搜档网
当前位置:搜档网 › 2018年第十五届东南地区数学奥林匹克试题

2018年第十五届东南地区数学奥林匹克试题

2018年第十五届东南地区数学奥林匹克试题
2018年第十五届东南地区数学奥林匹克试题

The 15th China Southeast Mathematical Olympiad

福建,泉州

第一天(2018年7月30日8:00-12:00)

高一年级试卷

1. 设c 是实数,若存在[]1,2x ∈,使得max ,25c c x x x x ?

?+++≥????

.求c 的取值范围.这里{}max ,a b 表示实数a 、b 中的较大者.

2. 在平面直角坐标系中,若某点的横坐标与纵坐标均为有理数,则称该点为有理点,否则称之为无理点.在平面直角坐标系中任作一个五边形,在它的五个顶点中,有理点和无理点哪个多?请证明你的结论.

3. 锐角ABC △内接于⊙O ()AB AC <,BAC ∠的平分线于BC 相交于点T ,AT 的中点是M ,点P 在ABC △内,满足PB PC ⊥.过P 作AP 的垂线,D 、E 是该垂线上不同于P 的两点,满足BD BP =,CE CP =.若直线AO 平分线段DE .证明:直线AO 与AMP △的外接圆相切.

4. 是否存在集合*A N ?,使得对每个正整数n ,{},2,3,,15A n n n n ?恰含有一个元素?证明你的结论.

The 15th China Southeast Mathematical Olympiad

福建,泉州

第二天(2018年7月31日8:00-12:00)

高一年级试卷

5. 设{}n a 为非负实数列.定义21k k i i X a ==∑,212k k k i i Y a i =??=????

∑,1,2,

k =.证明:对任意正整数n ,有100n n n n i i i i X Y Y X ?==≤?

≤∑∑.这里,[]x 表示不超过实数x 的最大整数.

6. 在ABC △中,AB AC =,⊙O 的圆心是边BC 的中点,且与AB 、AC 分别相切于点E 、F .点G 在⊙O 上,使得AG EG ⊥,过G 作⊙O 的切线,与AC 相交于点K .证明:直线BK 平分线段EF .

7. 一次会议共有24人参加,每两人之间或者握手一次,或者不握手.会议结束后发现,总共出现了216次握手,且任意握过手的两个人P 、Q ,在剩下的22人中,恰与P 、Q 之一握过手的不超过10人.一个朋友圈指的是会议中3个两两之间握过手的人所构成的集合.求这24个人中朋友圈个数的最小可能值.

8. 设m 为给定的正整数,对正整数l ,记()()()()4142451m l A l l l =+?+?

?+.证明:存在无穷多个正整数l ,使得55

m l l A 且515m l +不整除l A .并求出满足条件的l 的最小值.

The 15th China Southeast Mathematical Olympiad

福建,泉州

第一天(2018年7月30日8:00-12:00)

高二年级试卷

1. 在平面直角坐标系中,若某点的横坐标与纵坐标均为有理数,则称该点为有理点,否则称之为无理点.在平面直角坐标系中任作一个五边形,在它的五个顶点中,有理点和无理点哪个多?请证明你的结论.

2. 设a 是实数,数列123,,,a a a 满足

()()1110,00n n n

n n a a a a a a a +??≠?==??=?

,1,2,3,n

=

求所有实数a ,使得对任意的正整数n ,均有1n a <.

3. ABC △内接于⊙O ,90ABC ∠>?,M 是BC 的中点, 点P 在ABC △内, 满足PB PC ⊥.过P 作AP 的垂线,D 、E 是该垂线上不同于P 的两点,满足BD BP =,CE CP =.若四边形ADOE 是平行四边形.证明:OPE AMB ∠=∠.

4. 是否存在集合*A N ?,使得对每个正整数n ,{},2,3,,15A n n n n ?恰含有一个元素,且存在无穷多个正整数m ,使得{},2018m m A +??证明你的结论.

The 15th China Southeast Mathematical Olympiad

福建,泉州

第二天(2018年7月31日8:00-12:00)

高二年级试卷

5. 在ABC △中,AB AC =,⊙O 的圆心是边BC 的中点,且与AB 、AC 分别相切于点E 、F .点G 在⊙O 上,使得AG EG ⊥,过G 作⊙O 的切线,与AC 相交于点K .证明:直线BK 平分线段EF .

6. 给定正整数2m ≥.一次会议共有3m 人出席, 每两人之间或者握手一次,或者不握手. 对正整数()31n n m ≤?,若存在其中的n 个人,他们握手的次数分别是1,2,,n ,则称这次会议是“n -有趣的” .若对一切可能发生的n -有趣的会议,总存在三名参与者两两握过手, 求n 的最小值.

7. 对正整数m 、n ,用(),f m n 表示满足xyz x y z m =+++,{}

max ,,x y z n ≤的有序整数组(),,x y z 的个数.问:是否存在正整数m 、n ,使得(),2018f m n =?证明你的结论.

8. 已知正实数1C ≥和为非负实数列{}n a 满足:对任意实数1x ≥,有 []1lg x k k x x x a Cx k =???≤????

∑.

证明:对任意实数1y ≥,有

[]13y k k a Cy =<∑.这里,[]x 表示不超过实数x 的最大整数.

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

历届东南数学奥林匹克试题

目录 2004年东南数学奥林匹克 (2) 2005年东南数学奥林匹克 (4) 2006年东南数学奥林匹克 (6) 2007年东南数学奥林匹克 (9) 2008年东南数学奥林匹克 (11) 2009年东南数学奥林匹克 (14) 2010年东南数学奥林匹克 (16) 2011年东南数学奥林匹克 (18) 2012年东南数学奥林匹克 (20)

2004年东南数学奥林匹克 1.设实数a、b、c满足a2+2b2+3c2=32,求证:3?a+9?b+27?c≥1. 2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作 一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN. 3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. (2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. 4.给定大于2004的正整数n,将1,2,3,?,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值. 5.已知不等式√2(2a+3)ccc(θ?π4)+6ssnθ+ccsθ?2csn2θ<3a+ 6对于θ∈?0,π2?恒成立,求a的取值范围. 6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的 圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD?EE+DE?AE=AD?AE. 7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有 一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进

第十届中国东南地区数学奥林匹克试题解答

第十届东南数学奥林匹克解答 第一天 (2013年7月27日 上午8:00-12:00) 江西 鹰潭 1. 实数,a b 使得方程3 2 0x ax bx a -+-=有三个正实根.求32331 a a b a b -++的 最小值. (杨晓鸣提供) 解 设方程320x ax bx a -+-=的三个正实根分别为123,,x x x ,则由根与系数的关系可得 123122313123,,x x x a x x x x x x b x x x a ++=++==, 故0,0a b >>. 由2123122313()3()x x x x x x x x x ++≥++知:23a b ≥. 又由123a x x x =++≥= a ≥ 32331a ab a b -++23(3)31 a a b a a b -++= +332333113 a a a a a a b ++≥≥=≥++ 当9a b == 综上所述,所求的最小值为. 2. 如图,在ABC ?中,AB AC >,内切圆I 与BC 边切于点D ,AD 交内切圆I 于另一点E ,圆I 的切线EP 交BC 的延长线于点P ,CF 平行PE 交AD 于点 F ,直线BF 交圆I 于点,M N ,点M 在线段BF 上,线段PM 与圆I 交于另一 点Q .证明:ENP ENQ ∠=∠. (张鹏程提供) 证法1 设圆I 与,AC AB 分别切于点,S T 联结,,ST AI IT ,设ST 与AI 交 于点G ,则,I T A T T G A I ⊥⊥,从而有2AG AI AT AD AE ?==?,所以,,,I G E D 四点共圆. 又,IE PE ID PD ⊥⊥,所以,,,I E P D 四点共圆,从而,,,,I G E P D 五点共圆. 所以90IGP IEP ∠=∠=,即IG PG ⊥ ,

高中数学奥林匹克竞赛试题

高中数学奥林匹克竞赛试题 (9月7日上午9:00-11:00) 注意事项:本试卷共18题,满分150分 一、选择题(本大题共6个小题,每小题6分,满分36分) 1.定义在实数集R 上的函数y =f(-x)的反函数是y =f -1(-x),则 (A)y =f(x)是奇函数 (B)y =f(x)是偶函数 (C)y =f(x)既是奇函数,也是偶函数 (D)y =f(x)既不是奇函数,也不是偶函数 2.二次函数y =ax 2+bx +c 的图象如右图所示。记N =|a +b +c|+|2a -b|,M =|a -b +c| +|2a +b|,则 (A)M >N (B)M =N (C)M <N (D)M 、N 的大小关系不能确定 3.在正方体的一个面所在的平面内,任意画一条直线,则与它异 面的正方体的棱的条数是 (A) 4或5或6或7 (B) 4或6或7或8 (C) 6或7或8 (D) 4或5或6 4.ΔABC 中,若(sinA +sinB)(cosA +cosB)=2sinC ,则 (A)ΔABC 是等腰三角形但不一定是直角三角形 (B)ΔABC 是直角三角形但不一定是等腰三角形 (C)ΔABC 既不是等腰三角形也不是直角三角形 (D)ΔABC 既是等腰三角形也是直角三角形 5.ΔABC 中,∠C =90°。若sinA 、sinB 是一元二次方程x 2+px +q =0的两个根,则下列关 系中正确的是 (A)p =q 21+±且q >21- (B)p =q 21+且q >2 1- (C)p =-q 21+且q >21- (D)p =-q 21+且0<q ≤2 1 6.已知A (-7,0)、B (7,0)、C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为 (A)双曲线 (B)椭圆 (C)椭圆的一部分 (D)双曲线的一部分 二、填空题(本大题共6个小题,每小题6分,满分36分) 7. 满足条件{1,2,3}? X ?{1,2,3,4,5,6}的集合X 的个数为____。 8. 函数a |a x |x a )x (f 22-+-=为奇函数的充要条件是____。 9. 在如图所示的六块土地上,种上甲或乙两种蔬菜(可只种其中一种,也可两种都种),要求相邻两块土地上不都种甲种蔬菜,则种蔬菜的方案数共有____种。 10. 定义在R 上的函数y =f(x),它具有下述性质: (i)对任何x ∈R ,都有f(x 3)=f 3(x), (ii)对任何x 1、x 2∈R ,x 1≠x 2,都有f(x 1)≠f(x 2),

2019年第十六届中国东南地区数学奥林匹克高一年级试题答案及评析

1.求最大的实数k ,使得对任意正数a ,b ,均有2()(1)(1)a b ab b kab +++≥. 2.如图,两圆1Γ,2Γ交于A ,B 两点,C ,D 为1Γ上两点,E ,F 为2Γ上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1Γ,2Γ分别交于点()K C ≠,()L F ≠,DE 与1Γ,2Γ分别交于点()M D ≠,()N E ≠. 证明:若ALM ?的外接圆与BKN ?的外接圆相切,则这两个外接圆的半径相等. 3.函数**:f →N N 满足:对任意正整数a ,b ,均有()f ab 整除(){} max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论. 4.将一个25?方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示. 现有一个固定放置的918?方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由.

5.称集合{1928,1929,1930,,1949}S =的一个子集M 为“红色”的子集,若M 中任意两个不同的元素之和均不被4整除.用x ,y 分别表示S 的红色的四元子集的个数,红色的五元子集的个数.试比较x ,y 的大小,并说明理由. 6.设a ,b ,c 为给定的三角形的三边长.若正实数x ,y ,y 满足1x y z ++=,求axy byz czx ++的最大值. 7.设ABCD 为平面内给定的凸四边形.证明:存在一条直线上的四个不同的点P ,Q ,R ,S 和一个正方形A B C D '''',使得点P 在直线AB 与A B ''上,点Q 在直线BC 与B C ''上,点R 在直线CD 与C D ''上,点S 在直线DA 与D A ''上. 8.对于正整数1x >,定义集合()(){},,,mod 2x p S p p x p x v x αααα=≡为的素因子为非负数且,其中()p v x 表示x 的标准分解式中素因子p 的次数,并记()f x 为x S 中所有元素之和.约定()11f =. 今给定正整数m .设正整数数列1a ,2a ,,n a ,满足:对任意整数n m >,()()(){}11max ,1,,n n n n m a f a f a f a m +??=++. (1)证明:存在常数A ,B ()01A <<, 使得当正整数x 有至少两个不同的素因子时,必有()f x Ax B <+; (2)证明:存在正整数Q ,使得对所有*n ∈N ,n a Q <. 第十六届中国东南地区数学奥林匹克 参考答案 1.原不等式 ()() 2221(1)a b b a b b kab ?++++≥ ()221(1)b ab b b kb a ???++++≥ ?? ? 单独考虑左边,左边可以看成是一个a 的函数、b 为参数,那么关于a 取最小值的时候有 ()()2231(1)1(1)(1)b ab b b b b b a ????++++≥++=+ ? ? ????? 于是我们只需要取32(1)k b b ?≤+即可.

2007年第6届中国女子数学奥林匹克(CGMO)试题(含答案)

2007年女子数学奥林匹克 第一天 1.设m 为正整数,如果存在某个正整数n ,使得m 可以表示为n 和n 的正约数个数(包括1和自身)的商,则称m 是“好数”。求证: (1)1,2,…,17都是好数; (2)18不是好数。 2.设△ABC 是锐角三角形,点D 、E 、F 分别在边BC 、CA 、AB 上,线段AD 、BE 、CF 经过△ABC 的外心O 。已知以下六个比值 DC BD 、EA CE 、FB AF 、FA BF 、EC AE 、DB CD 中至少有两个是整数。求证:△ABC 是等腰三角形。 3.设整数)3(>n n ,非负实数.2,,,2121=+++n n a a a a a a 满足 求1 112 1232 221++++++a a a a a a n 的最小值。 4.平面内)3(≥n n 个点组成集合S ,P 是此平面内m 条直线组成的集合,满足S 关于P 中的每一条直线对称。求证:n m ≤,并问等号何时成立? 第二天 5.设D 是△ABC 内的一点,满足∠DAC=∠DCA=30°,∠DBA=60°,E 是边BC 的中 点, F 是边AC 的三等分点,满足AF=2FC 。求证:DE ⊥EF 。 6.已知a 、b 、c ≥0,.1=++c b a 求证: .3)(4 1 2≤++-+ c b c b a 7.给定绝对值都不大于10的整数a 、b 、c ,三次多项式c bx ax x x f +++=2 3)(满足条件32:.0001.0|)32(|+<+问f 是否一定是这个多项式的根?

8.n 个棋手参加象棋比赛,每两个棋手比赛一局。规定:胜者得1分,负者得0分,平局各得0.5分。如果赛后发现任何m 个棋手中都有一个棋手胜了其余m —1个棋手,也有一个棋手输给了其余m —1个棋手,就称此赛况具有性质P (m ). 对给定的)4(≥m m ,求n 的最小值)(m f ,使得对具有性质)(m P 的任何赛况,都有所有n 名棋手的得分各不相同。 综上,最少取出11枚棋子,才可能满足要求。 三、定义集合}.,|1{P k m k m A ∈∈+=+N 由于对任意的k 、1 1, ,++≠∈i k i k P i 且是无理数,则对任意的k 1、P k ∈2和正整数 m 1、m 2, .,1121212211k k m m k m k m ==?+=+ 注意到A 是一个无穷集。现将A 中的元素按从小到大的顺序排成一个无穷数列。对于任意的正整数n ,设此数列中的第n 项为.1+k 接下来确定n 与m 、k 间的关系。 若.1 1,1111++≤+≤+i k m m k m i m 则 由m 1是正整数知,对5,4,3,2,1=i ,满足这个条件的m 1的个数为].1 1[++i k m 从而,).,(]1 1[5 1 k m f i k m n i =++= ∑= 因此,对任意.),(,,,n k m f P k N m N n =∈∈∈++使得存在

最新第36届国际数学奥林匹克试题合集

第36届国际数学奥林匹克试题 1.(保加利亚) 设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的圆相交于X 和Y ,直线XY 交BC 于Z 。若P 为XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N 。试证:AM 、DN 和XY 三线共点。 证法一:*设AM 交直线XY 于点Q ,而DN 交直线XY 于点Q ′(如图95-1,注意:这里只画出了点P 在线段XY 上的情形,其他情况可类似证明)。须证:Q 与Q ′重合。 由于XY 为两圆的根轴,故XY ⊥AD ,而AC 为直径,所以 ∠QMC=∠PZC=90° 进而,Q ,M ,Z ,B 四点共圆。 同理Q ′,N ,Z ,B 四点共圆。 这样,利用圆幂定理,可知 QP ·PZ=MP ·PC=XP ·PY , Q ′P ·PZ=NP ·PB=XP ·PY 。 所以,QP= Q ′P 。而Q 与Q ′都在直线XY 上且在直线AD 同侧,从而,Q 与Q ′重合。命题获证。 分析二* 如图95-2,以XY 为弦的任意圆O , 只需证明当P 确定时,S 也确定。 证法二:设X (0,m ),P (0,y 0), ∠PCA=α, m 、y 0是定值。有2 0.yx x x ctg y x C A c =?-=但α, 则.0 2 αtg y m x A -= 因此,AM 的方程为 ).(0 2 ααtg y m x ctg y ?+=

令0 2,0y m y x s ==得,即点S 的位置取决于点P 的位置,与⊙O 无关,所以AM 、DN 和ZY 三条直线共点。 2.(俄罗斯)设a 、b 、c 为正实数且满足abc=1。试证: .2 3)(1)(1)(1333≥+++++b a c a c b c b a 证法一:**设γβα++=++=++=---------1111111112,2,2b a c a c b c b a , 有.0=++γβα于是, ) (4)(4)(4333b a c a c b c b a +++++ )(4)(4)(4333b a c a b c a c b a b c c b a a b c +++++= 112 111121111211)()()(------------+++++++++++=b a b a c c b c b c b γαβα 21112 1112111111)()()()(2)(2γβαγβα------------+++++++++++=b a a c c b c b a .6132)111(23=?≥++≥abc c b a ∴原不等式成立。 背景资料:陕西省永寿县中学安振平老师在《证明不等式的若干代换技巧》一文中运用“增量代换”给出证法一,还用增量代换法给出第 6届IMO 试题的证明。什么是增量代换法?—— 由α≤+=≥0,,其中令a b a b a 称为增量。运用这种方法来论证问题,我们称为增量代换法。 题1 设c b a ,,是某一三角形三边长。求证: .3)()()(222abc c b a c b a c b a c b a ≤-++-++-+ (第6届IMO 试题) 证明 不失一般性,设.,0,0,0,,,y x z y x z y x c y x b x a >≥≥>++=+==且 abc c b a c b a c b a c b a 3)()()(222--++-++-+则 + ++++-+++++-++++=x z y x y x x z y x y x x z y x y x x [)()]()[()(])()[(222

2009第六届中国东南地区数学奥林匹克试题及解答

第六届中国东南地区数学奥林匹克 第一天 (2009年7月28日 上午8:00-12:00) 江西·南昌 1. 试求满足方程2221262009x xy y -+=的所有整数对(,)x y 。 2. 在凸五边形ABCDE 中,已知AB =DE 、BC =EA 、AB EA ≠,且B 、C 、D 、E 四点共圆。证明:A 、B 、C 、D 四点共圆的充分必要条件是AC =AD 。 3. 设,,x y z R +∈,222(), (), ()a x y z b y z x c z x y =-=-=-。求证: 2222()a b c ab bc ca ++≥++。 4. 在一个圆周上给定十二个红点;求n 的最小值,使得存在以红点为顶点的n 个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边。 第二天 (2009年7月29日 上午8:00-12:00) 江西·南昌 5. 设1、2、3、…、9的所有排列129(,,,)X x x x = 的集合为A ;X A ?∈,记 1239()239f X x x x x =++++ ,{()}M f X X A =∈;求M 。(其中M 表示集合M 的元素个数) 6. 已知O 、I 分别是ABC ?的外接圆和内切圆。证明:过O 上的任意一点D ,都可以作一个三角形DEF ,使得O 、I 分别是DEF ?的外接圆和内切圆。 7. 设(2)(2)(2) (,,)131313x y z y z x z x y f x y z x y y z z x ---= ++++++++, 其中,,0x y z ≥ ,且 1x y z ++=。求(,,)f x y z 的最大值和最小值。 8. 在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T 型五方连块? F E I O B C A D

2016女子数学奥林匹克试题

2016女子数学奥林匹克 (2016年8月12‐8月13日) 1、整数3n ≥,将写有21,2,...,n 的2 n 张卡片放入n 个盒子,每个盒子各有n 张。其后允许操作如下:每次选其中两个盒子,在每个盒子中各取两张卡片放入另一个盒子。证明:总是可以通过有限次操作,使得每个盒子内的n 张卡片上恰好是n 个连续整数。 2、ABC ?的三条边长为,,BC a CA b AB c ===,ω是ABC ?的外接圆。 ①若不含A 的 BC 上有唯一的点P (不同于,B C ),满足 PA PB PC =+,求,,a b c 应该满足的充要条件。 ②P 是①中所述唯一的点,证明:若AP 过BC 的中点, 则60BAC ∠

5、设于数列12,,...a a 的前n 项之和为12...n n S a a a =+++,已知11S =,对于1n ≥都有 21(2)4n n n S S S ++=+。证明:对于任意正整数n ,都有n a ≥。 6、求最大的正整数m ,使得可以在m 行8列的方格表中填入,,,C G M O ,每个单元格填一个字母。使得对于其中任意两行,这两行中最多在一列所填字母相同。 7、I 是锐角ABC ?的内心,AB AC >。BC 边上的高AH 与直线,BI CI 分别交于,P Q 。O 是IPQ ?的外心,,AO BC 交于L ,AIL ?的外接圆与BC 交于,N L ,D 是I 在BC 上的投影,求:BD BN CD CN =。 8、,Q Z 分别代表全体有理数、整数,在坐标平面上,对于任意整数m ,定义 (,),,0,m xy A x y x y Q xy Z m ??=∈≠∈???? 。对于线段MN ,定义()m f MN 为线段MN 上属于m A 的点的个数。求最小的实数λ,使得对于任意直线l ,均存在与l 有关的实数()l β,满足:对于l 上任意两点,M N ,都有20162015()()()f MN f MN l λβ≤?+。

2018年第十五届东南地区数学奥林匹克试题

The 15th China Southeast Mathematical Olympiad 福建,泉州 第一天(2018年7月30日8:00-12:00) 高一年级试卷 1. 设c 是实数,若存在[]1,2x ∈,使得max ,25c c x x x x ? ?+++≥???? .求c 的取值范围.这里{}max ,a b 表示实数a 、b 中的较大者. 2. 在平面直角坐标系中,若某点的横坐标与纵坐标均为有理数,则称该点为有理点,否则称之为无理点.在平面直角坐标系中任作一个五边形,在它的五个顶点中,有理点和无理点哪个多?请证明你的结论. 3. 锐角ABC △内接于⊙O ()AB AC <,BAC ∠的平分线于BC 相交于点T ,AT 的中点是M ,点P 在ABC △内,满足PB PC ⊥.过P 作AP 的垂线,D 、E 是该垂线上不同于P 的两点,满足BD BP =,CE CP =.若直线AO 平分线段DE .证明:直线AO 与AMP △的外接圆相切. 4. 是否存在集合*A N ?,使得对每个正整数n ,{},2,3,,15A n n n n ?恰含有一个元素?证明你的结论.

The 15th China Southeast Mathematical Olympiad 福建,泉州 第二天(2018年7月31日8:00-12:00) 高一年级试卷 5. 设{}n a 为非负实数列.定义21k k i i X a ==∑,212k k k i i Y a i =??=???? ∑,1,2, k =.证明:对任意正整数n ,有100n n n n i i i i X Y Y X ?==≤? ≤∑∑.这里,[]x 表示不超过实数x 的最大整数. 6. 在ABC △中,AB AC =,⊙O 的圆心是边BC 的中点,且与AB 、AC 分别相切于点E 、F .点G 在⊙O 上,使得AG EG ⊥,过G 作⊙O 的切线,与AC 相交于点K .证明:直线BK 平分线段EF . 7. 一次会议共有24人参加,每两人之间或者握手一次,或者不握手.会议结束后发现,总共出现了216次握手,且任意握过手的两个人P 、Q ,在剩下的22人中,恰与P 、Q 之一握过手的不超过10人.一个朋友圈指的是会议中3个两两之间握过手的人所构成的集合.求这24个人中朋友圈个数的最小可能值. 8. 设m 为给定的正整数,对正整数l ,记()()()()4142451m l A l l l =+?+? ?+.证明:存在无穷多个正整数l ,使得55 m l l A 且515m l +不整除l A .并求出满足条件的l 的最小值.

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

最新-2018女子数学奥林匹克 精品

第一天 2018年8月12日上午8∶00~12∶00 长春 我们进行数学竞赛的目的,不仅仅是为了数学而数学,其着眼点还是因为它是一切科学的得力助手,因而提高数学,也为学好其他科学打好基础. ——华罗庚 1. 如图,设点P 在△ABC 的外接圆上,直线CP 和AC 相交于点E ,直线BP 和AC 相交于点F ,边AC 的垂直平分线交边AB 于点J ,边AB 的垂直平分线交边AC 于点K,求证: 2 2BF CE =F ··K AK JE AJ . 2.求方程组 的所有实数解. 3.是否存在这样的凸多面体,它共有8个顶点,12条棱和6 个面,并且其中有4个面,每两个面都有公共棱? 4.求出所有的正实数a ,使得存在正整数n 及n 个互不相交的无限集合1A ,2A ,…,n A 满足1A ∪2A ∪…∪n A =Z ,而且对于每个i A 中的任意两数b >c ,都有b -c ≥i a . ?? ???=++??? ?? +=???? ? ?+=??? ??+1 ,11311215zx yz xy z z y y x x

第二天 2018年8月13日上午8∶00~12∶00 长春 数学竞赛,它对牢固基础知识、发展智力,培养拔尖人才,是一件具有战略意义的活动。 ——华罗庚 5.设正实数x ,y 满足3 x +3y =x -y ,求证: .1422<y x + 6.设正整数n ≥3,如果在平面上有n 个格点,,,?21P P n P 满足:当j i P P 为有理数时,存在k P ,使得k i P P 和k j P P 均为无理数;当j i P P 为无理数时,存在k P ,使得k i P P 和k j P P 均为有理数,那么称n 是“好数”. (1)求最小的好数; (2)问:2018是否为好数? 7.设m ,n 是整数,m >n ≥2,S ={1,2,…,m },T ={1a ,2a …,n a }是S 的一个子集.已知T 中的任两个数都不能同时整除S 中的任何一个数,求证: .11121m n m a a a n ++?++< 8.给定实数a ,b ,a >b >0,将长为a 宽为b 的矩形放入一个正方形内(包含边界),问正方形的 边至少为多长?

2019年第十六届中国东南地区数学奥林匹克高一试题

第十六届中国东南地区数学奥林匹克 1. 求最大的实数k ,使得对任意正数a ,b ,均有()()()2 11a b ab b kab +++≥. 2. 如图,两圆1P ,2P 交于A ,B 两点,C ,D 为1P 上两点,E ,F 为2P 上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1P ,2P 分别交于点()K C ≠,()L F ≠,DE 与1P ,2P 分别交于点()M D ≠,()N E ≠. 证明:若ALM ?的外接圆与BKN ?的外接圆相切,则这两个外接圆的半径相等. 3. 函数:f N N **→满足:对任意正整数a ,b 均有()f ab 整除(){} max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论. 4. 将一个25?方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示. 现有一个固定放置的918?方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由. 第十六届中国东南地区数学奥林匹克 江西g 吉安 高二年级 第一天

2019年7月30日 上午8:00-12:00 1. 对任意实数a ,用[]a 表示不超过a 的最大整数,记{}[] a a a =-.是否存在正整数m ,n 及1n +个实数0x ,1x ,…,n x ,使得0428x =,1928n x =, 110105k k k x x x m +????=++???????? (0k =,1,…,1n -)成立?证明你的结论. 2. 如图,在平行四边形中ABCD ,90BAD ∠≠?,以B 为圆心,BA 为半径的圆与AB ,CB 的延长线分别相交于点E ,F ,以D 为圆心,DA 为半径的圆与AD ,CD 的延长线分别相交于点M ,N ,直线EN ,FM 相交于点G ,直线AG ,ME 相交于点T ,直线EN 与圆D 相交于点()P N ≠,直线MF 与圆B 相交于点()Q F ≠.证明:G ,P ,T ,Q 四点共圆. 3. 今有n 人排成一行,自左至右按1,2,…,n 的顺序报数,凡序号为平方数者退出队伍;剩下的人自左至右再次按1,2,3,…的顺序重新报数,凡序号为平方数者退出队伍;如此继续.在此过程中,每个人都将先后从队伍中退出. 用()f n 表示最后一个退出队伍的人在最初报数时的序号.求()f n 的表达式(用n 表示);特别地,给出()2019f 的值. 4. 在55?矩阵X 中,每个元素为0或1.用,i j x 表示中第行第列的元素(,,…,).考虑的所有行、列及对角线上的元有序数组(共个数组): (,1i x ,,2i x ,...,,5i x ),(,5i x ,,4i x ,...,,1i x ,)(1i =,2, (5) (1,j x ,2,j x ,...,5,j x ),(5,j x ,4,j x ,...,1,j x )(1j =,2, (5) (1,1x ,2,2x ,…,5,5x ,),(5,5x ,4,4x ,…,1,1x ), (1,5x ,2,4x ,…,5,1x ),(5,1x ,4,2x ,…,1,5x ). 若这些数组两两不同,求矩阵X 中所有元素之和的可能值.

中国数学奥林匹克试题及解答

一、 实数12,,,n a a a L 满足120n a a a +++=L ,求证: () 1 2 2 111 max ()3 n k i i k n i n a a a -+≤≤=≤-∑. 证明 只需对任意1k n ≤≤,证明不等式成立即可. 记1,1,2,,1k k k d a a k n +=-=-L ,则 k k a a =, 1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=----L L , 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++L L , 把上面这n 个等式相加,并利用120n a a a +++=L 可得 11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++=L L . 由Cauchy 不等式可得 ()2 211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------L L 11222111k n k n i i i i i i d ---===???? ≤+ ??????? ∑∑∑ 111222111(1)(21)6n n n i i i i i n n n i d d ---===--?????? ≤= ??? ???????∑∑∑ 31213n i i n d -=??≤ ??? ∑, 所以 ()1 2 211 3 n k i i i n a a a -+=≤-∑. 二、正整数122006,,,a a a L (可以有相同的)使得20051223 2006 ,,,a a a a a a L 两

第五届中国女子数学奥林匹克试题

第五届中国女子数学奥林匹克试题 第一天 2006年8月8日 下午15:30——19:30 乌鲁木齐 中国在国际数学奥林匹克竞赛中,连续多年取得很好的成绩,这项竞赛是高中程度,不 包括微积分,但题目需要思考,我相信我是考不过这些小孩子的,因此有人觉得,好的数学家未必长于这种考试,竞赛胜利者也未必是将来的数学家,这个意见似是而非。数学竞赛大约是百年前在匈牙利开始的;匈牙利产生了同它人口不成比例的许多大数学家。 ——陈省身 一、设a >0,函数 f : (0,+∞) → R 满足f (a )=1.如果对任意正实数x ,y 有 ()()()2a a f x f y f f f xy x y ?? ??+= ? ????? ,①求证: f (x )为常数. 证明: 在①中令x =y =1,得 f 2(1)+f 2(a )=2 f (1), (f (1)-1)2 =0, ∴ f (1)=1。 在①中令y =1,得 f (x )f (1)+f (a x )f (a )=2 f (x ), f (x )=f ( a x ),x >0。 ② 在①中取y =a x ,得 f (x )f (a x )+f (a x )f (x )=2 f (a ), f (x )f ( a x )=1。 ③ 由②,③得:f 2(x )=1,x >0。 在①中取x =y ,得 f 2 )+f 2 )=2 f (t ), ∴ f (t )>0。 故f (x )=1,x >0。 二、设凸四边形ABCD 对角线交于O 点.△OAD ,△OBC 的外接圆交于O ,M 两点,直线 OM 分别交△OAB ,△OCD 的外接圆于T ,S 两点.求证:M 是线段TS 的中点. 证法1: 如图,连接BT ,CS ,MA ,MB ,MC ,MD 。 ∵ ∠BTO =∠BAO ,∠BCO =∠BMO ,

中国东南地区数学奥林匹克合辑

首届中国东南地区数学奥林匹克 第一天 (2004年7月10日 8:00 — 12:00 温州) 一、 设实数a 、b 、c 满足2223 232 a b c ++=,求证:39271a b c ---++≥ 二、 设D 是ABC ?的边BC 上的一点,点P 在线段AD 上,过点D 作一直线分 别与线段AB 、PB 交于点M 、E ,与线段AC 、PC 的延长线交于点F 、N 。如果DE=DF ,求证:DM=DN 三、 (1)是否存在正整数的无穷数列{}n a ,使得对任意的正整数n 都有 2122n n n a a a ++≥。 (2)是否存在正无理数的无穷数列{}n a ,使得对任意的正整数n 都有 2122n n n a a a ++≥。 四、 给定大于2004的正整数n ,将1、2、3、…、2n 分别填入n ×n 棋盘(由n 行n 列方格构成)的方格中,使每个方格恰有一个数。如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”。求棋盘中“优格”个数的最大值。 第二天 (2004年7月11日 8:00 — 12:00 温州) 五、 已知不等式 6 2(23)cos()2sin 2364sin cos a a πθθθθ +-+-<++对于 0,2πθ?? ∈???? 恒成立,求a 的取值范围。 六、 设点D 为等腰ABC ?的底边BC 上一点,F 为过A 、D 、C 三点的圆在ABC ?内的弧上一点,过B 、D 、F 三点的圆与边AB 交于点E 。求证: CD EF DF AE BD AF ?+?=? 七、 n 支球队要举行主客场双循环比赛(每两支球队比赛两场,各有一场主场 比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛。但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛。如果4周内能够完成全部比赛,求n 的最大值。 注:A 、B 两队在A 方场地举行的比赛,称为A 的主场比赛,B 的客场比赛。 八、 求满足 0x y y z z u x y y z z u ---++>+++,且110x y z u ≤≤、、、的所有四元有序整数组(,,,x y z u )的个数。

历届女子数学奥林匹克试题

目录 2002年女子数学奥林匹克 (1) 2003年女子数学奥林匹克 (3) 2004年女子数学奥林匹克 (5) 2005年女子数学奥林匹克 (7) 2006年女子数学奥林匹克 (9) 2007年女子数学奥林匹克 (11) 2008年女子数学奥林匹克 (13) 2009年女子数学奥林匹克 (16) 2010年女子数学奥林匹克 (19) 2011年女子数学奥林匹克 (21) 2012年女子数学奥林匹克 (24)

2002年女子数学奥林匹克 1.求出所有的正整数n,使得20n+2能整除2003n+200 2. 2.夏令营有3n(n是正整数)位女同学参加,每天都有3位女同学担任执勤工作.夏令营结束时,发现这3n位女同学中的任何两位,在同一天担任执勤工作恰好是一次. (1)问:当n=3时,是否存在满足题意的安排?证明你的结论;(2)求证:n是奇数. 3.试求出所有的正整数k,使得对任意满足不等式 k(aa+ab+ba)>5(a2+a2+b2) 4.⊙O1和⊙O2相交于B、C两点,且BC是⊙O1的直径.过点C作⊙O1的切线,交⊙O2于另一点A,连结AB,交⊙O1于另一点E,连结CE并延长,交⊙O2于点F.设点H为线段AF内的任意一点,连结HE并延长,交⊙O1于点G,连结BG并延长,与AC的延长线交于点D.求证:AA AH=AA AC. 5.设P1,P2,?,P n(n≥2)是1,2,?,n的任意一个排列.求证: 1P 1+P2+1P2+P3+?+1P n?2+P n?1+1P n?1+P n>n?1n+2. 6.求所有的正整数对(x,y),满足x y=y x?y. 7.锐角△ABC的三条高分别为AD、BE、CF.求证:△DEF的周长不超过△ABC周长的一半. 8.设A1,A2,?,A8是平面上任意取定的8个点,对平面上任意取定的一条有向直线l,设A1,A2,?,A8在该直线上的摄影分别是

中国女子数学奥林匹克(CGMO)第10届(2011)解答

2011女子数学奥林匹克 2011年8月1日 上午8:00 ~ 12:00广东 深圳市第三高级中学 1.求出所有的正整数n ,使得关于,x y 的方程 111x y n += 恰有2011组满足x y ≤的正整数解(,)x y . 解:由题设,20()()xy nx ny x n y n n --=?--=.所以,除了x=y=2n 外,x n -取2n 的小于n 的正约数,就可得一组满足条件的正整数解(x , y ).故2n 的小于n 的正约数恰好为2010. 设1 1k k n p p α α= ,其中1,,k p p 是互不相同的素数,1,,k αα 是非负整数.故2n 的 小于n 的正约数个数为 1(21)(21)1 2 k αα++- , 故1(21)(21)4021k αα++= . 由于4021是素数,所以1k =,1214021α+=,12010α=. 所以,2010n p =,其中p 是素数.

2.如图,四边形ABCD的对角线AC与BD相交于点E,边AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q.若M F C D N F AB ?=?且DQ BP AQ CP ?=?,求证:PQ BC ⊥. 证明:连接AF、BF、CF、DF.由题目条件可知△AFB和△CFD都是等腰三角形,FM 和FN分别为这两个等腰三角形底边上的高.由M F C D N F AB ?=?,知△AFB∽△DFC,从而∠AFB=∠CFD,∠FAB=∠FDC. 由∠AFB=∠CFD可得∠BFD=∠CFA,又因FB=FA,FD=FC,所以△BFD≌△AFC.由此可得∠FAC=∠FBD,∠FCA=∠FDB.从而A、B、F、E四点共圆,C、D、E、F四点共圆. 由上可得∠FEB=∠FAB=∠FDC=∠FEC,即直线EP是∠BEC的角平分线,从而EB/EC=BP/CP.同理,ED/EA=QD/AQ.由于DQ BP AQ CP ?=?,所以EB ED EC EA ?=?.由此可得ABCD为圆内接四边形,且点F为其外接圆的圆心.这时,因为 ∠EBC=1 2∠DFC=1 2 ∠AFB=∠ECB,所以E P B C ⊥. Q P M N F E D C B A A B C D E F N M P Q

相关主题