搜档网
当前位置:搜档网 › 阻尼器力学性能指标

阻尼器力学性能指标

阻尼器力学性能指标

航站区阻尼器力学性能指标

设计容许位移:±60mm

设计极限速度:0.5m/s

阻尼系数:2000KN(s/m)0.3

阻尼指数:0.3

阻尼力设计值:1400KN

ITC阻尼器力学性能指标

设计容许位移:±40mm

设计极限速度:0.3m/s

阻尼系数:600KN(s/m)0.3

阻尼指数:0.3

阻尼力设计值:350KN

某教学楼应用阻尼器的抗震性能分析

龙源期刊网 https://www.sodocs.net/doc/564957351.html, 某教学楼应用阻尼器的抗震性能分析 作者:徐倩 来源:《建筑与装饰》2016年第06期 摘要传统的抗震结构体系通常是加大结构本身的性能来抵御地震作用,消能减震结构体系是通过给结构添加消能减震装置来耗散地震能量达到抗震目的。黏滞阻尼器具有构造简单、材料经济、环境影响小、便于施工、减震效果明显、对原结构干扰小的优点,目前在很多领域都有应用。 关键词黏滞阻尼器;弹性时程分析;弹塑性时程分析 1 前言 黏滞耗能阻尼器的研发和应用,等于给建筑或桥梁装上了"安全气囊"。在地震来临时,阻尼器最大限度吸收和消耗了地震对建筑结构的冲击能量,大大缓解了地震对建筑结构造成的冲击和破坏。 2 工程概况 小学教学楼2#楼占地1087.68平方米,建筑面积5510.06平方米。本工程抗震设防烈度为8(0.2g),地震分组:第三组,场地类别:Ⅱ类。教学楼的3D模型图如图1所示。 3 确定阻尼器的参数和数量及安装位置和型式 阻尼器的安装位置:楼层平面内的布置遵循“均匀、分散、对称”的原则[1]。阻尼器竖向布置应先对非减震结构进行计算分析,确定层间位移角最大楼层,将阻尼器安装在此楼层处,安装数量根据具体情况而定,然后再对安装了阻尼器的结构进行分析,再将阻尼器安装到此时层间位移角最大楼层,如此循环直到将所有阻尼器安装完毕[2-3]。阻尼器连接单元在模型中的模拟形式如下图2所示,表1 黏滞阻尼器技术参数及布置表: 4 结构弹性时程分析 《建筑抗震设计规范》(GB50011-2010)[4]5.1.2条规定,采用5条天然波2条人工波《建筑抗震设计规范》(GB50011-2010)[4]5.1.2条规定,采用5条天然波2条人工波 在表2和图3. 在ETABS分析中,弹性时程分析采用软件所提供的快速非线性分析(FNA)方法,得出层间位移角表3 。

耗能阻尼器的减振及其在实际工程中的应用

耗能阻尼器的减振及其在实际工程中的应用 摘要:本文介绍了多种阻尼器的力学性能和其优缺点,为不同环境下选用合适的阻尼器减震装置提供方便。 关键词:耗能减震阻尼器工程应用 从动力学观点看,耗能装置的作用相当于增大结构的阻尼,从而减小结构的反应。由于其装置简单、材料经济、减振效果好、使用范围广等特点,在实际结构控制中具有广泛的应用前景。耗能减震装置的种类繁多,其常用的主要有:金属耗能阻尼器、摩擦耗能阻尼器、粘弹性阻尼器和粘滞阻尼器。 1金属耗能阻尼器 金属耗能阻尼器是利用金属不同形式的弹性滞回变形来消耗能量。由于金属在进入塑性状态后具有良好的滞回特性,并在弹塑性滞回变形过程中吸收大量能量,因而被用来制造不同类型和构造的耗能减震器。目前已开发和利用的主要有:扭转梁耗能器、弯曲梁耗能器、U行钢板耗能器、钢棒耗能器、圆环耗能器、双圆环耗能器、加劲圆环耗能器、X型和三角形耗能器等。 金属耗能阻尼器在实际工程中的应用:金属耗能阻尼器中的无粘结支撑在日本、台湾和美国都得到推广应用【1】。低屈服点钢耗能器、蜂窝状耗能器在日本多栋建筑中得到应用【2】。台湾金华休闲购物中心。本工程采用三角形加劲耗能装置,共270组。在地震(PGA=0.39)作用下,最大层间位移也未超过规范规定的0.014rad。潮汕星河大厦。大厦为地下一层,地上原设计为22层。后来在施工过程中业主要求增加3层。为了使加层后的结构满足抗震设防要求,安装了28组耗能阻尼器。装上阻尼器后,在大震作用下,结构的顶层位移和层间位移角均满足要求。2000年建成的日本新住友医院,采用低屈服点剪切板耗能器进行结构减震控制。结构在短边方向采用低屈服点剪切板耗能器,采用附加短柱的形式布置。在加入耗能器后,结构的层间位移减小30%,控制效果明显。 2摩擦阻尼器 摩擦阻尼器是应用较早和较广泛的阻尼器之一。摩擦阻尼器是一种位移相关型的阻尼器,它是利用两块固体之间相对滑动产生的摩擦力来耗散能量。其基本理论是建立在以下假设的基础上: (1)总的摩擦力不依赖于物体接触面的面积; (2)总的摩擦力与在接触面上的总的法向力成比例;

阻尼器,一手资源,网上很难找到

6.1 测试抽样个数 《行业标准》对出厂检验7.2 中C)中的出厂力学性能检测抽样规定“每批应按不低于20%的要求进行抽检,且每批不应少于3件”,要求合格率100%。这类产品检验,在美国ASSHTO等规范中均要求每个出厂的阻尼器都要作严格的静、动力两方面检验。这是因为,阻尼器的生产工艺和数据调整十分复杂困难,很容易控制不好。不能保证各项指标的产品就不能保证它的正常工作。也更是使用了阻尼器的结构在未来地震中不因阻尼器的失效而导致破坏的起码保证。 6.2 地震循环测试 行业标准中6.2.4.2阻尼器耐久测试中的疲劳性能试验方法提出:当以地震荷载控制为主时,施加1HZ的正弦力,选择加载60个循环。我们不得不非常遗憾地说,作为一个行业标准最重要的部分,阻尼器的测试部分,编制者和审查者自己似乎并没有完整的做过一遍,也没有仔细地推敲过别人试验的情况和结果。阻尼器的动力和疲劳测试主要有两种:一种为地震荷载的测试,也就是大地震荷载下的低周疲劳测试。另一种是最大风荷载下的高周疲劳测试。 实际阻尼器在大部分地震下达到最大振幅的情况都不到一个循环[13]。保守地说,如果有3-5次这种满负荷的循环试验,阻尼器在地震中的表现应该是可以保证的。因此,这种达到最大受力荷载的动力测试在一定周期下的循环次数并不需太多。美国土木工程协会HIETC中最多做过10次这样的循环,美国ASCE-7-05规范中要求作5次。再多,对于普通抗震用阻尼器没有必要。现在世界上生产的这种抗震阻尼器循环的次数多了,也会因阻尼器过热而受不了破坏。美国Enidine公司就在HITEC的10周循环试验中破坏了。破产的法国Jarret 阻尼器在三个动力循环后阻尼力就急速衰减达不到要求。据我们所知,目前世界上要想让阻尼器达到60次以上的产品只有美国泰勒公司设计生产的无摩擦金属密封阻尼器。它是一种阻尼器内部热量高度平衡的装置,价格昂贵[12]。 忽略了这一点就会产生错误。我国2001年“建筑设计规范”中对阻尼器的测试要求“阻尼器在最大设计允许位移情况下往复循环60圈后消能器性能衰减量不应小于10%”。这里没有说明循环振动的周期,是其含糊不清之处。新规范也应一并考虑。 美国ASCE-7-05抗震规范中对于该项最大地震荷载下的循环测试要求测试的频率按结构第一周期的倒数,循环次数取为5次。 6.3 风荷载循环试验 同是《行业标准》6.2.4.2阻尼器耐久测试中当以风振控制为主时的疲劳性能试验方法提出:输入位移风荷载疲劳循环测试,每次200次,累计10000次。该项试验主要是检验阻尼器 在连续循环试验中的散热能力和抗疲劳性能。间断多了就失去试验的目的。 6.4 频率相关测试 为了检测阻尼器在不同频率荷载的作用下的工作能力。阻尼器要作不同频率下的最大阻尼力的动力试验。《行业标准》6.2.4.3 中规定加载频率分别为0.1Hz ~ 2.5 Hz 中6个选项。这是没有反映结构自身的动力特性。我们知道,结构无论在风振和地震中主要的振动周期应该是结构的基本周期T1 。阻尼器的振动也主要按基本周期振动。国际规范中频率测试范围取在1/T1 ~ 2.5/T1,当然就科学多了。 况且,像《行业标准》的取值办法就很可能进入无法试验甚至无法生产的区域。如:云南昆明某重要建筑工程,设计的阻尼器是1500kN,±400mm,这样的参数,对一个大型隔震结构,是在合理的范围内。可是,如果我们按《行业标准》取2.5Hz 的频率测试,其测试速度V应该是: (2) 其中f为振动频率,A为振动幅值。 要知道,目前世界上最大能力的美国圣地亚哥大学动力测试设备也仅可达到1800mm/s[11],也足够用了。这种测试要求出在我们的国标中不是太离谱了吗? 下面我们还介绍阻尼器最重要的三个关键测试。《行业标准》中均未提到。 6.5 基本性能测试

阻尼器设计

1.结构设计 2.工作原理 2.1磁流变液 磁流变液是在1948 年被Rabinow,J.发明的一种由非磁性基液(如矿物油、硅油等)、微小磁性颗粒、表面活性剂(也称稳定剂)等组合而成的智能型流体材料。在无磁场加入的条件下,磁流变液将表现为低粘度较强流动性的牛顿流体特性,加入磁场后,则会表现为高粘度低流动性的Bingham 流体特性。 非磁性基液是一种绝缘、耐腐蚀、化学性能稳定的有机液体。基液所拥有的特征是:粘度较低,磁流变液在没有磁场加入的条件下表现为低粘度状态,这样能够较好的降低磁流变液的零场粘度; 沸点高、凝固点较低,这样就可以确保磁流变液在温度变化波动较大的环境下工作依然可以保持较高的稳定性;较高的密度,能够保证磁流变液不会因沉降问题而无法正常使用; 无毒无味、廉价,保障其安全性的同时做到能够广泛使用。 微小磁性颗粒是一种可离散、可极化的软磁性固体颗粒,其单位是微米数量级的。其主要的特征有[5]: 低矫顽力,对于已经磁化过的液体,加较小的磁场就能够使其恢复零磁场状态,即拥有较高的保磁能力; 高磁导率,能够在弱磁场中获得较强的磁感应强度从而节约能量;磁滞回线狭窄、内聚力小; 磁性颗粒的体积应相对大一些,用于存贮更多的能量。 表面活性剂是可以增加溶液或混合物等稳定性的化学物质。在实际使用过程中,磁流变液比较容易出现沉降分层现象,所以需要在磁流变液中加入表面活性剂保证物理化学性能的平衡,减少分层、降低沉降。 2.2磁流变液的工作模式 磁流变液在外加磁场影响下出现磁流变效应现象,改变流体的表观粘度、流动状态,从而改变剪切屈服应力等参数,使输出的阻尼力能够实时变化,达到所期望的目的。现如今,磁路变液的一般工作模式有三类:流动式、剪切式及挤压式,如下图所示。 (a)流动式(b)剪切式(c)挤压式 图1-3 磁流变液工作模式 Fig. 1-3 MR fluid working mode 流动式:如图1-3(a)所示,在两块固定静止的磁极板中间具有充足的磁流变液,对磁流变液施加一个压力使其流过两磁极板,其中,两极板之间外加了与磁流变液运动方向垂直的磁场。当磁性液体经过磁场时,其流体特性与流动状态被改变从而产生剪切应力即阻尼力。改变线圈的输入电流强弱从而使磁场强度发生变化,阻尼力也会跟着变化,实现实时调节的效果。流动式多用于控制阀、阻尼器、电磁元件等的设计。

新型软钢阻尼器的减震性能研究_李钢

振动与冲击 第25卷第3期J OURNAL OF V IBRAT I ON AND SHOCK Vo.l25No.32006 新型软钢阻尼器的减震性能研究 基金项目:大连市建委科技项目 收稿日期:2005-02-18修改稿收到日期:2005-04-15第一作者李钢男,博士生,1979年生李钢李宏男 (大连理工大学海岸及近海工程国家重点实验室,大连116023) 摘要提出了设计软钢阻尼器的新思路:利用钢板平面内受力提高初始刚度,并通过改变钢板平面几何形状增加变形耗能能力。通过对具有不同几何形状的软钢阻尼器模型进行拟静力往复加载试验研究,验证了此种软钢阻尼器具有良好的塑性耗能性能。数值计算表明,在地震动作用下装有新型软钢阻尼器框架体系具有良好的减震效果。 关键词:软钢阻尼器,结构控制,减震性能,参数研究 中图分类号:P315文献标识码:A 0引言 近年来,国内外的研究者在工程结构的隔震、减振与振动控制方面进行了大量的研究工作,取得了丰硕的成果[1-6]。传统的抗震设计是通过增强结构本身的抗震性能来抵御地震作用,即利用结构本身储存和消耗地震能量以满足结构抗震设防标准:小震不坏,中震可修,大震不倒。而这种抗震方式缺乏自我调节能力,在不确定的地震作用下,很可能不满足安全性的要求。而结构振动控制技术为结构抗震提供了一条合理有效的途径。其中,耗能减震作为一种被动控制措施是将输入结构的地震能量引向特别设置的机构和元件加以吸收和耗散,从而能够保护主体结构的安全。 软钢阻尼器是目前国内外广泛研究的各种耗能器中,构造简单、造价低廉、力学模型明确的一种被动耗能装置,屈服后在反复循环荷载作用下仍具有稳定的滞回特性。1972年,Ke lly等[3]在提出耗能减概念时就采用了软钢屈服耗能器,其中包括扭转梁、弯曲梁、U 型钢等形式。W h ittaker等[4]和Tsa i等[5]分别研究了X 型钢板和三角形钢板耗能器平面外的特性。日本Ka j-i m a公司提出了一种蜂窝状的软钢屈服耗能器,可安装在墙中或梁内。国内学者对此也做了相应的研究工作,欧进萍等[6]对组合钢板耗能器进行了研究,这种耗能器消除了软钢阻尼器中薄膜效应的影响。邢书涛等[7]提出了一种纵截面为中空菱形的矩形钢板阻尼器。目前,软钢阻尼器已应用于建筑结构中,如新西兰的六层政府办公大楼,其预制墙板的斜撑中采用了钢管耗能器[8];美国旧金山的非延性钢筋混凝土结构的抗震加固和墨西哥的一些建筑中[9]。 上述软钢阻尼器均是利用阻尼钢板平面外等厚度处同时屈服的特性来实现耗能作用,其优越性在于塑性变形较大,滞回性能稳定;不足之处在于这类软钢阻尼器初始刚度较小,承载能力低。若增大初始刚度,则需要增加阻尼器钢板的数量,这使得实际工程应用中存在着经济性与可行性问题。而采用钢板平面内受力方式,则可以在很大程度上提高其初始刚度及屈服力。1997年M ito等[10]通过试验研究了一种矩形剪切板阻尼器,但这种阻尼器由于平面内受力,钢板的四个角点处应力集中,在水平位移很小时就出现断裂现象,使得变形耗能能力相对较差。2003年T irca等[11]提出了一种平面内受力形式的钢阻尼器,并对装有此种阻尼器的中高层结构进行了性能分析,证明此阻尼器具有很好的耗能减震能力。 软钢阻尼器一般安装于梁与支撑的节点处,在正常使用状态下整个耗能体系不发挥作用,只有在地震作用下,阻尼器才通过塑性变形来消耗地震能量。然而,在小震作用下,目前设计的建筑物能够满足抗震设防要求,一般不需要阻尼器工作;在大震或偶然发生超过设防烈度的地震(因地震难以预测)作用下,需要阻尼器耗能以减小结构地震反应。这样,目前利用钢板平面外变形耗能的软钢阻尼器难以满足这种要求。为了最大程度发挥耗能体系的作用,阻尼器应该同时具备初始刚度大和屈服后具有良好变形耗能能力两个特点。针对上述阻尼器中存在的不足,本文提出了一类新型软钢阻尼器,试验和理论计算均表明,所提出的阻尼器满足这种要求。 1新型软钢阻尼器及模型试验 阻尼器钢板平面外受力时具有较强的变形能力,但初始刚度较低。为避免这一现象本文采用钢板平面内受力形式,此种受力方式同时存在一定的缺陷,通常是局部屈服更容易引发应力集中现象,变形能力较差。如何提高变形能力,避免应力集中现象则成为关键问题。通过改变钢板平面几何形状使其出现多点屈服,在屈服后形成若干塑性屈服点的方法来实现更好的

浅谈阻尼器的类型和原理分析

广州大学 研究生文献综述论文题目浅谈阻尼器的类型 学院土木工程学院 班级名称2016级专硕一班 学号2111616149 学生姓名陆富龙 2016 年12 月18 日

关于阻尼器的类型总结 摘要:随着抗震在结构中的重要性越来越重要,高强轻质材料的采用,高层、超高层等高柔结构及特大跨度桥梁不断涌现,相关的研究也越来越多,从结构抗震到结构的减震再到结构的隔振,各种的理念层出不穷,然在抗震中,现在比较方便和比较常用的就是在建筑结构上加入阻尼器,用以吸收地震或风震产生的能量,以提高结构的抗震性能,随着科技的发展,各种阻尼器不断的更新创新,运用各种的原理来优化阻尼器,对于形式多样、要求各异的工程结构,如何在推广应用消能技术时,选择适合的阻尼器类型并进行阻尼器的合理优化设计将关系到这一技术的发展前景,具有重要的现实意义,值得进一步探讨研究。 关键词:阻尼器,类型,适用 Abstract:with the earthquake is becoming more and more important in the importance of the structure, high-strength lightweight material used, high-rise structure and extra long-span Bridges and super-tall soft, related research also more and more, from the structure seismic to structure of shock absorption and vibration isolation of the structure, various LiNianCeng out one after another, but in the earthquake, is now more convenient and more commonly used in building structures with dampers, earthquake or wind to absorb energy, to improve the seismic performance of structure, with the development of science and technology, the updating and innovation of various dampers, use all kinds of the principle to optimize damper, for a variety of forms and requirements of different engineering structure, how to promote application of energy dissipation technology, select the appropriate type of damper and the optimization of damper design will be related to the development prospects of this technology, has important practical significance and worthy of further research are discussed. Keywords:damper,type,apply

粘滞阻尼器产品介绍

产品名称:粘滞阻尼器(Fluid Viscous Damper) 详细介绍: 一、概述 粘滞阻尼器一般由缸筒、活塞、阻尼通道、阻尼介质(粘滞流体)和导杆等部分组成。当工程结构因振动而发生变形时,安装在结构中的粘滞阻尼器的活塞与缸筒之间发生相对运动,由于活塞前后的压力差使粘滞流体从阻尼通道中通过,从而产生阻尼力耗散外界输入结构的振动能量,达到减轻结构振动响应的目的。 我公司与同济大学工程抗震与减震研究中心合作,开发了线性粘滞阻尼器、非线性粘滞阻尼器、可控式粘滞阻尼器、拟摩擦粘滞阻尼器。通过对所研制的阻尼器的缩尺和足尺模型的性能试验,深入研究了阻尼器各种参数之间的关系,掌握了该类阻尼器的基本力学性能,建立了双出杆型粘滞阻尼器的理论计算公式,并通过大量的阻尼器力学性能实验,对其进行了修正。研究表明,该类阻尼器结构合理,受力机理明确,性能稳定,耗能能力强。 二、示意图 (朱)

三、代号表示法 四、主要特点 1. 外形简洁,结构对称、紧凑,安装便捷,安装空间小; 2. 摩擦阻力小,一般低于额定载荷的1%~2%; 3. 阻尼器的长度设计了±25mm的调节量,方便现场的安装; 4. 耗能效率高,达到90%以上; 5. 阻尼器两端可安装关节轴承,利于施工安装和工作时的摆动(允许工作摆角±5°); 6. 液压介质使用稳定、抗燃、耐老化的硅油;密封件使用与介质相容性好的橡胶材料。 五、使用要求 1、路博粘滞流体阻尼器在保管、运输、存放过程中,对所有的零部件和产品本身应采用有效地防护包装,防止发生锈蚀、污染、划伤等不良现象的发生; 2、路博粘滞流体阻尼器外表面为镀硬铬保护层,相关动配合处均采用多种手段加固密封。因此,如需在其周围进行焊接等作业应采取严格的遮挡保护措施,不允许明火 烘烤及重力敲砸等不良现象发生; 3、路博粘滞流体阻尼器是精度和技术含量较高的产品,对装配和测试的操作技能,环 境条件,使用工具等都有很高的要求,施工现场不准拆卸和修理;

力学性能指标

力学性能指标:拉伸强度、断裂伸长率、硬度、弹性模量、冲击强度。 影响力学性能的因素:温度、拉伸速度、环境介质、压力等。 弹性变形特点:可逆变形虎克定律弹性变形量很小,一般不超过0.5%-1% 材料的弹性模量主要取决于结合键的本性和原子间的结合力,而材料的成分和组织对它的影响不大共价键的弹性模量最高. 弹性比功:又称弹性比能,表示金属材料吸收弹性变形功的能力。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 循环韧性的意义:循环韧性越高,机件依靠自身的消振能力越好,所以高循环韧性对于降机器的噪声,抑制高速机械的振动,防止共振导致疲劳断裂意义重大 金属材料常见的塑性变形方式滑移和孪生 金属应变硬化机理与高分子应变硬化机理的区别:金属机理:位错的增殖与交互作用导致的阻碍高分子机理:发生应变诱导结晶、分子链接近最大伸长 韧性断裂:金属断裂前产生明显的宏观塑性变形的断裂,有一个缓慢的撕裂过程,在裂纹扩展过程中不断消耗能量。脆性断裂:突然发生断裂,基本上不发生塑性变形,没有明显征兆,因此危害性很大。 α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。拉伸时塑性很好的材料,在压缩时只发生压缩变形而不断裂。硬度:布氏、洛氏、维氏 缺口效应:缺口根部产生应力集中,同时缺口截面上的应力分布发生改变。 断裂韧性:由于裂纹破坏了材料的均匀连续性,改变了材料内部应力状态和应力分布,所以机件的结构性能就不再相似于无裂纹的试样性能,传统的力学强度理论就不再适用。 断裂力学就是在这种背景下发展起来的一门新型断裂强度科学,是在承认机件存在宏观裂纹的前提下,建立了裂纹扩展的各种新的力学参量,并提出了含裂纹体的断裂判据和材料断裂韧度。 分析裂纹体断裂问题的方法:应力应变分析方法:考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据。(2) 能量分析方法:考虑裂纹扩展时系统能量的变化,建立能量转化平衡方程,得到相应的断裂G判 KI和KIC的区别:应力场强度因子KI增大到临界值KIC时,材料发生断裂,这个临界值KIC称为断裂韧度。KI是力学参量,与载荷、试样尺寸有关,而和材料本身无关。KIC是力学性能指标,只与材料组织结构、成分有关,与试样尺寸和载荷无关。根据KI和KIC的相对大小,可以建立裂纹失稳扩展脆断的断裂K判据,由于平面应变断裂最危险,通常以KIC为标准建立: 应力腐蚀现象:在应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆性断裂现象。 应力腐蚀产生的条件:(1)必须有应力,特别是拉应力的作用, 远低于材料的屈服强度,是脆性断裂;(2)对一定成分的合金,只有在特定介质中才发生应力腐蚀断裂;(3)应力腐蚀断裂速度约为10-8-10-6 m/s数量级的范围内,远大于没有应力时的腐蚀速度,又远小于单纯力学因素引起的断裂速度。 机理:当应力腐蚀敏感的材料置于腐蚀介质中,首先在金属的表面形成一层保护膜,它阻止了腐蚀进行,即所谓“钝化”。由于拉应力和保护膜增厚带来的附加应力使局部地区的保护膜破裂,破裂处金属直接暴露在介质中,成为微电池的阳极,产生阳极溶解。阳极小阴极大,所以溶解速度很快,腐蚀到一定程度又形成新的保护膜,但在拉应力的作用下又可能重新破坏,发生新的阳极溶解。这种保护膜反复形成反复破裂的过程,就会使某些局部地区腐蚀加

阻尼器测试精度控制

高速阻尼器试验系统及试验精度控制研究 鲁亮1 翁大根1 曹文清1 朱晓兵2 支晓阳2 陈亮2 (1 同济大学结构工程与防灾研究所,上海200092;2 无锡市海航电液伺服系统股份有限公司,江苏 214027) 摘要:本文对2000KN 高速阻尼器试验系统的组成、特点、功能进行了介绍,特别是试验台架结构。分析了在进行粘滞阻尼器试验时影响试验数据精度的因素,这些因素包括液压系统加载能力、加载台架的刚度、试件安装间隙和数据通道之间的采集时差等,并对这些因素进行了数值模拟,提出解决措施。 关键词:电液伺服,阻尼器,试验精度,试验台架,试验精度 High-speed Damper Testing System and Research on the Test Precision Control L. Lu 1 D. G. Weng 1 W. Q. Cao 1 X. B. Zhu 2 X. Y. Zhi 2 L. Chen 2 ( 1 Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai 200092, China; 2 Wuxi Haihang Electro-hydraulic Servo system Co. Ltd., Jiangsu 214027, China) Abstract: Mechanical composing, features and main function of a 2000kN high-speed damper testing system are introduced, especially the structure of the loading frame. This testing system is an Electro-hydraulic Servo Load System. Various factors influenced the test precision are analyzed, which include the capacity of power supply, stiffness of the loading frame, installation gaps of specimen and the time gap of DAS channels, etc. Some factors affect the data precision are numerically simulated while doing a viscous damper, and several solutions about precision control are proposed. Keywords :Electro-hydraulic Servo Test; Damper; Precision Control; Loading Frame 收稿日期: 基金项目:国家自然科学基金资助项目(51178354) 联系作者,E-mail :luloes@https://www.sodocs.net/doc/564957351.html, 引言 随着结构控制技术在建筑和桥梁工程中的应用,各类阻尼器的使用越来越多,技术越来越成熟。大吨位的速度型阻尼器的应用范围也随之扩大,为了对各种材料大吨位阻尼器性能进行测试就必须研究相应的大出力、大速度阻尼器试验系统[1-3]。 国内高校、科研机构和生产厂家已建有多套阻尼器试验系统,各具特点。本套2000kN 高速阻尼器试验系统主要在加载台架结构上与现有系统相比有一定特色。加载台架是用于安装2000kN 高速电液伺服作动器,并与之构成对阻尼器进行试验的一个完整试验台。本套系统利用同济大学已建成的泵源系统(600L/min 泵源、工作压力28MPa 、780L 蓄能器组)、2000kN 高速电液伺服作动器、MOOG 控制器等,构建一套完整的2000kN 阻尼器性能试验系统,见图1。 图1 试验台架外观图 Fig. 1 Layout of the damper test frame 1系统主体机械结构和主要参数 本系统中2000KN 高速阻尼器试验系统由液压部分(包括液压泵站、蓄能器组、伺服作动器、伺服阀、连接管路)、机械部分 (主要是试验台架)、控制系统三部分组成。系统原理如图2所示。

漫谈减震器的性能

漫谈减震器的一些性能 一.如何评价减震器的品质 一辆行驶在凹凸不平路面上的汽车,如果悬架系统只装备有弹簧(螺旋弹簧、钢板弹簧或空气弹簧)来缓冲路面冲击,由于弹簧不能马上稳定下来,它会持续地压缩和回弹,使得汽车像一匹脱缰的野马上下颠簸不息,大大地降低了汽车平顺性和乘坐舒适性。因此,需要一个能有效地吸收(衰减)汽车振动能量的装置而不会明显地对振动频率(偏频)产生影响,减震器就应运而生了。减震器的英文名字Shock absorber 更能确切地描述其含义即“振动吸收器”。正确地了解和应用汽车减振器性能,对于悬架设计师而言是非常重要的。评价减震器质量是否优良要从两个方面入手: 1. 制造质量: 是指减震器本身的品质如何,即它的可靠性、耐久性、漏油、异响、和制造质量的一致性等方面的表现。 2.匹配质量: 是指减震器与整车平顺性、操稳性匹配后的表现如何。 换句话说,一副优良的减震器装在A 车上,它对整车性能表现的非常优异,但不等于说将它装在B 车上后仍然表现精彩。个中原因就是它与整车匹配是否合理的问题。众所周知,一辆性能优良的跑车,其减震器阻尼特性是随路面状况的变化而随时调整的(手动或自动调节)。在坏路面上行驶时阻尼要大些而在好路面上行驶时则要弱些。对于同一辆车尚需如此,更何况对于两辆具有不同参数的汽车来说更应如此。譬如由于它们的簧上质量、偏频(悬架刚度)的差异而不得不重新调整减震器的阻尼特性和示功图以获取理想的相对阻 ψ值: Km 2δ ψ= δ 减震器阻尼系数 N.s/mm K 悬架刚度 N/mm m 簧上质量 kg.s 2/9800mm 通常要将减震器与整车匹配到什么程度才叫好呢?正确的回答是要使悬架(前或后)的相对阻尼系数在ψ=0.3-0.55范围内为佳。大于此数值时,悬架就可能将道路上的冲击波直接通过减震器传递给车身,令乘客直接感受到“车轮就在脚底下振动”的感觉,并误认为悬架很“硬”,而实际上弹簧很软。 减震器的性能常用 阻力—位移、阻力—速度特性来描述。 前者称为“示功图”,后者称为“速度特性图”。δ 减震器阻尼系数的物理意义是:悬架在自由振动的条件下,如果减震器活塞速度V 与阻力F 之间的特性关系是线性的,换句话说是直线关系,即 F=δV δ是该直线的比例常数,即斜率。 如果减震器速度特性是非线性的即曲线关系,则 F=δv i 减震器阻尼系数δ仍然代表曲线的斜率。在悬架小幅度振动范围内,速度特性可

新型弧面摩擦阻尼器力学性能研究

新型弧面摩擦阻尼器力学性能研究 王贡献一王洋洋一袁建明一杨一毅一王一东 武汉理工大学,武汉,430063 摘要:为克服传统摩擦阻尼器自适应能力差及耗能能力低的缺点,提出了一种新型弧面摩擦阻尼器,该阻尼器的结构特征在于其摩擦板和滑块的滑移面均为弧形,两滑块之间装有压缩橡胶,阻尼器通过摩擦板与滑块之间的移动产生摩擦力实现耗能.建立了阻尼器的机理模型,并采用数值模型验证了机理模型的合理性,分析了加载频率和橡胶弹簧初始压缩量对阻尼器滞回阻尼特性的影响规律.研究结果表明:该新型阻尼器具有马鞍形滞回曲线,其摩擦力具有位移随变性;该阻尼器的耗能能力比传统摩擦阻尼器强,耗能能力最多提高了23.84%;其力学性能与加载频率相关性较小,而橡胶弹簧预紧力越大,阻尼器的滞回耗能能力越强. 关键词:摩擦阻尼器;机理模型;力学性能;耗能能力中图分类号:TH212;TH213.3 DOI :10.3969/j . issn.1004-132X.2016.11.002Research on Mechanics Performance of a New Cambered Friction Dam p er Wan g Gon g xian一Wan g Yan gy an g 一Yuan Jianmin g 一Yan g Yi一Wan g Don g Wuhan Universit y of Technolo gy ,Wuhan ,430063 Abstract :A new cambered friction dam p er was develo p ed ,which enabled to overcome the shorta-g es such as p oor ada p tive ca p acit y and low ener gy dissi p ation ca p acit y . There was a block of rubber sandwiched between two sliders bent in a certain confi g uration.Frictional p lates and the sliders were curved.The device dissi p ates ener gy throu g h friction between the p late and slider.The mechanism model of the dam p er was established ,and its rational was verified b y numerical model.The influences of the initial com p ression of the rubber and the load fre q uenc y on the h y steresis dam p in g characteris-tics of the dam p er were conducted.It is shown that the h y steretic curve of the dam p er is in ma p of p ommel horse and the frictional force is varied with dis p lacement. The ener gy dissi p ation ca p acit y of the dam p er is stron g er than that of the conventional one ,which exceeds over 23.84%.The dam p er mechanics p ro p erties are less relevant with loadin g fre q uenc y ,while the lar g er the rubber s p rin g p re-load is ,the stron g er its ener gy dissi p ation ener gy ca p acit y is. Ke y words :friction dam p er ;mechanism model ;mechanics p erformance ;ener gy dissi p ation ca-p acit y 收稿日期:2015 1110 基金项目:国家自然科学基金资助项目(51275369) 0一引言 摩擦阻尼器具有良好可靠的耗能能力,并且 构造简单二造价低廉二适用性强,这使得摩擦耗能减振技术得到了迅速发展.但它也有不可避免的缺陷,传统意义上的摩擦阻尼器一旦阻尼器结构形式和摩擦材料确定,摩擦阻尼器所产生的摩擦力也随着确定,其初始滑动力不会改变.地震载荷的不确定性会导致传统的摩擦阻尼器适应能力差,达不到理想的耗能减振效果.因此,如何提高摩擦阻尼器的耗能能力和自适应能力是土木与机械工程领域研究和应用的热点,许多学者对此进 行了研究[1].王伟等[2-3] 针对普通摩擦耗能器只 能提供恒定摩擦控制力,对结构控制不具有自适应能力的不足,基于结构半主动控制的思想,利用磁性智能材料开发出永磁摩擦耗能器和电磁摩擦 耗能器.张维岳等[4] 针对传统摩擦耗能器只有单 一恒定起滑力的特点,提出了二阶摩擦耗能器,提高了阻尼器的耗能能力,同时也解决了一般摩擦 阻尼器起滑力不易确定的不足.魏文晖等[5]综合 利用黏弹性耗能器和摩擦耗能器各自的耗能特点,提出了一种具有自适应能力二强耗能能力的复 合型黏弹性摩擦耗能器.任文杰等[6] 提出了一 种新型形状记忆合金摩擦复合阻尼器,该阻尼器能够自动调节耗能单元工作状态.Sumitomo 摩 擦耗能器[7]通过摩擦楔块的滑动摩擦产生摩擦力 来耗散能量,该阻尼器可以通过调整碟形弹簧和 楔形块来改变阻尼器的耗能能力.Samani 等[ 8]提出了一种新型可调摩擦阻尼器,设计了该阻尼 器,并对其进行了试验研究.Monir 等[9]提出了 一种由9块钢板和9个高强度螺栓组成的摩擦阻 尼器,并对阻尼器的滞回特性和减振性能进行了试验研究,验证了该阻尼器具有良好的耗能特性.Ozbulut 等[10] 利用形状记忆合金和变摩擦阻尼器研发了一种自复位变摩擦耗能器,并对该阻尼器 的耗能特性进行了试验研究. ? 9241?新型弧面摩擦阻尼器力学性能研究 王贡献一王洋洋一袁建明等

钢材力学性能实用实用标准一览表

钢材力学性能指标汇总表钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs%

不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹)牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆ΙR235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999 表一轧扁厚度、节距

阻尼器特点及分类

阻尼器的特点及分类 弹簧阻尼器: 液压阻尼器:防腐性好 主要零部件采用奥氏不锈钢材料,防腐性能好; 结构紧凑、受力合理 结构紧凑,且呈对称结构,安装空间小,受力更加合理; 动态响应快 阻尼力大,且动态响应时间短; 摩控阻力小 摩控阻力小,一般低于额定载荷的1%-2%; 摆动角 头部,尾部铰接采用关节轴承,允许多最摆动角为±6°; 寿命长 采用特殊的液压油和密封介质,性能稳定,密封寿命长; 高温工作 可在93℃温度下连续工作,短时工作稳度可达148℃。 脉冲阻尼器:1、脉冲阻尼器的外壳材质为UPVC或不锈钢,隔膜材质为丁基橡胶或 氟橡胶。 2、不锈钢充气阀,补气压力一般为系统工作压力的60%~80%。 3、脉冲阻尼器装有压力表,可以显示系统压力。 4、脉冲阻尼器可以实现3~6%的阻尼缓冲(可以平滑掉94~97%脉 冲)。 5、工作温度限于摄氏0~60℃。 6、充气工具作为可选件,包括充气管、压力表、充气调节器,与氮气) 瓶连接接口。 旋转阻尼器:速度 旋转阻尼器根据回转速度的变化,扭矩也发生变化。其变化规律为: 速度提高,扭矩也提高。速度放慢,扭矩也随之下降。起动时扭矩与 标准扭矩不同。 温度特性 旋转阻尼器根据使用环境温度的变化,扭矩也发生变化。其变化规律 为:环境温度提高时扭矩下降,环境温度下降时扭矩升高。这是因为

环境温度变化时,阻尼器中粘性油的粘度也随之变化的缘故。但是, 当环境温度恢复到常温时,扭矩也会恢复到原来的数值。 风阻尼器:上海环球金融中心,大楼在90楼(约395米)设置了两台风阻尼器,各重150公吨,使用感应测算出建筑物遇风的摇晃程度,及通过电脑计算以控制阻尼器 移动的方向,减少大楼由于强风而引起的摇晃,而预计这两台阻尼器也将成为 世界最高的自动控制阻尼器。 粘滞阻尼器:根据流体运动,特别是当流体通过节流孔时会产生粘滞阻力的原理而制成的,是一种与刚度、速度相关型阻尼器。

第一章 机械力学性能习题参考答案

第一章 机械力学性能 习题参考答案 一、填空题 1.材料的力学性能的主要指标有 强度 、 硬度 、 冲击韧性 、 塑性 等。 2.HBS250~300应改为250~300 HBS ;600~650HBS 应改为600~650HBW 或600~650HV ;5~10HRC 应改为5~10HBS ;HRC70~75应改为 70~75HRA 。 3.σs 表示 屈服强度 ,σ r0.2:表示 条件屈服强度 ,其数值越大,材料抵抗 塑性变形 的能力越大。 4.材料常用的塑性指标有延伸率 和 面缩率 两种。其中用面缩率表示塑性更接近材料的真实变形。 二、是非题 ( F )1.机器中的零件在工作时,材料强度高的不会变形,材料强度低的一定会产生变形; ( F )2.材料的E 越大,其塑性越差; ( F )3.屈服点是表征材料抵抗断裂能力的力学性能指标; ( F )4.所有的金属材料均有明显的屈服现象。 三、思考题 1.现测得长、短两根圆形截面标准试样的δ5,和δ10均为25%,其原始直径为d 0=10mm,求两试样拉断后的标距长度是多少?哪一根试样的塑性好?为什么? 解:由下列公式 可算得: 不能判断试样塑性好坏;因为只有当L0 /d0为常数时,塑性值才有可比性。 2.标准规定,15钢的力学性能指标不应低于下列数值,σb ≥372(MPa),σs ≥225(MPa),δ5≥27%,ψ≥55%。现将购进的15钢制成d 0=10mm 的圆形截面短试样,经拉伸试验后测得F b =34500N ,F s =21100N ,L 1=65mm ,d l =6mm 。试问,这批15钢的力学性能是否合格? 解:由屈服强度和抗拉强度公式得 100100%l l l δ-=?()1100025%1010125mm d d L =?+=()150025%5562.5mm d d L =?+=()221100268.79103.142S MPa σ==?()234500439.49103.142b MPa σ==?56550100%30%50δ-=?=222 106100%64%10ψ-=?=

相关主题