈蚀的形成和发展,降低钢铁的腐蚀速度。

有关这一类防锈颜料的作用,请参考第二章《桥梁重防腐涂料》中有关“防锈颜料”的说明。

3. 阴极保护作用

利用锌粉的阴极保护作用,制成的环氧富锌漆和无机硅酸富锌漆最具有最好的防锈作用,是重防腐涂料体系中的首选底漆。高含量的锌粉与钢铁紧密接触,由于锌的电位比钢铁低,腐蚀电流就会从锌流向钢铁,锌粉首先被腐蚀从而就保护了钢铁。锌粉在大气中的腐蚀产物为难溶碱式盐,它们会填没涂层中的空隙,也具有保护作用。

二. 阴极保护

电化学保护根据其原理,有阳极保护和阴极保护两种。

阳极保护主要是对钢铁进行钝化,保护其在强氧化性质中不受腐蚀。例如在硝酸中,钢铁一般会强烈腐蚀,但是当硝酸浓度达到35%时,腐蚀速度就会显著减小,达到60%时,几科不受腐蚀。此时,钢铁变得十分稳定。这就是是阳极保护。

阴极保护是使用钢铁成为阴极并极化,以减小防止腐蚀。它可以分成牺牲阳极保护和外加电流保护。

牺牲阳极保护法,是采用一种比所要保护金属的电位要负,即化学性质更为活泼的金属或合金,与被保护的金属联结在一起,依靠该金属或合金不断的腐蚀牺牲掉所产生的电流使其它金属获得阴极极化而受到保护。因而,这种自身腐蚀的金属或合金,称之为牺牲阳极。常见的牺牲阳极材料有锌基合金,铝基合金。

外加电流阴极保护是由直流电源通过辅助阳极对被保护体施加保护电流,使被保护体成为阴极并获得极化,从而免受腐蚀的一种保护技术

水泥中氯离子的危害及预防

今年6月1日,国家标准《通用硅酸盐水泥》(GB175—2007)正式实施,这是我国水泥行业的一件大事,它涉及到水泥产品的生产、流通、应用、科研与设计的各个方面。尤其是水泥生产企业,无论是产品品种的确定、配料方案的设计、化学分析及物理检验仪器设备的购置、效验、使用,还是生产工艺过程中的技术参数调整与控制,都必须进行必要的变更与适应,才可能实现执行标准的正常平稳过渡。

氯盐是廉价而易得的工业原料,它在水泥生产中具有明显的经济价值。一方面,它可以作为熟料煅烧的矿化剂,能够降低烧成温度,有利于节能高产;它也是有效的水泥早强剂,不仅使水泥3天强度提高50%以上,而且可以降低混凝土中水的冰点温度,防止混凝土早期受冻;另一方面,氯离子又是混凝土中钢筋锈蚀的重要因素。由于钢筋锈蚀是混凝土破坏的主要形式之一,所以,各国对水泥中的氯离子含量都作出了相应的规定。

氯离子的来源主要是原料、燃料、混合材料和外加剂,但由于熟料煅烧过程中,氯离子大部分在高温下挥发而排出窑外,残留在熟料中的氯离子含量较少。如果水泥中的氯离子含量过高,其主要原因是掺加了混合材料和外加剂(如:工业废渣、助磨剂等)。因此,在我国水泥新标准中增加了“水泥生产中允许加入≤0.5%在助磨剂和水泥中的氯离子含量必须≤0.06%”的要求,充分体现水泥行业对混凝土质量保证的承诺和责任心。

钢筋锈蚀是影响钢筋混凝土及预应力钢筋混凝土结构耐久性的重要因素,是当前最突出的工程问题之一,已引起了各个国家的关注。大家不仅重视研究混凝土结构中的钢筋锈蚀与防护问题,并推出新的检验评价方法与监控防护措施。

钢筋的腐蚀分为湿腐蚀和干腐蚀两种。钢筋在混凝土中的锈蚀是在有水分子参与的条件下发生腐蚀,属湿腐蚀。钢筋的锈蚀过程是一个电化学反应过程。使钢筋表面的铁不断失去电子而溶于水,从而逐渐被腐蚀;与此同时,在钢筋表面形成红铁锈,体积膨胀数倍,引起混凝土结构开裂。

企业是现代社会的基础,不仅是社会财富的创造者,也是社会责任的承担者;“人无信不立,企无信不长”,离开了社会的信任和支持,企业将失去发展的空间。

水泥企业全面控制各种水泥中的氯离子含量,是在履行一种社会责任,也是避免钢筋锈蚀和混凝土开裂的最有效方法之一。为了更好地过渡和适应新的水泥标准要求,水泥企业应该积极主动地做好以下工作。

1. 深入学习新标准的各项规定和培训有关测试技能。

本次水泥新标准是将原来的六大通用水泥的三项标准(GB175、GB1344、GB12958)整合修订为一个标准:《通用硅酸盐水泥》(GB175—2007)。更新的内容很多,需要水泥工作者认真地学习和领会,以便顺利地贯彻实施。尤其是新标准中增加了氯离子限量的要求,需要企业尽快购置标准指定的水泥氯离子测定仪,化验室工作人员要进行成分测定、仪器使用维护及校准知识和技能的培训。

2.认真普查本企业原、燃料、混合材料、熟料及水泥中的氯离子含量,及时调整配料方案及有关工艺参数。

由于我国地域辽阔,各水泥厂使用的原、燃、材料差异很大,不同地区氯离子的来源不同,以前的水泥标准中又没有检测氯离子的要求,因此,首先要摸清本地的资源情况和本企业的熟料及水泥产品中氯离子含量的情况。然后,在决定配料方案及有关工艺参数的调整力度,切不可视而不见,也不可盲目大调,力求平稳为好。

3.关注水泥在混凝土中的应用性能,正确、理性地选择水泥助磨剂。

《通用硅酸盐水泥》(GB175—2007)标准的颁布实施,会使目前市场上相当数量的助磨剂不能在水泥生产中使用。水泥企业要以混凝土工程质量为重,使用真正能为水泥粉磨生产节能降耗、又不影响水泥生产总耗的70%以上,而粉磨工艺中的能耗大部分转化为热能,因此,工艺的节能增效,越来越重要。目前解决磨机节能的方法中,水泥助磨剂是有效途径之一。

从2005年开始,国内许多有研究实力和科技支持的外加剂生产企业,提前进行了适应新标准的助磨剂研发工作。一方面将氯离子含量由少量(≤10%)降低到微量(≤1%);与此同时,助磨剂的用量由原来的0.4%~0.8%,减少到0.1%~0.2%;真正带入水泥中的氯离子不超过0.01%,试验结果表明,水泥球磨机增产8%~10%,节电5%~10%。

4.把握市场,多用工业废渣。

水泥企业是一个经济组织,它要以盈利为目的,同时也负有不可推卸的社会责任。水泥工业每年消纳全国一半以上的工业废渣,为推动我国循环经济的发展作出

了贡献。新标准中将水泥中氯离子含量规定小于0.06%,同时考虑到鼓励再生资源(工业废渣)综合利用的情况,如注说明“当有特殊要求时,该指标由买卖双方协商确定”,这是在确保混凝土耐久性的前提下,给废气物的再利用,保留了一定的空间。我们水泥企业可以根据当地的用户需求情况和实际建筑工程质量的允许程度,抓住机遇,增产增效。

氯离子腐蚀介绍

氯离子腐蚀研究 一:氯离子可破坏金属氧化膜保护层,形成点蚀或坑蚀。对奥氏体不锈钢会出现晶间腐蚀。 曾碰到过这种问题,最后结论是没有解决办法,用别的材料成本太高效果也不见得很好没考虑,所以就正常用16MnR然后考虑点腐蚀余量。 除了衬胶,衬塑也可以呀,如果是管线,当然最好的办法还是选用钛材,只是花钱多啊! 对氯离子腐蚀,可以采用双相不锈钢。 二:这个与氯离子的浓度有关系和操作温度有关。 通常可以用碳钢,不如纯碱的盐水工段有不少设备就采用碳钢材料。当然为了增加寿命可以采用内部涂漆、衬胶等。 有条件可以采用双相钢,钛材等。 而且钢材的抗拉强度不要太高,最便宜的还是内壁衬胶,也是一个不错的方法。我们的盐酸罐就是这种方法。 当然其温度压力也有要求。 脱硫行业中会用一些254SMO,Al6XN,SAF2507,1.4529等,不重要的地方也可以衬胶

我同意六楼的观点,我们买的泵基本上是2605 三:氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。在海水环境下不锈钢的 使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。对这些局部腐蚀的抑制,已知增加Cr和Mo,奥氏体系不锈钢和双相钢,特别是添加N是 有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀!以下钢种供参考: 高强度耐海水腐蚀马氏体时效不锈钢00Cr16Ni6Mo3Cu1N 高强度耐海水腐蚀不锈钢00Cr26Ni6Mo4CuTiAl 耐海水不锈钢Yus270(20Cr-18Ni-6Mo-0.2N) 管道中氯离子含量高是不是会对管道产生腐蚀,这个过程是怎样的是什么和什么发生反应?介绍的详细一点谢谢了 最佳答案 不一定是酸性才腐蚀,这种问题我以前碰到过——氯离子的应力腐蚀开裂,一般不锈钢对Cl离子比较敏感。建议用“不锈钢”、“ Cl离子”、“应力腐蚀”等关键词搜索获取更多资料,也可以寻找这方面的专著,讲述更清楚明白。譬如:

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀 问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。 不锈钢的腐蚀失效分析: 1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。应力腐蚀失效所占的比例高达45 %左右。常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 2、孔蚀失效及预防措施 小孔腐蚀一般在静止的介质中容易发生。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。降低氯离子在介质中的含量。加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。采用外加阴极电流保护,抑制孔蚀。 3、点腐蚀:由于任何金属材料都不同程度的存在非金属夹杂物,这些非金属化合物,在Cl 离子的腐蚀作用下将很快形成坑点腐蚀,在闭塞电池的作用,坑外的Cl离子将向坑内迁移,而带正电荷的坑内金属离子将向坑外迁移。在不锈钢材料中,加Mo的材料比不加Mo的材料在耐点腐蚀性能方面要好,Mo含量添加的越多,耐坑点腐蚀的性能越好。 4.缝隙腐蚀 缝隙腐蚀与坑点腐蚀机理一样,是由于缝隙中存在闭塞电池的作用,导致Cl离子富集而出现的腐蚀现象。这类腐蚀一般发生在法兰垫片、搭接缝、螺栓螺帽的缝隙,以及换热管与管板孔的缝隙部位,缝隙腐蚀与缝隙中静止溶液的浓缩有很大关系,一旦有了缝隙腐蚀环境,其诱导应力腐蚀的几率是很高的。 总结 1:几种不锈钢在含氯(Cl—)水溶液中的适用条件 一、板片材料的选用 (1)注:不含气体、PH值为7(即中性)、流动的含氯水溶液。 (2)奥氏体不锈钢对硫化物(SO2 、SO3)腐蚀有一定的抗力。但是,Ni含量越高,耐蚀性将降低(因生成低熔点NiS),可能引起硫化物应力腐蚀开裂。硫化物应力腐蚀开 裂同材料的硬度有关,奥氏体不锈钢的硬度应≤HB228;Ni-Mo或Ni–Mo–Cr合金的 硬度不限;碳素钢的硬度应≤HB225; 3)必须注意板片材料与垫片或胶粘剂的相容性。例如,应避免将含氯的垫片或胶粘剂(如氯丁橡胶或以其为溶质的胶粘剂)与不锈钢板片组配,或者将氟橡胶、聚四氟乙烯(PTFE)垫片与钛板板片组配;

氯离子腐蚀及不锈钢知识

氯离子对热力机组的腐蚀危害极大,其腐蚀表现形式主要是破坏金属表面的钝化膜,进而向金属晶格里面渗透,引起金属表面性质的变化.本文分析了氯离子对金属腐蚀的机理,并针对热力系统内部氯离子的来源,提出了相应的解决措施. 岭澳核电站循环水过滤系统316L不锈钢管道点腐蚀的理论分析 Analysis of Pitting Corrosions on 316L Stainless Steel Pipes of Circulation Water Filtering System in Ling抋o Nuclear Power Station 简隆新1 ,时建华2 (1.中广核工程有限公司,广东深圳518124; 2.大亚湾核电运营管理有限公司,广东深圳518124) 简单介绍了循环水旋转滤网反冲洗系统及316L不锈钢管道的使用情况,分析了316L不锈钢的抗腐蚀性。详细介绍了点腐蚀形成的机理和影响因素,分析了316L不锈钢点腐蚀的情况,提出了对反冲洗管道可采取的防护措施。 316L不锈钢;管道;点腐蚀 Abstract: This paper gives a general introduction to the rotating drum filter back flushing system and the usage of 316L stainless steel pipes. It also analyses the characteristic of anti-corrosion of 316L stainless steel. At the same time, it gives a detailed introduction to the mechanism of forming pitting corrosion and the factors affecting its formation. The analysis of the pitting phenomena and suggestion for the pipe material selection are also discussed in this paper. Key words: 316L Stainless steel; Pipe; Pitting corrosion 1 循环水旋转滤网反冲洗系统简介 循环水过滤系统(CFI)的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。反冲洗的水源与主循环水一样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m/s。反冲洗海水管道设计采用公称直径150mm(壁厚7.11mm)的316L不锈钢管。输送的海水含氯量为17g/L,摩尔浓度为0.48mol/L,为防止回路中海生物滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在1×10-6。 2 316L不锈钢管道的使用情况 CFI系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。但在2001年9月,1号机管道又发现漏点。2001年10月电厂决定将所有反冲洗管道更换为碳钢衬胶管道。改造后运行至今未发生泄漏。 3 316L不锈钢的抗腐蚀性分析 316L不锈钢属300系列Fe-Cr-Ni合金奥氏体不锈钢,由于铬、镍含量高,是最耐腐蚀的不锈钢之一,并具有很好的机械性能。字母“L”表示低碳(碳含量被控制在0.03%以下),以避免在临界温度范围(430~900℃)内碳化铬的晶界沉淀,在焊后提供特别好的耐蚀性。但316L不锈钢抗氯离子点腐蚀的能力较差。 4 不锈钢的点腐蚀机理

混凝土中氯离子的危害及预防措施

混凝土中氯离子的危害及预防措施 我国新水泥标准中增加氯离子检验人手,分析了混凝土中氯离子的来源和带来途径。指出了氯离子对混凝土的影响和危害,提出了怎样才能避免混凝土中氯离子超标的几个措施,最后说明了有关各行业应研究怎样才能使混凝土中氯离子的含量最少。这应是有关的技术T 作者的一种责任。 引言 《通用硅酸盐水泥》报批稿,在2006年9月就已完成,随后经过若干次的建材生产与建一E使用的协商讨论,终于2007年底发布,国家标准 175—2007《通用硅酸盐水泥》于2008年6月1日实施,这个标准的正式实施,是我国水泥行业的大事,也是建筑施工行业的大事,它涉及到水泥产品的生产、流通、应用、科研与设计的各个方面。尤其是水泥生产企业,无论是产品品种的确定、配料方案的设计、化学分析及物理检验仪器设备的购置、校验、使用,还是生产工艺过程中的技术参数调整与控制,都必须进行必要的变更与适应,只有这样才可能满足新标准的要求,保证新标准的正常平稳过渡。 早在2002年4月1日,国家建没部和同家质检总局就联合发布实施了 500102002((混凝土结构设计规范》,其3.4耐久性规定的章节中,就对混凝土中最大氯离子的含量作了具体的规定;2004年l2月1日,两部局又联合发布实施了/T 503442004《建筑结构检测技术标准》,这个标准的附录C,对混凝土中氯离子的含量测定方法作了规范;2006年6月1日国家建设部发布实施了 522006((普通混凝土用砂、石质量

及检验方法标准》,这个标准在3.1.10条中对混凝土用砂的氯离子含量也作了规定。这些标准和规范的配套实施,必将对水泥的生产、使用和建设工程的质量提高起到积极的推动和保证作用。 1 混凝土中氯离子的来源 1.1 水泥中的氯离子 氯盐是廉价而易得的丁业原料,它在水泥生产中具有明显的经济值。它可以作为熟料煅烧的矿化剂,能够降低烧成温度,有利于节能高产;它也是有效的水泥早强剂,不仅使水泥3 d强度提高50%以上,而且可以降低混凝土中水的冰点温度,防止混凝土早期受冻。氯离子的来源主要是原料、燃料、混合材料和外加剂,但由于熟料煅烧过程中,氯离子大部分在高温下挥发而排出窑外,残留在熟料中的氯离子含培极少。如果水泥中的氯离子含量过高,其主要原冈是掺加了混合材料和外加剂(如:工业废渣、助磨剂等)。因此,在我国水泥新标准中增加了“水泥生产中允许加入≤0.5%的助磨剂和水泥中的氯离子含量必须≤O.06%”的要求,这主要是为了保证水泥不对混凝土质量产生过多负面影响。 1.2砂子中的氯离子 在天然砂中,特别是天然海砂中,因为海水中氯离子较高,使得海砂的表面吸附的氯离子也比较多,导致海砂中氯离子的含量较大,如果不加处理用在混凝土中,将会使混凝土中的氯离子含垣增多。 1.3水中的氯离子 在混凝土拌制中,水是不可缺少的原材料之一。如果用饮用的自

氯离子对钢筋腐蚀

摘要 氯化物的侵入是引起混凝土中钢筋腐蚀最主要的原因之一,氯离子能破坏钢筋表面钝化膜而引起钢筋局部腐蚀,对腐蚀过程具有催化作用,然而只有混凝土中氯离子的浓度达到一定的临界值后,钢筋才会发生腐蚀。由于影响钢筋腐蚀的因素复杂众多,至今仍然难以确定统一的氯离子浓度临界值。这里本文将着重阐述钢筋腐蚀行为和氯离子的去钝化机理、混凝土中氯离子的来源和保护钢筋的措施及其研究进展。 关键词:钢筋,混凝土,钢筋腐蚀,氯离子 前言 钢筋在混凝土高碱性环境中的钝态条件被破坏,便会腐蚀。钢筋钝化膜破坏机理主要是混凝土的碳化物和氯化物侵入,这两种因素既影响混凝土孔隙液的pH值,又影响钢筋的电位值,因而直接影响钢筋的稳定性。 由于氯化物的侵蚀使钢筋混凝土构筑物发生破坏而造成重大损失的现象十分普遍。比如,北京西直门立交桥于1979年建成投入使用,不到20年其钢筋混凝土结构便被腐蚀得十分严重,不得不进行加固维护。引起西直门立交桥过早腐蚀破坏的原因是多方面的,但冬季经常向立交桥撒含氯化物除冰盐(如工业用盐)是最为重要的一个因素。台湾四面环海,许多钢筋混凝土构筑物受破坏以及不断发生的“海砂屋”事件,也是氯化物侵蚀所引起的。目前,中国大陆也存在“海砂屋”现象。 氯离子的侵蚀引起钢筋局部腐蚀是最有害的,对此,各国都予以高度重视。由于钢筋混凝土结构的复杂性和研究条件的差异,研究结果和结论并不完全一致,许多问题还有待深入研究。这里主要对国内外氯离子与钢筋腐蚀关系的研究进展和防止氯化物侵蚀的措施进行阐述。 1 钢筋腐蚀与氯离子去钝化机理 钢筋混凝土是多相、不均质的复杂体系,钢筋表面具有电化学不均匀性,存在着电位较负的阳极区和电位较正的阴极区;一般钢筋表面总处于混凝土孔隙液膜中,即钢筋表面阳极区和阴极区之间存在电解质溶液;由于混凝土的多孔性,其构筑物总是透气和透水的,即通常氧可以通过毛细孔道达到钢筋表面作为氧化剂接受钢筋发生腐蚀产生的自由电子。因此,钢筋表面存在活化状态,则可构成腐蚀电池,钢筋就会发生电化学腐蚀。但在正常情况下,钢筋在混凝土中不会发生腐蚀。这是因为钢筋表面在碱性混凝土孔隙液中生成钝化膜,发生阳极钝化阻止了钢筋的腐蚀。因此,长期保持混凝土固有的高碱性是保护钢筋不受腐蚀、保证钢筋混凝土构筑物耐久性的一条有效途径。但是,在氯离子侵蚀严重的情况下钢筋的腐蚀还是时有发生。 混凝土中钢筋的腐蚀是电化学腐蚀,但有其特殊性。钢筋腐蚀的先决条件是表面去钝化。通常认为其基本反应是在阳极区铁失去电子变为铁离子,导致铁的溶解。铁离子可进一步反应生成氢氧化物和氧化物,在阴极区进行氧的还原反应。由于腐蚀产生的多种形式的氢氧化物和氧化物的体积比铁原来本身的体积大好几倍,因此,可造成钢筋混凝土结构的局部应力集中而膨胀开裂,进一步促进了钢筋的腐蚀。 氯离子是极强的去钝化剂,关于氯离子的去钝化机理认识还不一致,有人认为是氯离子易渗入钝化膜,也有人认为是Cl-优先于氧和OH-被钢吸附。一般认为,在不均质的混凝土中氯离子能够破坏钢筋表面钝化膜,使钢筋发生局部腐蚀。在阳极区铁发生腐蚀生成铁离子,当钢筋/混凝土界面环境存在氯离子时,在腐蚀电池产生的电场作用下,氯离子不断向阳极区迁移

水泥中氯离子对钢筋的腐蚀

氯离子对钢筋腐蚀机理的影响 [摘要] 氯化物的侵入是引起混凝土中钢筋腐蚀的最主要原因之一,氯离子能破坏钢筋表面钝化膜而引起钢筋局部腐蚀,对腐蚀过程具有催化作用。但只有混凝土中氯离子的浓度达到一定的临界值后,钢筋才会发生腐蚀。由于影响因素多,至今难以确定统一的氯离子浓度临界值。着重阐述了钢筋腐蚀行为和氯离子的去钝化机理、混凝土中氯离子的来源和保护钢筋的措施及其研究进 展。 [关键词] 钢筋混凝土;钢筋;腐蚀;氯离子 0 前言 钢筋在混凝土高碱性环境中的钝态条件被破坏,便被腐蚀。钢筋钝化膜破坏机理主要是混凝土的碳化和氯化物侵入,这两种因素既影响混凝土孔隙液的pH值,又影响钢筋的电位值,因而直接影响钢筋的稳定性。因氯化物的侵蚀引起钢筋混凝土构筑物破坏而造成重大损失的现象非常严重。北京西直门立交桥于1979年建成投入使用,不到20a钢筋混凝土的腐蚀已十分严重,不得不进行改建。引起西直门立交桥过早破坏的原因是多方面的,但长期在冬季向立交桥撒含氯化物除冰盐引起钢筋腐蚀使立交桥结构受到破坏是突出的因素。台湾四面环海,许多钢筋混凝土构筑物受破坏以及不断发生的“海砂屋”事件,也是氯化物侵蚀所引起的。目前,中国大陆也存在“海砂屋”现象。氯离子的侵蚀引起钢筋局部腐蚀是最有害的,对此,各国都给予了高度的重视。由于钢筋混凝土结构的复杂性和研究条件的差异,研究结果和结论并不完全一致,许多问题还有待深入研究。本工作主要对国内外氯离子与钢筋腐蚀系的研究进展和防止氯化物侵蚀的措施进行评述。 1 钢筋腐蚀与氯离子去钝化机理 钢筋混凝土是多相、不均质的特殊复杂体系,钢筋表面具有电化学不均匀性,存在着电位较负的阳极区和电位较正的阴极区;一般钢筋表面总处于混凝土孔隙液膜中,即钢筋表面阳极区和阴极区之间存在电解质溶液;由于混凝土的多孔性,

钢筋锈蚀的机理

钢筋锈蚀的机理 公司内部编号:(GooD?TMMT?MMUT?UUPTY?UUYY?DTTI?钢筋锈蚀的机理

1前言 钢筋锈蚀对钢筋混凝土结构及预应力混凝土结构的耐久性和安全性影响极大。混凝土在多种因素作用下(如碳化、氯离子侵蚀等),钢筋因原先在碱性介质中生成的钝化膜被破坏而渐渐失去保护作用,导致钢筋锈蚀,生成的铁锈体积比被腐蚀掉的金属体积大3~4倍,使混凝土保护层沿钢筋纵向开裂,而裂缝一旦产生,钢筋锈蚀速度大大加快,结构构件的承载力与可靠性劣化的速度大大加快,有的共至发展到钢筋锈断,危及结构的安全。 文献资料表明,钢筋锈蚀引起钢筋混凝土结构的过早破坏已成为世界各国普遍关注的一大灾害。美国标准局1975年的调查表明,混凝土中钢筋的腐蚀占全美各种腐蚀的40%:日本新干线使用不到10年,就出现大面积因钢筋腐蚀引起的混凝土开裂、剥蚀。在我国,大量采用钢筋混凝土结构已有儿十年历史,对于遭受恶劣环境条件的腐蚀作用影响,尤其是在20世纪五六十年代,由于要求早强或防冻在混凝土中掺加过量的氯盐的结构,耐久性破坏现象非常严重。长期以来,人们发现混凝土结构在复杂恶劣的环境下会出现未老先衰的现象,尤其是接连不断的工程事故,使学术界在血的教训面前深刻认识到研究和提高混凝土耐久性的现实意义。 笔者将对钢筋锈蚀机理、影响因素、腐蚀过程、锈后钢筋混凝土的力学性能及粘结性能等进行分析,提出钢筋锈蚀应采取的预防措施,提高混凝土的耐久性和结构的安全性,减少耐久性破坏造成的损失,将是一项具有重大实际意义和社会经济效益的研究课题。 2对钢筋锈蚀的分析 混凝土中钢筋锈蚀机理的研究 一一电化学反应过程

氯离子腐蚀介绍

氯离子腐蚀研究一:氯离子可破坏金属氧化膜保护层,形成点蚀或坑蚀。对奥氏体不锈钢会出现晶间腐蚀。 曾碰到过这种问题,最后结论是没有解决办法,用别的材料成本太高效果也不见得很好没考虑,所以就正常用16MnR然后考虑点腐蚀余量。 除了衬胶,衬塑也可以呀,如果是管线,当然最好的办法还是选用钛材,只是花钱多啊! 对氯离子腐蚀,可以采用双相不锈钢。 二:这个与氯离子的浓度有关系和操作温度有关。 通常可以用碳钢,不如纯碱的盐水工段有不少设备就采用碳钢材料。当然为了增加寿命可以采用内部涂漆、衬胶等。 有条件可以采用双相钢,钛材等。 而且钢材的抗拉强度不要太高,最便宜的还是内壁衬胶,也是一个不错的方法。我们的盐酸罐就是这种方法。 当然其温度压力也有要求。 脱硫行业中会用一些254SMO,Al6XN,SAF2507,等,不重要的地方也可以衬胶 我同意六楼的观点,我们买的泵基本上是2605

三:氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。在海水环境下不锈钢的 使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。对这些局部腐蚀的抑制,已知增加Cr和Mo,奥氏体系不锈钢和双相钢,特别是添加N是 有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀!以下钢种供参考: 高强度耐海水腐蚀马氏体时效不锈钢 00Cr16Ni6Mo3Cu1N 高强度耐海水腐蚀不锈钢 00Cr26Ni6Mo4CuTiAl 耐海水不锈钢Yus270(20Cr-18Ni-6Mo-0.2N) 管道中氯离子含量高是不是会对管道产生腐蚀,这个过程是怎样的 是什么和什么发生反应?介绍的详细一点谢谢了 最佳答案 不一定是酸性才腐蚀,这种问题我以前碰到过——氯离子的应力腐蚀开裂,一般不锈钢对Cl离子比较敏感。建议用“不锈钢”、“ Cl 离子”、 “应力腐蚀”等关键词搜索获取更多资料,也可以寻找这方面的专着,讲述更清楚明白。譬如:

氯离子腐蚀机理及防护

氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为 2 种观点。 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理 在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。

氯离子腐蚀防护

腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力 应力腐蚀失效机理 在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。 ③一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。 压力容器的应力来源: ①外载荷引起的容器外表面的拉应力。 ②压力容器在制造过程中产生的各种残余应力。 生产中对应力腐蚀失效的防护措施控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况千变万化,可按实际情况具体使用。(1)选用耐应力腐蚀材料 (2)控制应力 (3)严格遵守操作规程 工艺操作、工艺条件对压力容器的腐蚀有巨大的影响。因此,必须严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 (4)维修与管理 为保证压力容器长期安全运行,应严格执行有关压力容器方面的条例、法规,对在用压力容器中允许存在的缺陷必须进行复查,及时掌握其在运行中缺陷的发展情况,采取适当的措施,减

氯离子对混凝土性能的影响

氯离子对混凝土性能的影响 钢筋锈蚀是影响混凝土结构耐久性和安全性的重要因素。其中,对近海、沿海地区导致钢筋混凝土结构性能劣化的最普遍、最严重的原因是氯离子侵蚀作用引起的钢筋锈蚀,决定了结构的使用寿命。 随着氯离子对钢筋混凝土结构破坏的影响越来越受到重视,为此我国即将实施的水泥新标准对水泥中氯离子的含量进行了规定:水泥中氯离子含量不大于0.06%。 一、水泥中氯离子含量规定 各国对氯离子含量的规定如下 1、欧洲所有品种小于0.1%。但对于用于预应力场合时,应严格控制。 2、日本普通硅酸盐(相当于我国的P.Ⅰ、P.Ⅱ型水泥)小于0.035%。早强、超早强、中热、低热、抗硫酸盐小于0.02%,其他品种未作规定。 3、中国新标准,要求所有品种水泥中氯离子含量不大于0.06%。 二、混凝土中氯离子的来源 引起钢筋锈蚀的氯离子存在具有广泛性。其主要来源有: 1、混凝土的原材料。如含氯化物的减水剂、滥用海砂、直接用海水搅拌混凝土或掺入的粉煤灰使用海水排湿工艺等。 2、从建筑物所处环境中渗透进入。如海洋环境中的氯离子以海水、海风、海雾等形式渗入,影响沿海地区混凝土结构的使用性能和寿命;冬季向道路、桥梁及城市立交桥等撒盐或盐水化雪防冰,以便交通畅行;还有盐湖和盐碱地、工业环境等。当混凝土中氯离子含量达 1.19kg/m3时,侵蚀已经很严重了。据此,一些国家规定不准在钢筋砼桥面板上喷洒盐水化冰。 三、氯离子对混凝土的侵蚀作用 1、氯离子侵入混凝土的方式 氯离子侵入混凝土的方式主要有 1)扩散作用:氯离子从浓度高的地方向浓度低的地方移动; 2)毛细管作用:含有氯离子的溶液向混凝土内部移动; 3)渗透作用:在水压力作用下,盐水向压力较低的方向移动; 4)电化学迁移:电解质溶液在阴阳极吸附作用下的离子的定向移动。 CI-在混凝土中的侵入过程通常是几种作用共同存在的。但和速度最快的毛细管吸相比,渗透和电化学迁移产生的迁移可以忽略。对特定的条件,其中的一种侵蚀方式是主要的。另外混凝土中氯离子浓度还受到温度、保护层厚度以及CI-和混凝土材料之间产生化学结合和物理吸附的影响。虽然CI-在混凝土材料中的侵入迁移过程非常复杂,但是在许多情况下,尤其是在海洋环境,扩散被认为是最主要的侵入方式。 2、氯离子作用下混凝土结构的破坏分析 1)氯离子引起钢筋侵蚀的机理 在自然环境中,金属铁并不稳定,容易与周围环境发生化合反应,即具有侵蚀的趋势。而混凝土结构是一种多孔体,通常其孔隙中含有大量水泥水解时产生的Ca(OH)2溶液和少量可溶的钙、钾、钠等碱性金属,使得混凝土具有很强的碱性,PH一般为12~13。钢筋在这种环境下,表面生成一层致密的、分子和离子难以穿透的、厚为2~10×10-9m的“钝化膜”(主要成分为Fe2O3和Fe3O4)阻止钢筋发生锈蚀。然而,混凝土结构在使用的过程中,当受材料、环境等因素的影响导致碱性降低。相关研究与实践表明,当PH<11.5时,钝化膜开始不稳定(临界值);当PH<9时,钝化膜逐渐破坏,使钢筋处于活化状态、失去保护作用。氯离子侵蚀作用引起钢筋锈蚀,是一个极为复杂的电化学过程。CI-是极强的阳极活化剂,且

氯离子腐蚀混凝土中钢筋的腐蚀

氯离子腐蚀混凝土中钢筋的腐蚀-第1部分:加速和自然环境下的实验研究 土木与环境工程学院,威特沃特斯兰德大学,Johannesburg,南非 土木工程系,开普顿大学,Rondebosch,南非 摘要: 平行腐蚀试验已经进行了两年,露出210梁(120×130×长375毫米)的一半在实验室加速腐蚀(干湿循环)另一半在海洋潮湿区接受自然腐蚀。实验变量是裂缝宽度(0,初始裂缝,0.4、0.7毫米),覆盖面C(20,40毫米),粘结剂类型(PC、PC/矿渣,PC / FA)和水胶比(0.40,0.55)。结果表明,腐蚀速率(icorr)受以下方式实验变量的影响:腐蚀随裂缝宽度的增加而增加,并随着混凝土的质量和覆盖深度的增加而降低。研究结果还显示,混凝土在野外环境下的自然腐蚀的腐蚀性能不能推断出其在实验室加速腐蚀的性能。其他因素,如腐蚀进程也应考虑在内。 关键词: 腐蚀速率预测,氯离子侵蚀,加速腐蚀,自然腐蚀,腐蚀,混凝土裂痕 1 引言 钢筋锈蚀是温度、海洋和工业环境中钢筋混凝土结构的主要破坏机制之一。对于投资者和工程师来说,它已成为一个主要的耐久性问题。如果不减弱这种侵蚀性,它会加速钢筋混凝土结构的恶化,可能会导致一系列相关的严重后果,包括但不限于开裂和混凝土保护层剥落,钢筋截面面积损失,降解的钢-混凝土界面粘结,最终减少钢筋混凝土结构的使用寿命。另外在维护、修理或更换时,需要花费很高的费用,而且会对害公共安全有威胁。即使在钢筋混凝土结构中钢筋锈蚀的主要因素是二氧化碳入口(碳化引起的)或氯(氯离子引起的),后者是在钢筋混凝土结构中钢筋锈蚀的主要原因。值得注意的是,氯离子引起的腐蚀对所研究的结构造成的损害是比较大的,并在一个相对较短的时间内(在结构满足其目标服务寿命),有可能成为最终导致失败的因素(根据预先定义的极限状态)。 2、实验细节 2.1、实验变量和混合比例 平行腐蚀试验露出210束标本(120×130×375毫米)的一半进行加速实验室腐蚀(循环3天用5%的NaCl溶液润湿跟随开普敦4天空气干燥),另一半则被留在的海洋潮汐区自然腐蚀(表湾港)。使用五种不同的混凝土使我们的横梁的W / B比(0.40和0.55),和三种粘结剂(100% CEM I 42.5 N普通波特兰水泥(PC),50 / 50 / 70 / 30的矿渣微粉和PC的PC / FA)。0.55w/b比是不能用于电脑制作 标本。高产量强度直径为10毫米的钢筋嵌入在每个光束。在表1中给出了混凝土配合比的总结和选定的具体性能。其他实验变量包括盖深度(20和40毫米)和裂缝宽度(0,早期裂缝,0.4和0.7毫米)。早期裂缝是指由梁试样三点荷载引起的裂缝,然后卸载。虽然以前的研究已经表明,裂缝宽度≤0.3毫米容易自

氯离子对不锈钢腐蚀原理终审稿)

氯离子对不锈钢腐蚀原 理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

氯离子对不锈钢有多种腐蚀? 1.对钝化膜的破坏? 目前有几种理论,比较权威: 成相膜理论:Cl-半径小,穿透能力强,容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性的化合物,使氧化膜的结构发生变化。 吸附理论:Cl-有很强的可被金属吸附的能力,优先被金属吸附,并从金属表面把氧排掉,氯离子和氧子争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。 2.孔蚀(点蚀)孔蚀失效机理? 在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀)。点蚀一般在静止的介质中容易发生。具有自钝化特性的金属在含有氯离子的介质中,经常发生孔蚀。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。 含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离

子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20μm?~30μm小蚀坑,这些小蚀坑便是孔蚀核。在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。蚀孔内的金属表面处于活化状态电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态———钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。孔内主要发生阳极溶解:Fe→Fe2++2e,Cr→Cr3++3e,Ni→Ni2++2e。 介质呈中性或弱碱性时,孔外的主要反应为:O2+H2O+2e→2OH-。 由于阴、阳两极彼此分离,二次腐蚀产物将在孔口形成,没有多大的保护作用。孔内介质相对于孔外介质呈滞流状态,溶解的金属阳离子不易往外扩,溶解氧也不易扩散进来。由于孔内金属阳离子浓度增加,氯离子迁入以维持电中性,这样就使孔内形成金属氯化物的浓溶液,这种浓溶液可使孔内金属表面继续维持活化状态。又由于氯化物水解的结果,孔内介质酸度增加,使阳极溶解加快,蚀孔进一步发展,孔口介质的pH值逐渐升高,水中的可溶性盐将转化为沉淀物,结果锈层、垢层一起在孔口沉积形成一个闭塞电池。闭塞电池形成后,孔内、外物质交换更加困难,孔内金属氯化物更加浓缩,氯化物水解使介质酸度进一步增加,酸度的增加将使阳极溶解速度进一步加快,蚀孔的高速度深化,可把金属断面蚀穿。这种由闭塞电路引起的孔内酸化从而加速腐蚀的作用称为自催化酸化作用。影响孔蚀的因素很多,金属或合金的性质、表面状态,介质的性质、pH值、温度等

氯离子对钢筋的锈蚀

1氯离子对钢筋的锈蚀 Cl-进入砼中通常有两种途径:一是“混入”,如施工时掺用含氯离子成分的外加剂、施工用水含氯离子、在含盐环境中拌制和浇筑砼等;其二是“渗入”,环境中的氯离子通过砼的宏观、微观缺陷渗入到砼中,并通过长期渗透到达钢筋表面。“混入”现象大都是施工管理的问题;而“渗入”现象则是砼表面裂缝等技术问题,与砼材料的多孔性、密实性、工程质量以及钢筋表面砼保护层厚度,使用现场环境等多种因素相关。 1.1破坏钢筋表面钝化膜,水泥水化的高碱性使砼内钢筋表面产生一层致密的钝化膜。钝化膜只有在高碱性环境中才是稳定的,当pH11.5时,膜层就开始不稳定;当pH9.88时该钝化膜生成困难,或将已经生存的钝化膜逐渐破坏。Cl-是极强的去钝化剂,Cl-进入砼到达钢筋表面吸附于局部钝化膜处时,可使钢筋表面pH值降低到4以下,从而破坏钢筋表面的钝化膜,使钢筋表面逐渐产生腐蚀。 1.2钢筋表面逐渐形成腐蚀电池,如果在大面积的钢筋表面上形成高浓度氯化物,则氯化物所引起的腐蚀可能是均匀性腐蚀,但是在不均质的砼中,常见的是局部坑状腐蚀。腐蚀电池作用的结果是,在钢筋表面产生蚀坑,由于大阴极对应于小阴极,蚀坑发展迅速很快。 1.3加速了去极化作用,Cl-不仅促成了钢筋表面的腐蚀电池,而且加速了电池的作用。砼中Cl-的存在强化了离子通道,降低了阴阳极之间的欧姆电阻,提高了腐蚀电池的效率,从而加速了电化学腐蚀过程,使钢筋承载力大幅度下降。 2提高砼耐久性的技术措施 2.1结构采用高性能混凝土。现今高性能砼以耐久性作为首要指标,就盐渍土及海水工程而言,侧重于高性能、抗渗性、体积稳定性、强度等。目前,国内外在盐渍土工程采用高性能砼的研究与应用极其重视。如荷兰,对已使用3~63年的64座海工结构(其中90%的结构采用磨细矿渣砼)调查发现,结构基本完好,氯离子扩散系数仅为普通砼的1/10~1/15。典型事例为东谢尔德挡潮闸工程,其设计使用寿命是250年,80年不维修,其基本防腐措施就是采用水胶比为0.4的大掺量(65% )磨细矿渣混凝土。在英、美、加、日和中东等国家和地区,也都有类似的成功工程应用实例。国内外有关实验研究和工程实践证明,养护对高性能砼的质量和耐久性十分重要。常温下养护不够,对高性能砼的质量与耐久性的影响程度有时甚至高于普通砼。因此,及时、充分的湿养护是使其获得高强度、低孔隙率和高抗氯离子扩散能力所必不可少的。

水泥中氯离子对钢筋的腐蚀

0氯离子对钢筋腐蚀机理的影响 [摘要]氯化物的侵入是引起混凝土中钢筋腐蚀的最主要原因之 一,氯离子能破坏钢筋表面钝化膜而引起钢筋局部腐蚀,对腐蚀过程具有催化作用。但只有混凝土中氯离子的浓度达到一定的临界值后,钢筋才会发生腐蚀。由 于影响因素多,至今难以确定统一的氯离子浓度临界值。着重阐述了钢筋腐蚀行为和氯离子的去钝化机理、混凝土中氯离子的来源和保护钢筋的措施及其研究进展。 [关键词]钢筋混凝土;钢筋;腐蚀;氯离子 0 前言 钢筋在混凝土高碱性环境中的钝态条件被破坏,便被腐蚀。钢筋钝化膜破坏机理主要是混凝土的碳化和氯化物侵入,这两种因素既影响混凝土孔隙液的pH值,又影响钢筋的电位值,因而直接影响钢筋的稳定性。因氯化物的侵蚀引起钢筋混凝土构筑物破坏而造成重大损失的现象非常严重。北京西直门立交桥于1979年建成投入使用,不到20a钢筋混凝土的腐蚀已十分严重,不得不进行改建。引起西直门立交桥过早破坏的原因是多方面的,但长期在冬季向立交桥撒含氯化物除冰盐引起钢筋腐蚀使立交桥结构受到破坏是突出的因素。台湾四面环海,许多钢筋混凝土构筑物受破坏以及不断发生的“海砂屋”事件,也是氯化物 侵蚀所引起的。目前,中国大陆也存在“海砂屋”现象。氯离子的侵蚀引起钢筋局部腐蚀是最有害的,对此,各国都给予了高度的重视。由于钢筋混凝土结构的复杂性和研究条件的差异,研究结果和结论并不完全一致,许多问题还有待深入研究。本工作主要对国内外氯离子与钢筋腐蚀系的研究进展和防止氯化物侵蚀的措施进行评述。 1 钢筋腐蚀与氯离子去钝化机理 钢筋混凝土是多相、不均质的特殊复杂体系,钢筋表面具有电化学不均匀性,存在着电位较负的阳极区和电位较正的阴极区;一般钢筋表面总处于混凝土孔隙液膜中,即钢筋表面阳极区和阴极区之间存在电解质溶液;由于混凝土的多孔性,其构筑物总是透气和透水的,即通常氧可以通过毛细孔道达到钢筋表面作为氧化剂接受

氯离子腐蚀机理及防护

氯离子腐蚀机理及防护

————————————————————————————————作者:————————————————————————————————日期:

氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为 2 种观点。 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理 在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。

混凝土中氯离子的危害及预防措施知识讲解

混凝土中氯离子的危害及预防措施我国新水泥标准中增加氯离子检验人手,分析了混凝土中氯离子的来源和带来途径。指出了氯离子对混凝土的影响和危害,提出了怎样才能避免混凝土中氯离子超标的几个措施,最后说明了有关各行业应研究怎样才能使混凝土中氯离子的含量最少。这应是有关的技术T 作者的一种责任。 引言 《通用硅酸盐水泥》报批稿,在2006年9月就已完成,随后经过若干次的建材生产与建一E使用的协商讨论,终于2007年底发布,国家标准GB 175—2007《通用硅酸盐水泥》于2008年6月1日实施,这个标准的正式实施,是我国水泥行业的大事,也是建筑施工行业的大事,它涉及到水泥产品的生产、流通、应用、科研与设计的各个方面。尤其是水泥生产企业,无论是产品品种的确定、配料方案的设计、化学分析及物理检验仪器设备的购置、校验、使用,还是生产工艺过程中的技术参数调整与控制,都必须进行必要的变更与适应,只有这样才可能满足新标准的要求,保证新标准的正常平稳过渡。 早在2002年4月1日,国家建没部和同家质检总局就联合发布实施了GB 50010--2002((混凝土结构设计规范》,其3.4耐久性规定的章节中,就对混凝土中最大氯离子的含量作了具体的规定;2004年l2月1日,两部局又联合发布实施了GB/T 50344---2004《建筑结构检测技术标准》,这个标准的附录C,对混凝土中氯离子的含量测定方法作了规范;2006年6月1日国家建设部发布实施了JGJ 52--2006((普

通混凝土用砂、石质量及检验方法标准》,这个标准在3.1.10条中对混凝土用砂的氯离子含量也作了规定。这些标准和规范的配套实施,必将对水泥的生产、使用和建设工程的质量提高起到积极的推动和保证作用。 1 混凝土中氯离子的来源 1.1 水泥中的氯离子 氯盐是廉价而易得的丁业原料,它在水泥生产中具有明显的经济值。它可以作为熟料煅烧的矿化剂,能够降低烧成温度,有利于节能高产;它也是有效的水泥早强剂,不仅使水泥3 d强度提高50%以上,而且可以降低混凝土中水的冰点温度,防止混凝土早期受冻。氯离子的来源主要是原料、燃料、混合材料和外加剂,但由于熟料煅烧过程中,氯离子大部分在高温下挥发而排出窑外,残留在熟料中的氯离子含培极少。如果水泥中的氯离子含量过高,其主要原冈是掺加了混合材料和外加剂(如:工业废渣、助磨剂等)。因此,在我国水泥新标准中增加了“水泥生产中允许加入≤0.5%的助磨剂和水泥中的氯离子含量必须≤O.06%”的要求,这主要是为了保证水泥不对混凝土质量产生过多负面影响。 1.2砂子中的氯离子 在天然砂中,特别是天然海砂中,因为海水中氯离子较高,使得海砂的表面吸附的氯离子也比较多,导致海砂中氯离子的含量较大,如果不加处理用在混凝土中,将会使混凝土中的氯离子含垣增多。 1.3水中的氯离子

相关主题