搜档网
当前位置:搜档网 › 待机功耗的测试方法

待机功耗的测试方法

待机功耗的测试方法
待机功耗的测试方法

待机功耗的测试方法

一,接线方法---请注意接线不同会很大程度影响测试结果

接线1接线2

本身待机功耗的电流非常小,所以电流测试的误差是影响最终的测试结果。所以经过和认证机构的沟通,电流表内置即接线②是普遍采用的一种接线方式。

仪器的设定

二,

仪器前端电流输入有两个接口选择,在测试小的待机功耗时候请选择1A黄色输入端子,这样可以测试最小几十个uA的小电流.

仪器设定步骤:

1.选择分流器shunt及设定不归零显示。

2.

如果你想设定

待机功耗数据

更新时间

无功功率的测量方法

四种相位的测量方法(无功功率) 一、无功功率概念的历史发展 最早的无功功率概念是建立在单相正弦交流信号的基础上。 设某线路的电压 ,电流,则 有功功率为 ,无功功率为。U 、I,分别为电压与电流的有效值。 随着半导体行业和电力工业的发展,各种整流器件、换流设备以及其他非线性负载大量安装与电力系统中,使原有的无功功率定义在工程运用中非常不方便。 现在人们对正弦信号无功功率有了新的理解。 假设某单相线路的电压为 ,电流为,则将按照与平行和垂直两个方向分解为与,那么与的积即为无功功率。 二、无功功率的测量方法 1、替代法 主要使用于无功功率变送器中,用于测量三相平衡电路的无功功率。当三相电路严格平衡对称时,此方法不存在原理性误差。在不对称与存在多谐波的情况下,此方法不适用。 2、电子移相测量法(简称模拟移相法) 多用于比较高级的综合仪器中(多用数字表) 根据三角公式变换??sin 90-cos =?)(,从而把无功功率测量转化为有功功率测量,即转化为求两个向量的内积)(???=??=90-cos U I sin U I Q ??。这已经可以比较方便的测量了。 理想情况下电子移相并不存在原理性误差。但在工程上电容与电阻是实际元件,其值及相应的效应与理想值差距巨大,所以效果并不理想。 3、数字移相测量法 在一个周期内对三相电压、三相电流均匀采样24点至64点(因生产厂家所生产的设备不同而异),然后用电压采样值乘以滞后90度点的电流采样值,做积分运算从而得到一个周期内的平均无功功率 N N N N /)j 4/(i u )j 4/(i u )j 4/(i u Q N 1j C Cj B Bj A Aj ∑=+?++?++?=)( 式中 j ——代表第j 个采样点 N ——代表一个周期的采样点数,N/4代表1/4个周期 从原理上讲,不存在理论误差。该方法的问题主要在于数字移相的适用性。当被测量是单纯的三相正弦信号,可以通过控制采样点数及其均匀的程度来实现精密的数字移相。但是如果被测信号不是严格的正弦波,有谐波含量、则数字移相就要出现误差。原因在于,数字移相90度是按基波计算的,对于三次谐波而言,则相当于移了270度,对于五次谐波而言,相当于移相90度。所以此时的无功功率测量存在着各次谐波造成的误差。 )?+=wt sin(2u U )?+=wt sin(I 2i ?cos UI P =?sin UI Q =→U →I →I →U →1I →2I →U →2I

声功率sound power level

声功率 Sound Power Level 声功率定义及概述 声功率是声源单位时间内向外辐射的声能。以往使用声压值(sound pressure level)来描述产品、环境或噪音量大小的指标最为常见,但以此作为描述机器或者产品的噪音放射特性并不足够,主要是声压级会因为音源与测量位置变化而不同。若以声功率作为噪音辐射的标准则会避开这些变化,因为它是一个绝对的参数,是一个定值。在产品噪音量测上,声功率已经成为最为广泛的要求之一。 声功率的量测方法与标准 一般量测声功率的方法有两种,第一种是利用声压值计算声功率,量测一般在自由音场中进行;另一种用量测声强来计算声功率。应用最广泛的还是在自由音场量测声功率,此种方法常用ISO标准有ISO3745:精密等级,测试环境为全无响室或半无响室;ISO3744:工程等级,测试环境接近自由音场;ISO3746:调查等级,测试环境无特殊要求。ISO3744为规范音源于反射表面上接近自由音场环境,其内容说明如下: ●噪音源类型: 室内或室外的任一种音源形式都可适用。 ●用语解释 a.量测表面measurement surface: 包围待测物的麦克风位置所形成的假象面。 b.表面声压值surface sound pressure level 在量测表面上所有麦克风位置的声压时间平均值 c.参考矩形 包覆音源的假象表面所形成的做小平行六面体 d.音源特征长度: 参考矩形对角线长度的一般,当参考音源放置在一个反射表面上,其特征长度如下图。

图一:特征长度计算方式 ●频率范围 频率范围包含八度音频宽中心频率125Hz 至8KHz。 ●测量仪器 麦克风需要符合ISC60651等级I的规定,至少每两年校正一次。 若要量测八度音及1/3八度音频宽,滤波器需要符合IEC61260 ●测试环境 测试环境可于平坦的室外或是具有反射地面、接近自由场的室内。量测时需要确认周围环境对麦克风产生的不利影响,如:强电场或是磁场,风,高低温度。 ISO3744附录A中的环境指标K2作为测试环境是否符合规范,(K2的A加权总值)≤2dB为判断条件,其附录A也详细说明的估值方法。 ●选择测量表面 测量表面可以为半球形或者矩形。量测表面为半球形是,其半径为r;量测表面为矩形行,其量测距离d为两表面之间的距离。 a.半球形量测表面,我们只要介绍待测物放置于一个反射面,其测试表面面积 S=如下:

功率测量的方法

热电偶法 热电偶是由两种小同的金属材料组成的。如果把热电偶的热节点置于微波电磁场中,使之直接吸收微波功率,热节点的温度便上升,并由热电偶检测出温度差,该温差热电势便可作为微波功率的量度。用这种原理设计成的功率计称为热电偶式功率计。又因功率测量中热电偶是做成薄膜形式的,故又叫薄膜热电偶式功率计。 热电偶式功率计由两部分组成:一个用于能量转换的薄膜热电偶座,它将微波能量转化为电动势,另一个是高灵敏度的直流放大器,用来检测热电动势。 早期的薄膜热电偶式功率计的热电偶是用铋.锑金属薄膜制成的,这种热电偶的结构示意图如图2-8所示。图中所示的结构用于同轴功率座。热电偶的节点al和a2置于同轴传输线的高频电磁场,节点b2,b1,b3分别置于同轴线的内、外导体上,它的温度保持不变。当微波功率未输入时,热电堆节点之间没有温差,因而没有输出。当微波功率输入时,通过媒质基体的电容耦合,传输到铋-锑薄膜元件,由帕尔帖效应,在a1,a2节点的温度升高,这就与节点bl,b2,b3产生温差,由温差形成热电势,即贝克塞效应。由于这里的热电堆是串联的,因此,总电势等于每对的和。由于热电偶元件可以制成极薄的片状,因此功率灵敏度较高,动态范围也很宽。 功率指示器是一个高灵敏度的直流放大器,图2-9所示为其原理图。热电偶产生的热电势经斩波器转换成交流电压,前置放大器提供了大约60dB的增益。交流信号放大后进入解调器。解调后的输出信号与功率座吸收的微波功率成正比。为了便于修正功率指示器读数,仪器的读数设有“校准系数开关”,改变其位置,就可以使直流放大器的增益随之变化,从而使指示器得到修正。 薄膜热电偶式功率计具有响应速度快,灵敏度高、动态范罔宽、噪声低和零点漂移小等突出优点,适用于多种场合下的功率测量。它的缺点是过载能力差。此外,由于它的寄 牛电抗大,要使这种同轴功率座工作到18GHz以上是很困难的。1973年出现了半导体薄膜热电偶式功率计,它的工作原理同传统的铋一锑薄膜热电偶式功率计相同,但在热偶材料和功率座的结构上做了大的改进。它是在一个0.76mm平方大小的硅片上集成了两个热电 偶。每个热电偶的电阻为100Ω,它们对高频是并联的而对直流是串联的,其等效电路如图2-10所示。 为了使0.76mm平方人小的集成式双热电偶芯片与同轴传输线的阻抗相匹配,用共面传输线将它与同轴线相连接,共面线通过一段渐变线过渡与热电偶相接。这种结构保证了热电偶与 同轴线之间的良好阻抗匹配,从而使功率座的驻波比在0.01~18GHz频率范围内小于1.4。为了不使热电偶输出的微弱信号受到干扰,直流放大器的斩波器和前置放大器置于功率座内,然后用电缆与放大器连接。这种功率指示器实现了数字化读数和自动化操作,不仅能通过指示器面板上的键盘实现人机对话式操作,还具有信息存储和数据处理能力,从而能够采取某些措施消除和修正误差,提高了测量准确度。 热敏电阻法 热敏电阻是一种具有负温度系数的电阻元件,当它的温度升高时,电阻值就变小。由于它对温度非常敏感,因此被广泛的用于微瓦和毫瓦级的功率测量中。热敏电阻大都为珠形,其直径约为0.05~0.5mm,但也有杆形的。早期使用的热敏电阻元件大多用玻璃壳封装。

机床电器噪声的限值及测定方法

机床电器噪声的限值及测定方法 自 2000-3-1 起执行 前言 本标准是对ZB K30 002—90《机床电器噪声的限值及测定方法》的修订。 本标准与ZB K30 002—90相比,主要技术内容改变如下: ——适用范围扩大,标准前版中的接触器额定电流至80A,目前行业中接触器生产已至630A,因此,将标准前版中的“小容量接触器”修订为“机电式接触器”,同时取消了额定电流上限。本标准适用范围中增加了“电动机起动器”类产品。本标准将“牵引电磁铁”改变为“交流电磁铁”; ——修改了某些产品的噪声极限值; ——删除测定方法中不适应部分,保留的部分进行细化,使之不需查阅其他标准即可读懂。同时,明确了常规测定方法。 本标准自实施之日起代替ZB K30 002—90。 本标准的附录A是标准的附录。 本标准的附录B和附录C都是提示的附录。 本标准由成都机床电器研究所提出并归口。 本标准负责起草单位:天津第二机床电器厂、浙江耀华集团公司。 本标准主要起草人:童骊、何建国、何建荣、郝忠敬。 1 范围 本标准规定了机床电器正常运行中噪声声功率级的极限值及其测定方法。 本标准适用于交流50Hz或60Hz,额定工作电压660V及以下的机电式接触器、电动机起动器、接触器式继电器及交流电磁铁(以下简称电器)。当单台电器的电磁系统在正常闭合状态下,噪声的极限值及测定方法。 本标准不适用于电器的电磁系统闭合或释放时产生的撞击噪声的极限值及测定。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2900.1—1992 电工术语基本术语 GB/T 2900.18—1992 电工术语低压电器 GB/T 3102.7—1993 声学的量和单位 GB/T 3238—1982 声学量的级及其基准值 GB/T 3785—1983 声级计的电、声性能及测试方法 GB/T 3947—1996 声学名词术语 GB/T 5226.1—1996 工业机械电气设备第一部分:通用技术条件 GB/T 14048.1—1993 低压开关设备和控制设备总则

光功率计的使用说明

光功率计的具体说明 深圳中视同创光钎通信 光功率计使用说明书 概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。技术条件 性能指标: a.光波长范围:850 ~1550 nm ,b.光功率测量范围:-70 ~+10 dBm,c.显示分辨率:0.01 dB,d.准确度: ±5%(-70 ~+3 dBm ),非线性:≤ 4%(-70 ~+3 dBm )e.环境条件:工作温度 0 ~55℃,工作湿度≤ 85%,f.电源: AC 220伏/50Hz ±10% 基本功能: a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量处理, 波长校 准; 操作 将后面板上电源线连接好,电源开关置“ON” 。仪器开始自检,点亮所有的发光器件,然后进入初始状态。仪器的初始状态如下: a.測量方式:dBm;b.測量波长:1310 nm;c.量程(RH):自动方式;d.调零(Z ERO):关;e.平均(AVG):关。 测量准备 1).开机后预热半小时。若对測量要求不高,预热几分钟就行了; 2).调零 调零主要是消除光探测器的残余暗电流及弱背景光等噪声功率的影响。调零时,输入口必须完全遮光(注意:塑料保护盖不能完全遮光)。也可以在弱背景光下调零,但是,背景光功率值不能超过最小量程值的一半; 调零时,只需按一下“ZERO”键便可自动进行。调零过程中,“ZERO”和“RH”鍵上方指示器发光,面板上除波长设定键“λ SET”及测量键“MEAS”外,其余控制键不起作用,直到调零结束,指示器不发光,各控制键恢复常态。 3).设定波长 开机后,仪器自动设定为1310(nm) 波长。要改变测量波长,按“λ SET”键,其上方指示器发光,此时,“数码显示窗”(10)显示其对应的波长数(nm),每按一次该键,改变一个选定波长,同时在“数码显示窗”(10)显示出来,其值可以在850、980、1300、1310、1 480和1550(nm)之间循环,按“MEAS”键后便选定了最后显示的波长,同时转入测量状态。 4).将FC-PC型測试光缆连接线接好。 测量 1).一般测量 仪器在测量状态下,可以根据使用者的习惯和测试特点选择测量数据的显示方式为“dBm”

光功率测量方法

光功率测量方法与光功率计的设计 1. 设计目的 : 光功率的概念,光功率的测量方法 ;参考光功率计的设计原则进行简易光功率计 的设计。 2. 光纤光功率的测量方法: 光探测器能够感受入射到光敏面上的光功率, 并把 光功率转换成相应的电流。 目 前,光纤通信系统中测量光功率的探测器件主要是本征型 PN 结光电二极管、 PIN 结光电二极管或 APD 雪崩二极管等器件,其中后两种因为速度快而被广泛应用 于光通信设备的测量系统中,尽管 APD 管具有很高的内增益,且速度快,但是 由于它必须在很高偏置电压下才能发挥其优势,而 PIN 光电二极管除配置电压 低外还有对温度的影响比较小等优点, 而被广泛应用。 光电二极管受制备的材料 影响很大,不同材料制成的 PIN 光电二极管的光谱响应特性不同,硅材料制成 的光电二极管波长范围为400~1000nm,而用InGaAs 材料制成的光电二极管能 够检测 800~1700的红外辐射,因此常用此方法测量。 3, 光纤光功率计的设计: 测量光功率是光纤通信测量一个重要步骤, 测量光功率有热学法和光电法和 其他的特殊方法。 由于我们所学知识的限制, 我们通过自己所熟悉的光电法来实 现功率计的制作。 光电法就是用光电检测器检测光功率, 设计中使用PIN 光电二极管作为光电 检测器。实质上是测量PIN 在受光辐射后产生的微弱电流,根据光功率 P 与PIN 生成电流 I 的关系式 ; I=RP 此电流与入射到光敏面上的光功率成正比, R 为光电检测器的响应度。检测到的 电流经过基本的滤噪电路的去噪后, 再经过 A/D 转换模块, 把模拟的电信号转化 成数字信号通过数码管显示出来。因此,光功率计实际上是光电检测器 大去噪电路、 A/D 转换电路、数字显示电路这四个模块的结合。 测量光功率是光纤通信测量一个重要步骤, 测量光功率有热学法和光电法和 其他的特殊方法。 由于我们所学知识的限制, 我们通过自己所熟悉的光电法来实 现功率计的制作。 光电法就是用光电检测器检测光功率, 设计中使用PIN 光电二极管作为光电 检测器。实质上是测量PIN 在受光辐射后产生的微弱电流,根据光功率 P 与PIN 生成电流 I 的关系式 ; I=RP 此电流与入射到光敏面上的光功率成正比, R 为光电检测器的响应度。检测到的 电流经过基本的滤噪电路的去噪后, 再经过 A/D 转换模块, 把模拟的电信号转化 成数字信号通过数码管显示出来。因此,光功率计实际上是光电检测器 大去噪电路、 A/D 转换电路、数字显示电路这四个模块的结合 。 PIN 、放 PIN 、放

光功率计使用说明

ON/OFF 为关闭或接通电源入/Select 按键一次则显示另一个设置波长,设置波长可往复顺序循环。 W/dBm 主机开机后以dBm为单位显示,按键后在W和dBm 之间转换。 Ref 按Ref键,将测量值转换成相对差值以dB为单位显示。 ... 光功率计的使用要和光源配合使用,要想知道光源发出的光是多少个DB,就用一条尾纤的A端链接光源B端连接光功率计计,显示在光功率计的数值,就是光源发出的光是多少个DB,一般光源发出的光是7个DB左右。 值得注意的是光源和光功率计要选择同样的波长测试,例如:光源选择的是1310nm,光功率计要选择同样的。 但若要光缆发生故障时,因设备还在发光,一般不要用OTDR测试,需要注意设备与OTDR发出的同样的光,有可能把设备或者OTDR毁坏,要用光功率计测试,OTDR一般测试备用纤芯,因为主要还要看在用纤芯的好坏,就需要先把一条尾纤连接光功率计与在用纤芯,看是否能受到光,收到光是多少个DB。 一般基站小于36DB或者更小,就达到最大值了,若是一般的直放站就要10个DB左右。 若是监控、光纤上网等一般需要数据的,还要更小,因为怕丢数据。 如果购买光源光功率计的话,建议购买3M的。 光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准 技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通 信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围: 850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率: 0.01 dB d.准确度: ±5%(-70 ~+3 dBm ) 非线性:≤ 4%(-70 ~+3 dBm ) e.环境条件: 工作温度 0 ~55℃ 工作湿度≤ 85% f.电源: AC 220伏/50Hz ±10% 2.基本功能 a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量 处理, 波长校准; 三.原理

三种射频功率测量方法

三种射频功率测量方法 自从第一台无线电发射机诞生之日起,工程师们就开始关心射频功率测量问题,直到今天依然是个热门话题。无论是在实验室、产线,还是教学中,功率测量都是必不可少的。 在无线电发展初期,测试工程师所面对的大多数是连续波、调幅、调频、调相或脉冲信号,这些信号都是有规律可循的。例如,连续波(如图1)调频或调相信号的功率测量都是很简单,只需要测量其平均功率;调幅信号(如图2)的功率与其调制深度有关,而脉冲信号的特性是以脉冲宽度和占空比来表达。对于以上这些模拟或模拟调制信号,射频功率测量所关心的基本上都是平均功率和峰值功率。 而现在,特别是20世纪90年代以后,数字通信开始快速发展,射频功率测量的重点也开始有些变化。因为数字调制信号(如图3)的包络无规律可循,其最大和最小电平会随机变化,而且变化量很大。为了描述这类信号的特征,引入了一些新的描述方法,如领道功率、突发功率、通道功率等。很多传统的功率计已经无法满足数字信号功率的测量要求,一部分功率测量的任务已经开始由频谱分析仪来完成。

下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事——在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了唯一性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为W、mW、dBm。 频谱分析仪和功率计都是可以测量射频功率的,其中功率计又分为吸收式功率计与通过式功率计两种。 同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。 射频功率的测量方法有三种: 频谱分析仪测量; 吸收式功率测量; 通过式功率测量。 1. 频谱分析仪测量 频谱分析仪(以下简称频谱仪)是一种基础的频域测试测量仪器,图4为采用数字中频技术频谱仪的基本工作原理。被测信号经过低通滤波器后进入混频器,与同时进入混频器的本地振荡器信号进行混频。由于混频器是非线性器件,所以会产生互调信号,落入滤波器的信号经过ADC,再依次进入中频滤波器,包络检波器,视频滤波器,视频检波器,最后将轨迹显示在屏幕上。 在进行射频功率参数测量时,频谱仪具有以下特点:

光功率计使用说明

光功率计使用说明

ON/OFF 为关闭或接通电源入/Select 按键一次则显示另一个设置波长,设置波长可往复顺序循环。 W/dBm 主机开机后以dBm为单位显示,按键后在W和dBm 之间转换。 Ref 按Ref键,将测量值转换成相对差值以dB为单位显示。 ... 光功率计的使用要和光源配合使用,要想知道光源发出的光是多少个DB,就用一条尾纤的A端链接光源B端连接光功率计计,显示在光功率计的数值,就是光源发出的光是多少个DB,一般光源发出的光是7个DB左右。 值得注意的是光源和光功率计要选择同样的波长测试,例如:光源选择的是1310nm,光功率计要选择同样的。 但若要光缆发生故障时,因设备还在发光,一般不要用OTDR测试,需要注意设备与OTDR发出的同样的光,有可能把设备或者OTDR毁坏,要用光功率计测试,OTDR一般测试备用纤芯,因为主要还要看在用纤芯的好坏,就需要先把一条尾纤连接光功率计与在用纤芯,看是否能受到光,收到光是多少个DB。 一般基站小于36DB或者更小,就达到最大值了,若是一般的直放站就要10个DB左右。 若是监控、光纤上网等一般需要数据的,还要更小,因为怕丢数据。 如果购买光源光功率计的话,建议购买3M的。 光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准 技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通 信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围: 850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率: 0.01 dB d.准确度: ±5%(-70 ~+3 dBm ) 非线性:≤ 4%(-70 ~+3 dBm ) e.环境条件: 工作温度 0 ~55℃ 工作湿度≤ 85% f.电源: AC 220伏/50Hz ±10% 2.基本功能 a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量 处理, 波长校准;

三相电路功率的测量方法

三相电路功率的测量方法 F0403020班 5040309585方轶波 摘要:三相电路功率的测量是三相电路分析的重要内容,本文按三相三线制和三相四线制分类,较详细地讨论了三相电路功率测量的接线问题,总结了两表法和三表法各自的适用范围及功率表读数在不同接线方式下的物理意义,指出了它们的联系与区别。 关键词:三相电路,功率测量 0 引言 本文将围绕测量三相电路功率的两表法和三表法的原理和接线方法进行讨论,指出它们之间的联系与区别,希望对能对同学的理解以及总结归纳有所帮助。 1 对称三相电路功率的测量 1.1 对称三相电路功率的测量 对称三相电路即三相电源对称、三相负载均衡的三相电路。以下分别从三相四线制和三相三线制两种情况讨论。 对三相四线制系统,测三相平均功率的接线如图 1 所示。它的接线特点是每个功率表所接的电压均是以中线N 为参考点,三个功率表W AN,W BN 和W CN 的读数分别为P AN,P BN 和P CN,可用式(1)表示。 P AN=U AN I A cos? P BN=U BN I B cos?(1) P CN=U CN I C cos? 图1 三表法测三相四线制三相负载平均功率的接线示意图 三相的总功率为P = P CN+P BN+P AN。三个表的读数均有明确的物理意义,即P AN,P BN 和P CN 分别表示A 相、B 相和C 相负载各自吸收的平均功率。这就是三表法。这种接线方法是最容易理解的。 实际上,三表法测三相功率不止图 1 所示的一种接线方式,另外还有三种接线方式,如图2 所示,分别称作共A,共B 和共C 接法(与此相对应,图1 中的接法可称作共中线N 接法)。对应每一种接线中的三个表的读数的代数和均表示三相负载吸收的总功率(后面将给出证明)。实际上,因为是对称三相电路,有i N =0 ,所以图2(a),(b)和(c)中的W NA , W NB W NC的读数必为零,在测量时可不接,此时的三表法便简化为两表法。可见,此时的两表法是三表法的特例。当然,这里单个表的读数没有明确的物理意义。 上述四种三表法的接线的特点是每组接线中的三个表所接电压均以同一根线为参考点,即分别是共A, B, C 或N,而电流则分别是非参考线中的电流。功率表接线的极性端如图中所示。

声学 声压法测定噪声源的声功率级 采用包络测面积的简易法1

国际标准ISO3746 声学声压法测定噪声源的声功率级采用包络测面积的简易法 频率范围的问题 中心频率的范围从“25 赫兹to 8 000 赫兹” 到“125赫兹to 8 000 赫兹” 转变 目录 页码 适用范围 (1) 规范参考........................................................... (3) 定义 (3) .声学环境..................................................................................................... .. (4) 仪表装置 (5) 测试下安装和运行的来源 (5) 测量的声音压力等级 (7) 计算A-weighted表面声压级和A-weighted声功率级 (10) 记录信息 (12) 记录信息 (13) 附件A 声学环境的鉴定程序 (14) B 传声器阵列在半球状的测量表面上 (17) C传声器阵列在平行六面体的测量表面上 (21) D 检测的脉冲噪声指南 (26) E 参考文献 (27) 版权所有。除非另有规定,本出版物的任何部分都可以被复制或者使用任何形式或以任何方式,电子或机械,包括影印、缩微胶片,没有出版者书面许可,禁止。国际标准化组织. 序,前言 IS0(国际标准化组织)是一个世界性联盟的国家标准机构(IS0会员团体)。制定国际标准这项工作是IS0技术委员会通过执行的。对已经成立了技术委员会的某个主题感兴趣,这样的成员国才有权派代表参加该委员会。国际组织、政府和非政府、联络ISO,也都参加这项工作。IS0与国际电工委员会(IEC)在所有电工技术标准化事务中密切合作。 被技术委员会采用的国际标准草图需经过技术委员会成员的循环投票。只有超过75%赞成票的草案才能成为一项国际标准。 国际标准IS0 3746是由电器委员会ISO/ TC,声学,噪音,及下属委员会准备的,这个第二版已经修订并取代取消了第一个版本(IS0 3746:19791。 附件A,B和C的是本国际标准不可分割的一部分。附件D、E是供参考。 简介 0.1本国际标准是IS0 3740系列的一种,它利用不同的方法来确定各种机器、设备

光功率计使用说明书

光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围:850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率:0.01 dB d.准确度:±5%(-70 ~+3 dBm )非线性:≤4%(-70 ~+3 dBm )e.环境条件: 工作温度0 ~55℃ 工作湿度≤85% f.电源:AC 220伏/50Hz ±10% 2.基本功能

a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量处理, 波长校准; 三.原理 光功率计由五部分组成, 即光探測器、程控放大器和程控滤波器、A/D转换器、微处理器以及控制面板与数码显示器。 A/D变换器 P I N I/V 程控放大器和滤波器 C P U 控制面板和显示器 被測光由PIN光探测器检测转换为光电流,由后续斩波稳定程控放大器将电流信号转换成电压信号,即实现I/V转换并放大,经程控滤波器滤除斩波附加分量及干扰信号后,送至A/D 转换器,变成相应于输入光功率电平的数字信号,由微处理器(CPU)进行数据处理,再由数码显示器显示其数据。CPU可根据注入光功率的大小自动设置量程状态和滤波器状态,同时,可由面板输入指令(通过CPU)控制各部分完成指定工作。不注入光的情况下,可指令仪器自动调零。 四.使用

测量电功率的特殊方法

测量电功率特殊方法 同学们都熟悉用如图1的方法测量小灯泡的电功率,这是测量电功率 的标准方法,除过这种方法外,还有几种测量电功率得特殊方法,这里就 结合几道考题予以介绍。 例1、要测出一只额定电压为3.8V的小灯泡的额定功率,器材有:电 源(电压恒为6V)、阻值合适的滑动变阻器一个、开关一个、导线若干、电流表一块、电压表一块,其中电流表的量程完好,电压表的量程只有0~3V档可用。请设计电路,并回答:闭合开关,调节滑动变阻器,使电压表的示数达到___V时,小灯泡恰好正常发光。若此时电流表的示数为0.3A,则小灯泡的额定功率为___W。 解析:显然,小灯泡的额定电压3.8V大于电压表的最大量程3V,所以我们不能用电压表直接测量小灯泡两端的电压;但是,由于电源电压已知,我们可考虑通过测量滑动变阻器两端的电压间接测量出小灯泡两端的电压。因为电源电压为6V,小灯 泡的额定电压为3.8V,这时滑动变阻器两端的电压为2.2V,而2.2V正 好小于3V,所以可以这样来测量。因此可得如图2的电路图。然而, 由于电压表测量的是滑动变阻器两端的电压,所以,要测量小灯泡的额 定功率,电压表的示数应为2.2V。而小灯泡的额定功率应为其额定电压 (一定要注意是 3.8V而不是 2.2V)和此时电流的乘积,所以有: 3.0 .1 ? = =。 8.3= W A V P14 UI 可以看出,用这样的电路测量电功率时,当电流表示数变大时电压表示数变小;而当电流表示数变小时电压表示数变大。有时命题者也依此命题,请同学们注意。 例2、在一次测定小灯泡额定功率的实验中,老师给出了如下器材:额定电压为U0的小灯泡、电源(电压未知)、一个阻值为R的电阻、一个滑动变阻器、一只电流表、一只电压表、一个单刀双掷开关和若干导线。实验时不能忽略灯丝的电阻随温度的变化。 ⑴小张同学设计的实验电路图如图3,请你根据这个电路图写出测量小灯泡额定功率的主要步骤和需要测量的物理量(物理量用字母表示)。 ⑵本实验中,小灯泡额定功率的表达式P=_______。 ⑶若在给出的器材中只将其中的一只电流表改为一只电压表,请 你重新设计一个实验电路图,测量小灯泡的额定功率(只画出电路图, 不需要说明测量步骤)。 解析:⑴由于题目中只给了电流表,所以设法使小灯泡两端的电 压等于其额定电压是解决问题的关键。从电路图可以看出,小灯泡与定值电阻并联,它们两端的电压相等,而定值电阻两端的电压为U=I R R,这样,如果将S掷向1时,当电流表的示数为U0/R时,它们两端的电压就为小灯泡的额定电压U0。因此,我们可以这样测量小灯泡的额定功率:a、计算当R两端的电压为U0时,通过它的电流为U0/R;b、S掷向接线柱1,调节滑动变阻器,使电流表的示数为U0/R;c、保持滑动变阻器滑片不动,S掷向接线柱2,读出电流表示数I。 ⑵这一步我们来推导P的表达式:显然,L和R是并联的,当S 接1时,电流表测量的是R的电流,大小为U0/R;当S接2时,电流 表测量的是R和L的总电流I所以,通过L的电流为I-U0/R。而我们 前面已经看到这时L两端的正好是小灯泡的额定电压U0,所以小灯泡

声功率计UPM-DT-1使用说明书

型号:UPM-DT-1 产品概述 操作原理: 测量超声功率的最可靠及重复性最好的方法为辐射力方法(radiant force method)。将被测探头放置到一个位于水介质中的45°的空气支持的锥形靶上,锥形靶连接到一个可以达到0.1毫克分辨率的精密天平上。当声能量作用到锥体时,作用到天平上测压元件的合力直接与总的辐射能量成比例关系。测试罐衬有声音吸收橡胶已防止功率反射。天平可以直接将毫克量值转换为瓦特读数。 分辨率为: UPM-DT-1型号0.002瓦,UPM-DT-1型号0.01瓦。校验UPM-DT系列产品,可以通过在锥形靶臂上放置一个校准砝码来完成(一个1克的砝码等于14.65瓦特)仪器在NIST备有一个可溯源的质量及超声标准,因此仪器可以定期进行再校准及换发新证。 校准超声探头的重要性: 测量超声功率水平非常重要,它可以确定实际的患者辐照(Patient exposure)并将潜在危险最小化。所有的诊断及治疗多普勒吉超声仪器都应该定期进行测试。典型的安全值可以

由声场中最大强度值的点的瞬时强度(称为空间峰值瞬时平均SPTA)进行定义。FDA及AIUM 提供了医疗应用的最大SPTA值准则。典型的SPTA值为,回声探测为10mW/cm2,多普勒仪器为100mW/cm2,治疗应用为3W/cm2。探头的瓦特密度(Watts/cm2)通过测量总的功率输出,除以探头有效截面积进行确定。手册中包含有一个用来对超声性能进行存档和报告的样式表格。 技术参数 UPM DT-10 功率范围 0- 30 Watts 0- 30 Watts 分辨率 ± 2 mW ±10 mW 最小可测量功率 1 mW 10 mW 显示灵敏度 0.001/0.01/0.1 Watt 0.01/0.1/1 Watt 精度 ± 3% + 一位 ± 3% + One Digit 清零方法 自动 自动

三相无功功率的测量方法

三相无功功率的测量方法 发电机及变压器等电气设备的额定容量为S=UI,单位为伏安。在功率因数较低时,即使设备已经满载,但输出的有功功率却很小(因为P=UIcosφ),不仅设备不能很好利用,而且增加了线路损失。因此提高功率因数是挖掘电力系统潜能的一项重要措施。电力工业中,在发电机、配电设备上进行无功功率的测量,可以进一步了解设备的运行情况,以便改进调度工作,降低线路损失和提高设备利用率。测量三相无功功率主要有如下方法。 1. 一表法 在三相电源电压和负载都对称时,可用一只功率表按图4-1联接来测无功功率。 将电流线圈串入任意一相,注意发电机端接向电源侧。电压线圈支路跨接到没接电流线圈的其余两相。根据功率表的原理,并对照图4-1,可知它的读数是与电压线圈两端的电压、通过电流线圈的电流以及两者间的相位差角的余弦cosφ的乘积成正比例的,即P Q=U BC I A cosθ(4-1) 其中θ =ψUBC –ψiA 图4-1 由于uBC与uA间的相位差等于90度(由电路理论知),故有θ=90o-φ式中φ为对称三相负载每一相的功率因数角。在对称情况下UBC IA 可用线电压U1及线电流I1表示,即PQ=U1I1cos(90o-φ )=U1I1sinφ(4-2) 在对称三相电路中,三相负载总的无功功率Q =√3 U1I1sinφ(4-3) ∴ 亦即Q=√3PQ (4-4) 可知用上述方法测量三相无功功率时,将有功功率表的读数乘上√3/2 倍即可。 2. 二表法 用两只功率表或二元三相功率表按图4-2联接,从功率表的作用原理可知,这

时两个功率表的读数之和为 PQ=PQ1=PQ2=2U1I1sinφ(4-5) 较式(4-3) (4-5) 知(4-6) Q=√3PQ/2 图4-2 从上式可见将两功率表读数之和(或二元三相功率表的读数)乘以√3/2,可得到三相负载的无功功率。 3. 三表法 三表法可用于电源电压对称而负载不对称时,三相电路无功功率的测量,其接线如图4-3所示。当三相负载不对称时,三个线电流IA、IB、IC不相等,三个相的功率因数角φA 、φB 、φC 也不相同. 图4-3 因此,三只功率表的读数P1、P2、P3也各不相同,它们分别是:4-3

固定点源声功率测量

固定点源声功率测量 声源的声功率是衡量声源每秒辐射的总声能的量。测量声功率有三种方法:混响室法,消声室或半消声室法,现场法。 ● 混响室法 混响室是一间体积比较大(>180m 3),隔声隔振良好,六个壁面坚实光滑,在测量的声音频率范围内反射系数大于98%的全封闭房间。由于在封闭房间内离源r 处的声压级约为: ?? ????++=R r Q L L W P 44lg 102π 式中,Q 为声源指向性因数,当声源位于中央(空中)、某一壁面中央、两壁交线、三壁交角时,Q 分别为1、2、4、8;R 为房间常数,a a S R -= 1,S 为混响室内总面积,a 则是其平均吸声系数。 当r 足够大,使得R r Q 442<<π时,上式括号中第一项可略去。在混响室中,只要离开声源一定距离,使得声压级不再随r 的增大而明显减少时,就可认为符合要求。在各个位置测得几个混响声压级(由于声场并不能做到完全均匀),求平均值。可由下式求得声源的声功率级: ?? ? ??-=R L L P W 4lg 10 ● 消声室或半消声室法 内壁面装有吸声系数很高(吸声系数在测量频率范围内大于98%)的材料的封闭大房间称为消声室,若地面是坚实反射面的则称为半消声室。注意,对于半消声室,声源须直接置于地面上。声波在消声室内传播和在露天的自由空间传播一样,所以消声室内声场模仿为自由声场。而自由声场中的声功率级与声压级的关系式: ??? ? ??++=c W P S L L P W ρ020lg lg 10 L P 是面积为S 的声源包络面上测得的平均声压级。在空气中,上式最后一项近似为0,所以L W ≈L P +10lgS 。只需对声源假想一个包络面,测出这个包络面上各点的声压级并取平均值,算出包络面的面积,就可由此式算得声源的声功率级。 ● 现场测量法 不搬运声源,在车间中直接测量声源噪声,称为现场测量法。现场测量法又分为直接法和比较法。

光功率计操作及注意事项

光功率计操作及注意事项 一、用途 用于测量绝对光功率或通过一段光纤的光功率相对损耗。是最基本的光纤设备,非常像电子学中的万用表。在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够判断光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤线路传输质量。 二、操作方法 针对用户的具体应用,要选择适合的光功率计,应该关注以下各点: 1、选择最优的探头类型和接口类型 2、比价校准精度和制造校准程序,与你的光纤和接头要求范围相匹配。 3、确定这些型号与你的测量范围和显示分辨率相一致。 4、具备直接插入损耗测量的dB功能。 三、注意事项 光功率的单位是dbm,在光纤收发器或交换机的说明书中有它的发光和接收光功率,通常发光小于0dbm,接收端能够接收的最小光功率称为灵敏度,能接收的最大光功率减去灵敏度的值的单位是db(dbm-dbm=db),为动态范围,光功率减去接收灵敏度是允许的光纤衰耗值。测试时实际的发光功率减去实际接收到的光功率的值就是光纤衰耗(db)。端接收到的光功率最佳值是能接收的最大光功率-(动态

范围/2),每种光收发器和光模块的动态范围不一样,为15-30db左右。 有的说明书会只有发光功率和传输距离两个参数,出的传输距离,大多是0.5db/km。用最小传输距离除以0.5,就是能接收的最大光功率,如果接收的光功率高于这个值,光收发器可能会被烧坏。用最大传输距离除以0.5,就是灵敏度,如果接收的光功率低于这个值,链路可能会不通。 光纤的连接有两种方式,一种是固定连接一种是活动连接,固定连接就是熔接,是用专用设备通过放电,将光纤熔化使两段光纤连接在一起,优点是衰耗小,缺点是操作复杂灵活性差。活动连接是通过连接器,通常在ODF上连接尾纤,优点是操作简单灵活性好,缺点是衰耗大,一般说来一个活动连接的衰耗相当于一公里光纤。光纤的衰耗可以这样估算:包括固定和活动连接,每公里光纤衰耗0.5db,如果活动连接相当少,这个值可以为0.4db,单纯光纤不包括活动连接,可以减少至0.3db,理论值纯光纤为0.2db/km;为保险计大多数情况下以0.5为好。 光纤测试TX与RX必须分别测试,在单纤情况下由于仅使用一纤,所以只需测试一次.

聚焦超声声功率和声场测试实验报告

聚焦超声声功率和声场测试实验报告 【实验目的】 1、掌握辐射力天平法测量声功率的原理及其计算方法。 2、掌握水听器法测量聚焦超声声场的原理及方法。 3、掌握辐射力天平法测量声功率、水听器法测量声场。 【实验设备及仪器】 声学实验水槽、透声薄膜、新鲜离体牛肝组织、生物组织脱气装置、刻度尺、解剖刀、超声声功率计、HIFU 治疗头、HIFU 功率源、HIFU 水处理装置等。 治疗头参数:直径:150mm ,频率: 0.84MHz ,焦距:110mm 。 【实验原理】 声功率的测量采用的是辐射力天平法。辐射力天平法是建立在自由场中的声 波行波作用于障碍物(靶)上的郎之万辐射力与声源声功率成正比例关系的原理 基础之上的。测定靶上所受的辐射力,通过用比例常数计算出声功率。此方法适 用范围已达到25MHz ,在低频范围内,量程可以达到500W 以上。 郎之万辐射压力:声场中随流点一起运动的物体,表面上受到的时间平均压 力与无限远处的静压力之差。它等于声场中流点处平均动能密度和平均位能密度 之和。即流点的能量密度的时间平均值。它与媒质的非线性无关,是由横向尺度 不受限制的平面波产生的。 当使用全吸收靶时,P Fc = (c 为媒质声速);球面聚焦声束(半孔径角m α), 垂直入射全吸收靶时,2/(1cos )m P Fc α=+;聚焦器中间开有圆孔时: ()2/cos cos m mi P Fc αα=+其中 m α 为球面聚焦声束的半孔径角,mi α 为聚焦器 中间的圆孔的半孔径角。本实验采用的换能器为中间开有圆孔的球面聚焦换能 器。 声场特性测量采用水听器法。采用已校准的性能适当的测量水听器,置于水 中声场内测量场点的声压波形及其分布。声场中水听器接收面所在位置的声压 P H (x 、y 、z 、t)可由水听器的输出电压U H (x 、y 、z 、t)得到: P H (x 、y 、z 、t)= U H (x 、y 、z 、t)/M L

声功率测试方法

声功率测试 要测定声源的声功率,首先要测得包围声源的假设球面或半球面侧量表面上的表面声压级,然后计算出声源辐射的声功率级。 自由场法,待测机器放在室外空旷、没有噪声干扰的坚硬地面上或半消声室内,相当于在半自由声场中测试,透声面积为: 表1 ISO颁布的噪声源声功率测试标准 表2 我国颁布的噪声源声功率测试标准 产生自由场的环境可以是消声室或半消声室,以及近似满足自由场条件的室内或户外,因此,所测量的精度有所不同。分为三级:精密法、工程法和简易法,即1级、2级和3级精度,其特征由GB/T 14367规定,见3。表中有几点需要说明:①三种方法都适合各类噪声,如:宽带、窄带、离散频率、稳态、非稳态、

脉冲等;②K 2为对A 计权或频带的环境修正值,等于所测得的声功率级减去标准 声源校准的声功率级;③为背景噪声修正值, 等于被测声源工作期间的测量表面平均声压级减去测量表面平均背景噪声声压级。 表3 我国颁布的噪声源声功率测试标准 0.5dB 10dB (如有可能, 0.4dB 6dB (如有可能, 3dB (如有可能, 10 9 4 必须测量出声源周围固定距离处假想球面上许多点的声压级,球的半径应该使测量点位于远场。测量点的数目不能太少,测得数值之间的最大变化不得超过6dB 左右,否则必须在更多的点上进行测量。 求声源的声功率时,应将假想球面分成与测量点数目相同的面积。如果传声器测点占有的测试球(或半球)的面积相等,可用下式求出表面平均声压级 : 式中 是表面平均声压级; 是第i 次测量所得的频带声压级;N 是测量的 次数。 如果传声器测点所属的测量表面的占有面积不相等时,则可应用下式求表面平均声压级: