搜档网
当前位置:搜档网 › 金属型铸造的成型特点

金属型铸造的成型特点

金属型铸造的成型特点

金属型铸造的成型特点:金属型材料的导热性比砂型材料的大、没有透气性,没有退让性。损坏形式:①外裂纹a、由温度变化引起的应力增加到铸型抗拉强度时产生裂纹(预热金属型)b、结构不合理c、砂眼夹杂的缺陷d、毛坯存在铸造应力d、刚度太低②内裂纹a、疲劳应力b、交变热应力③变形、多次浇注,型壁薄,温度高,浇注时间长(时间由浇注系统定)④烧伤,壁厚处温度过高⑤摩擦。提高金属型寿命的途径a、热处理降低应力b、正确选材保证刚度c、合理的壁厚和结构防止应力集中d、浇注系统设计要合理e、涂料的性能及其喷涂工艺。涂料的作用:a、保护金属型b、调节铸件各部分在金属型中的冷却速度c、改善铸件表面的质量d、适当改善金属型的排气条件。涂料的要求:a、粘度均匀b、耐火度c、发气量小d、不发生化学反应e、易清除

陶瓷材料的组成:耐火材料、粘结剂、催化剂、透气性、脱模剂。陶瓷型材料的性能要求?纯度高,耐火度高,热膨胀系数小,化学稳定性好。所用材料:耐火材料有硅石、刚玉、铝矾土、锆英石等。粘结剂有硅酸乙酯水解液。催化剂有氢氧化钠和氧化钙或三乙醇的酒精溶液。透气剂有双氧水、聚乙烯,淀粉。脱模剂有石蜡、凡士林、机油等

铸造成型工艺

名词解释 1.材料成形技术:利用生产工具对各种原材料进行增值加工或处理,材料制备成具一定结构形式和形状工件的方法 2.液态成型:将液态金属浇注到与零件形状相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法 3.逐层凝固:纯金属和共晶成分的合金在凝固中不存在固液两相并存的凝固区,所以固液分界面清晰可见,一直向铸件中心移动(铸铁) 4.糊状凝固:铸件在结晶过程中,当结晶温度范围很宽且铸件界面上的温度梯度较小,则不存在固相层,固液两相共存的凝固区贯穿整个区域(铸钢) 5.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性 6.顺序凝固原则:在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口的部位凝固,最后才是冒口本身凝固。 7.均衡凝固原则:利用铸铁件石墨的共晶膨胀消除缩松的工艺方式 8.砂型铸造:以型砂(SiO2)为铸型、在重力下充型的液态成形工艺方法 9.金属型铸造:以金属为铸型、在重力下的液态成形方法。 10.熔模铸:以蜡为模型,以若干层耐火材料为铸型材料,成形铸型后,熔去蜡模形成型腔,最终在重力下成形的液态成形方法 11.压力铸:把液态或半液态的金属在高压作用下,快速充填铸型,并在高压下凝固而获得铸型的方法 12.低压铸造:是液态金属在较小的压力(20—80Kpa)作用下,使金属液由下而上对铸型进项充型,并在此压力下凝固成型的铸造工艺 13.反重力铸造:液态金属在与重力相反方向力的作用下完成充型,凝固和补缩的铸造成型 14.离心铸造:将液态金属浇注到高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法 15.消失模铸造:用泡沫塑料制成带有浇冒系统的模型,覆上涂料,用干砂造型,无需取模,直接浇注的铸件方法 16.浇注系统:液态金属流入型腔的通道的总称,通常由浇口杯,直浇道,直浇道窝,横浇道和内浇道组成 17.阻流界面:在浇注系统各组元中,截面积最小的部分称为阻流截面 18.集渣包:横浇道上被局部加大加高的部分 19.浇口比:直浇道,横浇道,内浇道截面积之比 20.热节:在壁的相互连接处由于壁厚增加,凝固速度最慢,最容易形成收缩类缺陷 分型面:两半铸型相互接触的表面。分为平直和曲面。作用:便于造型、下芯和起模具。 21.砂芯:为了起模方便并形成铸件的内腔、孔和铸件外形不能出砂的部位,所采用的砂块 22.芯头:伸出铸件以外不与金属液接触的砂芯部分芯头种类:垂直芯头、水平芯头、特殊结构的芯头 23.冒口:铸型内用于储存金属液的空腔,在铸件凝固过程中补给金属,起到防止缩孔,缩松,排气和集渣的作用 冒口=冒口区+轴线缩松区+末端区 24.冒口的补缩距离:冒口补缩后形成的致密冒口区和致密末端区之和 25.补贴:为实现顺序凝固和增强补缩效果,在靠近冒口的壁厚上补加倾斜的金属块 26.均衡凝固:利用铸铁件石墨的共晶膨胀消除缩松的工艺方法 27.缩孔与缩松:液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩减的容积得不到补充,则在铸件最后凝固的部位形成一些孔洞。大而集中的称为锁孔,细小而分散的称为缩松 28.收缩时间分数:铸铁件表观收缩时间与铸件凝固时间的比值 29.补缩量:铸件从浇注系统,冒口抽吸的补缩液量收缩模数:均衡凝固时均衡点的模数 30.复合材料:由有机高分子,无机非金属和金属等几类不同材料人工复合而成的新型材料。它既保留原组分的主要特征,又获得了原组分不具备的优越性能 31.机械加工余量:在铸件加工表面上流出的、准备切削去的金属厚度。 32.冒口补缩通道:末端多了一个散热面,散热快—构成一个朝向冒口而递增的温度梯度;存在平行于轴线的散热表面,形成一个朝向冒口的楔形的补缩通道 33.工艺出品率:铸件质量占铸件及浇注系统(含冒口)质量的比例 34.反重力铸造:指液态金属在与重力方向相反方向力的作用下完成充型,补缩和凝固过程的铸造成型方法 35.离心铸造:指将液态金属浇入高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法

制造工艺详解——铸造

制造工艺详解——铸造 铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。 一、铸造的定义和分类 铸造的定义:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。 常见的铸造方法有砂型铸造和精密铸造,详细的分类方法如下表所示。 砂型铸造:砂型铸造——在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 精密铸造:精密铸造是用精密的造型方法获得精确铸件工艺的总称。它的产品精密、复杂、接近于零件最后形状,可不加工或很少加工就直接使用,是一种近净形成形的先进工艺。

铸造方法分类 二、常用的铸造方法及其优缺点 1. 普通砂型铸造 制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用的铸造砂是硅质砂,硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。 砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分为粘土湿砂型、粘土干砂型和化学硬化砂型3种。

砂型铸造用的是最流行和最简单类型的铸件已延用几个世纪.砂型铸造是用来制造大型部件,如灰铸铁,球墨铸铁,不锈钢和其它类型钢材等工序的砂型铸造。其中主要步骤包括绘画,模具,制芯,造型,熔化及浇注,清洁等。 工艺参数的选择 加工余量:所谓加工余量,就是铸件上需要切削加工的表面,应预先留出一定的加工余量,其大小取决于铸造合金的种类、造型方法、铸件大小及加工面在铸型中的位置等诸多因素。 起模斜度:为了使模样便于从铸型中取出,垂直于分型面的立壁上所加的斜度称为起模斜度。 铸造圆角:为了防止铸件在壁的连接和拐角处产生应力和裂纹,防止铸型的尖角损坏和产生砂眼,在设计铸件时,铸件壁的连接和拐角部分应设计成圆角。 型芯头:为了保证型芯在铸型中的定位、固定和排气,模样和型芯都要设计

铸造工艺流程图

《铁-石墨自生金属型特种成型技术》的优越性 我公司重点项目为:《铁-石墨自生金属型特种成型技术》 我公司与上海交通大学材料系联合研发该项技术:《铁-石墨自生金属型特种成型技术》,技术水平处于国内领先地位,该技术及利用该技术生产的产品(FPM件主要用于汽车、机床、压缩机和液压件等)填补了省内空白。该技术是把铁碳合金在金属模中高速冷却,使得微观组织中的石墨形成致密的珊瑚状(具有分支的纤维),均匀分布在基体组织中。这种珊瑚状石墨由于是在合金液凝固过程中通过冷却速度的控制和加入微量元素而得到的,无须外加加入非金属强化材料(纤维或粒子),故被认为是自生复合材料。由于石墨本身具有优良的润滑性能,当该材料用于耐磨件时,一方面,石墨有润滑作用,另一方面,石墨剥落形成的显微凹坑可以在摩擦面上形成储油腔,使得在工件相互运动时可在配合面形成一层均匀的油膜,对材料起到保护作用.因此,铁-石墨自生复合材料作为高强度耐磨材料,具有广泛的用途。 表8 典型金属型铸铁化学成分、组织与性能

注:1.表中化学成分含量百分数皆指质量分数。 2.净化球墨铸铁铁液,控制Ti、Pb、S、Mn、Cu等元素对金属型球铁质量也十分重要。 ①Mg:高冷却速度(铜)型薄壁件低硫铁液加Mg0.01%即可使石墨完全球化。过高残Mg是造成多种金属型球墨铸铁件废、次品的主因。 ②P:增加流动性,又可防热裂,有的加到3.6%[53]。还加Sb0.02%~0.04%53]。磷加于炉料中的效果比加于铁液中明显。 ③Ti对灰铸铁可增加铁液过冷度,促进生成D型石墨。低CE作用明显。为保护机加工刀具Ti<0.075%。 该技术的主要优越性及先进性体现为:环境与资源是当今世界的两个重大课题。如何保护环境、节约资源是目前各国铸造工作者迫切追求的目标。为了实现这一目标,人们提出了绿色集约化铸造(绿色材料环境材料)的概念。所谓绿色集约化铸造是指铸造整个生产过程中应满足对环境无害、合理使用和节约自然资源、依靠科学技术得到最大的产出和效益等几个要求。所谓绿色材料是指资源和能源消耗小、对生态环境影响小、再生循环利用率高或可降解使用的具有优异实用性能的新型材料。按照这些要求,如前所述“铁-石墨自生金属型特种成型技术”代表了这一趋势。它除了在材料微观组织结构的优点,还摈弃了铁合金铸造中采用的砂型铸造的污染严重,劳动强度大等落后的生产方法。该技术生产的铸铁可保证致密无气孔、缩孔、缩松,工艺出品率高;铸铁尺寸精度高,表面光洁,加工量少且易加工(退火后);结晶细,性

金属模铸造

金属模铸造 金属型铸造工艺 1、概述 1.1铸造原理 金属铸造俗称硬模铸造,是用金属材料制造铸件,并在重力下将熔融金属浇入铸型获得铸件的工艺方法。由于一副金属型可以浇注几百次至几万次,故金属型铸造又称为永久型铸造。金属型铸造既适用于大批量生产形状复杂的铝合金、镁合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。 1.2工艺过程 1.3工艺特点 (1)优点 1)金属型的热导率和热容量大,冷却速度快,铸件组织致密,力学性能比砂型铸件高15%左右。 2)能获得较高尺寸精度和较低表面粗糙度值的铸件,并且质量稳定性好。 3)因不用和很少用砂芯,改善环境、减少粉尘和有害气体、降低劳动强度。 (2)缺点 1)金属型本身无透气性,必须采用一定的措施导出型腔中的空气和砂芯所产生的气体。2)金属型无退让性,铸件凝固时容易产生裂纹 3)金属型制造周期较长,成本较高。因此只有在大量成批生产时,才能显示出好的经济效果。 1.4金属型铸件的一般要求 金属型铸件最小壁厚(单位:mm) 铸件外廓尺寸 铸钢 件灰铸铁件 (含球墨铸铁) 可锻铁件 铝合金铸 件 镁合金铸 件 铜合金铸 件 <70×70 5 4 2.5-3.5 2-3 —— 3 70×70- 150×150 —— 5 —— 4 2.5 4-5 >150×150 10 6 —— 5 ——6-8

金属型铸件内孔的最小尺寸(单位:mm) 铸造合金孔的最小直径d 孔深 不通孔通孔 铸钢>12 >15 >20 铸铁>12 >15 >20 锌合金6~8 9~12 12~20 镁合金6~8 9~12 12~20 铝合金8~10 12~15 15~20 铜合金10~12 10~15 15~20 2.铸件工艺设计 2.1基准面的选择 基准面决定铸件各部分相对的尺寸位置。所以选择铸造基面时,必须和铸件机械加工的加工基准面统一,其选择原则为: 1)非全部加工的铸件,应尽量取非加工面作为基面。因为加工面在加工过程中,尺寸会因加工而变动,所以可能将造成相对尺寸位置的变动。而且铸件经过加工后,去掉的加工余面也不便检查。 2)采用非加工面作基面时,应该选尺寸变动最小、最可靠的面作基面。用活块形成的铸件表面最好不选为基面。 3)基面应尽可能平整和光洁,不应当有残余浇冒口、毛刺、飞翅等。 4)全部加工的零件,应取加工余量最小的面作为基面,以保证机械加工时不至因加工余量不够而造成废品。 5)为了检验尺寸方便,最好是选择较大的平面作为基面,尽量避免选取弯曲的面,或是有铸造斜度的面为基面。 2.2铸件在金属型中的位置 原则:①便于安放浇注系统,保证合金液平稳充满铸型 ②便于合金顺序凝固,保证补缩。 ③使型芯(或活块)数量最少、安装方便、稳固、取出容易。 ④力求铸件内部质量均匀一致,盖子类及碗状铸件可水平安放。 ⑤便于铸件取出,不致拉裂和变形。 2.3分型面的选择 原则:①简单铸件的分型面应尽量选在铸件的最大端面上 ②矮的盘形和筒形铸件的分型面应尽量不选在轴心上 ③分型面应尽可能地选在同一个平面上 ④应保证铸件分型方便,尽量用或不用活块 ⑤分型面的位置应尽量使铸件避免做铸造斜度,而且容易取出铸件 ⑥分型面应尽量不选在铸件的基准面上,也不要选在精度要求高的表面上 ⑦应便于安放浇冒口和便于气体从铸型中排出 2.4铸件工艺性设计 2.4.1铸件工艺性设计原则铸件工艺性设计应在尽量满足产品结构要求的前提下,通过调整

铸造成形工艺理论基础

第一篇金属的铸造成形工艺 第一章铸造成形工艺理论基础 §1-1 概述 金属液态成形工艺——铸造、液态冲压、液态模锻等 铸造(最广泛)——将液态合金浇注到与零件的形状、尺寸相适应的铸型空腔中,使其冷却凝固,得到毛坯或零件的成形工艺(生产方法)。 一、特点 1.能制成形状复杂、特别是具有复杂内腔的毛坯: 如:阀体、泵体、叶轮、螺旋浆等 2.铸件的大小几乎不受限制,重量从几克到几百吨 3.常用的原材料来源广泛,价格低廉,成本较低,其应用及其广泛 (如:机床、内燃机中铸件70~80%,农业机械40~70%) 但铸造生产过程较复杂,废品率一般较高,易出现浇不足,缩孔,夹渣、气孔、裂纹等缺陷。 二、分类 铸造 砂型铸造——90%以上,成本低 特种铸造——熔模、金属型、压力、低压、离心 质量、生产率高,成本也高 §1-2 铸造的工艺性能 工艺性能——符合某种生产工艺要求所需要的性能 铸造性能——合金的流动性、收缩性、吸气性、偏析等 一、合金的流动性 1.概念 指液态合金本身的流动能力,它是合金主要的铸造性能,流动性愈强,愈便于浇铸出轮廓清晰、薄而复杂的铸件。 同时,有利于非金属夹杂物和气体的上浮与排除,还有利于对合金冷凝过程所产生的收缩进行补缩。 流动性不好——浇不足、冷隔 [注]:流动性的测定——“螺旋形试样”(图1-1)

流动性愈好,浇出的试样愈长 灰铸铁、硅黄铜最好,铝合金次之,铸钢最差 2.影响合金流动性的因素 ①化学成分 共晶成分合金的结晶是在恒温下进行的,此时,液态合金从表层逐层向中心凝固,由于已结晶的固体层内表面比较光滑(图1-3a)对金属液的阻力较小。同时,共晶成分合金的凝固温度最低(铁碳合金状态图)。 相对说来,合金的过热度(浇注温度与合金熔点之温差)大,推迟了合金的凝固,故共晶成分合金的流动性最好。 除纯金属外,其它成分合金是在一定温度范围的逐步凝固,即经过液、固并存的两相区。此时,结晶是在截面上的一定宽度的凝固区内同时进行的,由于初生的“树枝状”晶体,使已结晶固体层的表面粗糙(图1-3b)所以,合金的流动性变差。 共晶生铁,流动性好。 [注]:降低金属液粘度——提高流动性 如加P—铸铁凝固温度、粘度↓→流动性好 但引起冷脆性(性能要求不高的小件) S→MnS→内摩擦(粘度↑)→流动性↓ ②浇注条件 浇注温度——温度↑→粘度↓过热度↑,保持液态时间长→流动性好,但过高→收缩增大,吸气增多,氧化严重→缩孔、缩松、气孔、粘砂等 控制浇注温度:灰铸铁:1200~1380℃ 铸铜:1520~1620℃ 铝合金:680~780℃ 浇注压力——压力愈大,流动性愈好 增加直浇口高度或采用压力铸造、离心铸造 ③铸型充填条件 铸型的蓄热能力——铸型材料的导热系数和比热愈大,对液态合金的“激冷” 能力愈强,流动性差。如:金属型比砂型铸造更容易产生浇不足等缺陷。 铸型中气体——在金属液的热作用下,型腔中气体膨胀,腔中气体压力增大——流动性差(阻力大) 改善措施:使型砂具有良好的透气性,远离浇口最高部位开设气口。 二、合金的收缩性

金属成形方法大全.docx

金属成形方法大全 铸造 液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。 工艺流程:液体金属→充型→凝固收缩→铸件 工艺特点: 1、可生产形状任意复杂的制件,特别是内腔形状复杂的制件。 2、适应性强,合金种类不受限制,铸件大小几乎不受限制。 3、材料来源广,废品可重熔,设备投资低。 4、废品率高、表面质量较低、劳动条件差。 铸造分类: (1)砂型铸造(sand casting) 在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。 工艺流程: 技术特点: 1、适合于制成形状复杂,特别是具有复杂内腔的毛坯; 2、适应性广,成本低; 3、对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。 应用:汽车的发动机气缸体、气缸盖、曲轴等铸件 (2)熔模铸造(investmentcasting) 通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。常称为“失蜡铸造”。

工艺流程: 优点: 1、尺寸精度和几何精度高; 2、表面粗糙度高; 3、能够铸造外型复杂的铸件,且铸造的合金不受限制。 缺点:工序繁杂,费用较高 应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。 (3)压力铸造(die casting) 利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。 工艺流程: 优点: 1、压铸时金属液体承受压力高,流速快 2、产品质量好,尺寸稳定,互换性好; 3、生产效率高,压铸模使用次数多; 4、适合大批大量生产,经济效益好。 缺点: 1、铸件容易产生细小的气孔和缩松。 2、压铸件塑性低,不宜在冲击载荷及有震动的情况下工作; 3、高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大。 应用:压铸件最先应用在汽车工业和仪表工业,后来逐步扩大到各个行业,如农业机械、机床工业、电子工业、国防工业、计算机、医疗器械、钟表、照相机和日用五金等多个行业。 (4)低压铸造(low pressure casting) 指使液体金属在较低压力(0.02~0.06MPa)作用下充填铸型,并在压力下结晶以形成铸件的方法。

铸造工艺流程图

《铁-石墨自生金属型特种成型技术》的优越性 我公司重点项目为:《铁-石墨自生金属型特种成型技术》 我公司与上海交通大学材料系联合研发该项技术:《铁-石墨自生金属型特种成型技术》,技术水平处于国内领先地位,该技 术及利用该技术生产的产品(FPM件主要用于汽车、机床、压缩机和液压件等)填补了省内空白。该技术是把铁碳合金在金属模中高速冷却,使得微观组织中的石墨形成致密的珊瑚状(具有分支的纤维),均匀分布在基体组织中。这种珊瑚状石墨由于是在合金液凝固过程中通过冷却速度的控制和加入微量元素而得到的,无须外加加入非金属强化材料(纤维或粒子),故被认为是自生复合材料。由于石墨本身具有优良的润滑性能,当该材料用于耐磨件时,一方面,石墨有润滑作用,另一方面,石墨剥落形成的显微凹坑可以在摩擦面上形成储油腔,使得在工件相互运动时可在配合面形成一层均匀的油膜,对材料起到保护作用.因此,铁-石墨自生复合材料作为高强度耐磨材料,具有广泛的用途。 表8典型金属型铸铁化学成分、组织与性能

注:1?表中化学成分含量百分数皆指质量分数。 2.净化球墨铸铁铁液,控制Ti、Pb、S、Mn、Cu等元素对金属型球铁质量也十分重要。 ①Mg :高冷却速度(铜)型薄壁件低硫铁液加MgO.01%即可使石墨完全球化。过高残Mg是造成多种金属型球墨铸铁件废、 次品的主因。 ②P:增加流动性,又可防热裂,有的加到 3.6%[53]。还加Sb0.02%?0.04%53]。磷加于炉料中的效果比加于铁液中明显。 ③Ti对灰铸铁可增加铁液过冷度,促进生成D型石墨。低CE作用明显。为保护机加工刀具Ti V 0.075%。 该技术的主要优越性及先进性体现为:环境与资源是当今世界的两个重大课题。如何保护环境、节约资源是目前各国 铸造工作者迫切追求的目标。为了实现这一目标,人们提出了绿色集约化铸造(绿色材料环境材料)的概念。所谓绿色集约化铸造是指铸造整个生产过程中应满足对环境无害、合理使用和节约自然资源、依靠科学技术得到最大的产出和效 益等几个要求。所谓绿色材料是指资源和能源消耗小、对生态环境影响小、再生循环利用率高或可降解使用的具有优异 实用性能的新型材料。按照这些要求,如前所述“铁-石墨自生金属型特种成型技术”代表了这一趋势。它除了在材料微观组织结构的优点,还摈弃了铁合金铸造中采用的砂型铸造的污染严重,劳动强度大等落后的生产方法。该技术生产的 铸铁可保证致密无气孔、缩孔、缩松,工艺出品率高;铸铁尺寸精度高,表面光洁,加工量少且易加工(退火后);结晶细,性

金属型铸造

金属型铸造 将金属液浇注到金属铸型中,待其冷却后获得铸件的方法叫金属型铸造。由于金属型能反复使用很多次,又叫永久型铸造。 一、金属型的结构 一般的,金属型用铸铁和铸钢制成。铸件的内腔既可用金属芯、也可用砂芯。金属型的结构有多种,如水平分型、重直分型及复合分型。如图2.2所示。其中垂直分型便于开设内浇口和取出铸件;水平分型多用来生产薄壁轮状铸件;复合分型的上半型是由垂直分型的两半型采用铰链连结而成,下半型为固定不动的水平底板,主要应用于较复杂铸件的铸造。 二、金属型铸造型的工艺特点 金属型的导热速度快和无退让性,使铸件易产生浇不足、冷隔、裂纹及白口等缺陷。此外,金属型反复经受灼热金属液的冲刷,会降低使用寿命,为此应采用以下辅助工艺措施。 1.预热金属型 浇注前预热金属型,可减缓铸型的冷却能力,有利于金属液的充型及铸铁的石墨化过程。生产铸铁件,金属型预热至250~350℃;生产有色金属件预热至100~250℃。 2.刷涂料 为保护金属型和方便排气,通常在金属型表面喷刷耐火涂料层,以免金属型直接受金属液冲蚀和热作用。因为调整涂料层厚度可以改变铸件各部分的冷却速度,并有利于金属型中的气体排出。浇注不同的合金,应喷刷不同的涂料。如铸造铝合金件,应喷刷由氧化锌粉、滑石粉和水玻璃制成的涂料;对灰铸铁件则应采用由石墨粉、滑石粉、耐火粘土粉及桃胶和水组成的涂料。 3.浇注 金属型的导热性强,因此采用金属铸型时,合金的浇注温度应比采用砂型高出20~30℃。一般的,铝合金为680℃~740℃;铸铁为1300℃~1370℃;锡青铜为1100~1150℃。薄壁件取上限,厚壁件取下限。铸铁件的壁厚不小于15mm,以防白口组织。 4.开型 开型愈晚,铸件在金属型内收缩量愈大,取出采用困难,而且铸件易产生大的内应力和裂纹。通常铸铁件的出型温度700~950℃,开型时间为浇注后10~60秒。 三、金属型铸造的特点和应用范围 与砂型铸造相比,金属型铸造有如下优点:

熔模铸造工艺流程-图文.

熔模铸造工艺流程 模具制造 制溶模及浇注系 统 模料处理 模组焊接 模组清洗 上涂料及撒砂 涂料制备 重

复 型壳干燥(硬化 多 次 脱蜡 型壳焙烧 浇注 熔炼 切 割 浇 口 抛 光 或 机

工 钝化 修整焊补 热处理 最后清砂 喷丸或喷砂 磨内

口 震 动 脱 壳 模料 制熔模用模料为日本牌号:K512模料 模料主要性能: 灰分≤0.025% 铁含量灰分的10% ≤0.0025% 熔点 83℃-88℃(环球法)60℃±1℃ 针入度 100GM(25℃)3.5-5.0DMM 450GM(25℃)14.0-18.0DMM 收缩率 0.9%-1.1% 比重 0.94-0.99g/cm3 颜色新蜡——兰色、深黄色 旧蜡——绿色、棕色

蜡(模)料处理 工艺参数: 除水桶搅拌时温度 110-120℃ 搅拌时间 8-12小时 静置时温度 100-110℃ 静置时间 6-8小时 静置桶静置温度 70-85℃ 静置时间 8-12小时 保温箱温度 48-52℃ 时间 8-24小时 二、操作程序 1、从脱蜡釜泄出的旧蜡用泵或手工送到除水桶中,先在105-110℃下置6-8小时沉淀,将水分泄掉。 2、蜡料在110-120℃下搅拌8-12小时,去除水份。 3、将脱完水的蜡料送到70-85℃的静置桶中保温静置桶中保温静置8-12小时。 4、也可将少量新蜡加入静置桶中,静置后清洁的蜡料用手工灌到保温箱蜡缸中,保温温度48-52℃,保温时间8-24小时后用于制蜡模。

5、或把静置桶中的回收蜡料输入到气动蜡模压注机的蜡桶中,保温后压制浇道。 三、操用要点 1、严格按回收工艺进行蜡料处理。 2、除水桶、静置桶均应及时排水、排污。 3、往蜡缸灌蜡时,蜡应慢没缸壁流入,防止蜡液中进入空气的灰尘。 4、蜡缸灌满后应及时盖住,避免灰尘等杂物落入。 5、经常检查每一个桶温,防止温度过高现象发生。 6、作业场地要保持清洁。 7、防止蜡液飞溅。 8、严禁焰火,慎防火灾。 压制蜡(熔)模 一、工艺参数 室温20-24℃压射蜡温50-55℃ 压射压力0.2-0.5Mpa 保压时间10-20S 冷却水温度15±3℃ 二、操作程序

铸造的种类与优缺点简介[整理]

铸造的种类与优缺点简介[整理] 铸造的种类与优缺点简介:铸造是将通过熔炼的金属液体浇注入铸型内,经冷却凝固获得所需形状和性能的零件的制作过程。铸造是常用的制造方法,优点是:制造成本低,工艺灵活性大,可以获得复杂形状和大型的铸件,在机械制造中占有很大的比重,如机床占60,80%,汽车占25%,拖拉机占50,60%。 种类:铸造工艺可分为重力铸造、压力铸造和砂型铸造。铸造方法常用的是砂型铸造,其次是特种铸造方法,如:金属型铸造、熔模铸造、石膏型铸造等。而砂型铸造又可以分为粘土砂型铸造、有机粘结剂砂型铸造、树脂自硬砂型铸造、消失模铸造等等。 重力铸造:重力铸造是指金属液在地球重力作用下注入铸型的工艺,也称浇铸。广义的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。 压力铸造:压力铸造是指金属液在其他外力(不含重力)的作用下注入铸型的工艺。广义的压力铸造包括压铸机的压力铸造和真空铸造、低压铸造、离心铸造等;窄义的压力铸造专指压铸机的金属型压力铸造,简称压铸。这几种铸造工艺是目前有色金属铸造中最常用的、也是相对价格最低的。 砂型铸造:砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。砂型一般采用重力铸造,有特殊要求时也可采用低压铸造、离心铸造等工艺。砂型铸造的适应性很广,小件、大件,简单件、复杂件,单件、大批量都可采用。砂型铸造用的模具,以前多用木材制作,通称木模。木模缺点是易变形、易损坏;除单件生产的砂型铸件外,可以使用尺寸精度较高,并且使用寿命较长的铝合金模具或树脂模具。虽然价格有所提高,但仍比金属型铸造用的模具便宜得多,在小批量及大件生产中,价格优势尤为突出。此外,砂型比金属型耐火度更高,因而如铜

铸造工艺流程介绍

铸造生产的工艺流程 铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序: 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图; 2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备; 3)造型与制芯; 4)熔化与浇注; 5)落砂清理与铸件检验等主要工序。 成形原理 铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。 图1 铸造成形过程

铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。 型砂的性能及组成 1、型砂的性能 型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。2、型砂的组成 型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。型砂结构,如图2所示。 图2 型砂结构示意图 工艺特点 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点:1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。 2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。 4)铸件一般使用的原材料来源广、铸件成本低。 5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 铸件的手工造型 手工造型的主要方法 砂型铸造分为手工造型(制芯)和机器造型(制芯)。手工造型是指造型和制芯的主要工作均由手工完成;机器造型是指主要的造型工作,包括填砂、紧实、起模、合箱等由造型机完成。泊头铸造工量具友介绍手工造型的主要方法: 手工造型因其操作灵活、适应性强,工艺装备简单,无需造型设备等特点,被广泛应用于单件小批量生产。但手工造型生产率低,劳动强度较大。手工造型的方法很多,常用的有以下几种: 1.整模造型 对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。整模造型操作简便,造型时整个模样全部置于一个砂箱内,不会出现错箱缺陷。整模造型适用于形状简单、最大截面在端部的铸件,如齿轮坯、轴承座、罩、壳等(图2)。

1金属型铸造

第一节金属模铸造 一、铸造原理 金属型铸造俗称硬模铸造,是用金属材料制造铸型,并在重力下将熔融金属浇入铸型获得铸件的工艺方法。由于一副金属型可以浇注几百次及至数万次,故金属型铸造又称为永久型铸造。金属型铸造既适用于大批量生产形状复杂的铝合金、镁合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。由于金属型铸造具有很多优点,故广泛地应用于发动机、仪表、农机等工业部门。 古代金属型称铁范。近代的压力铸造、低压铸造、挤压铸造、离心铸造、连续铸造、真空吸铸等,虽然也应用金属型,但由于金属液不是在重力下充型,故各自形成了单独门类的特种铸造方法。 二、工艺过程 金属型铸造工艺流程图如图所示。

三、铸造工艺特点 (一)优点 (1)金属型的热导率和热容量大,冷却速度快,铸件组织致密,力学性能比砂型铸高15%左右。 (2)能获得较高尺寸精度和较低表面粗糙度值的铸件,并且质量稳定性好,废品率低,工艺出品率高。 (3)因不用或很少用型砂,节省了型砂运输和型砂处理所需的费用和大量劳动力,减少了粉尘和有害气体的污染,改善了劳动环境。 (4)易于实现机械化、自动化、生产效率高,技术容易掌握,便于生产管理。 (二)缺点 (1)金属型本身无透气性,必须采用一定的措施导出型腔中的空气和砂芯所产生的气体。 (2)金属型无退让性,铸件凝固时容易产生裂纹和变形,不适用于热裂倾向大的合金。 (3)金属型制造周长较大,成本较高。因此只有在大量成批生产时,才能显示出好的经济效果。 表8-8-1 表8-8-5 给出了几种材料金属型铸造和砂型铸造件力学性能的比较。

四、铸造工艺应用范围 (1)合金种类:除某些热裂倾向大的合金不宜采用金属型铸造外,所有的常用铸造合金都以用金属型铸造,特别是铝、镁合金应用最广。 (2)铸件形装和大小:金属型铸造一般适用于铸造不太复杂的零件。铸造非铁合金可以铸造复杂的零件,如气冷式发动机的气缸盖、液压泵壳体、各种机匣等,钢铁金属只能铸造简单零件。铝、镁合金铸件重量一般从几十克到几十千克,钢铁金属铸件由几千克到几百千克。

文献翻译—铸造及其他成形工艺

附录 英文: Casting and Other Forming Processes DeGarmo, E. Paul et al. Materials and Processes in Manufacturintg. John Wiley & Song, 1998. P205-211 Casting Casting is the introduction of molten metal into a cavity or mold where, upon solidification, it becomes an object whose shape is determined by mold configuration. Casting offers several advantages over other method of metal forming: it is adaptable to intricate shapes, to extremely large pieces, and to mass production; it can provide parts with uniform physical and mechanical properties through out and, depending on the particular material being cast, the design of the part, and the quantity being produced, its economic advantages can surpass other processes. Categories Two broad categories of metal-casting processes exist: ingot casting (which includes continuous casting) and casting to shape. Ingot castings are produced by pouring molten metal into a permanent or reusable mold. Following solidification these ingots (or bars, slabs, or billets, as the case may be) are then further processed mechanically into many new shapes. Casting to shape involves pouring molten metal into molds in which the cavity provides the final useful shape, followed only by machining or welding for the specific application. Ingot casting Ingot castings make up the majority of all metal castings and are separated into three categories: static cast ingots, semi-continuous or direct-chill cast ingots, and continuous cast ingots. Static cast ingots Static ingot casting simply involves pouring molten metal into a permanent mold. After solidification, the ingot is withdrawn from the mold and the mold can be reused. This method is used to produce millions of tons steel annually. Semi-continuous cast ingots A semi continuous casting process is employed in

金属铸造工艺

金属铸造工艺 铸造是人类最早知道的金属成型方法之一。它一般是将熔融金属倒入耐火模具型腔中,并将其凝固。凝固后,所需的成品是从难冶塑的的模具中要么用打破模具要么用分开模具的方法取出的。这个凝固的成品称为铸造产品。这个过程也称为铸造过程。 1.1 铸造的历史 最早的铸造国家是美索不达米亚,最早铸件大约在公元前3500年左右。在世界许多地区的这个时期,铜器和其他平面物体是用石头或烘烤的粘土为模具来铸造的。这些模具基本上都是单件。但在后期,要求铸造圆形铸件时,为了方便铸件的取出,模具必须分成两部分甚至多个部分。 青铜器时代(公元前2000年)的铸造工艺更加精细。也许是最早的时期,空心铸件诞生了。这些铸件内部用的是烤粘土。蜡模铸造法这种工艺被广泛应于加工精细的首饰上。 铸造技术曾在公元前1500年左右在中国得到极大的提高。在此之前,中国还未发现铸造工艺的痕迹。它既不像失蜡法铸模工艺也不广泛使用,而是特殊的使用在多件模具铸造上来制造出高难度的工作。他们花了很多时间在完善产品上甚至到每个细节,因此每一件产品都花费了大量的时间。他们可能用30个甚至更多的精细的模具来制造产品。事实上,在中国各地考古中都曾发现过这些模具。

印度河流域也文明于他们的铜铸件,在装饰,武器,工具和铜铸件上。但是并没有技术上的改进。从各种不同的出土的铜铸件和陶俑来看,印度和中国似乎有着相同的铸造技术,如片模,开模和蜡模具。 尽管印度可能会在坩埚钢的发明上闻名,但是在印度还没有发现铁制品的证据。证据表明,铁的发现是在公元前1000左右在叙利亚和波斯。印度的铁铸造技术是在公元前300左右由亚历山大王朝时代传入的。 在奎塔布的新德里附近的著名的铁柱是印度古冶铁技术的时代标志。这个长约7.2米的铁柱是由纯可锻铸铁铸成的。这铁柱被认为是在古谱塔王朝查德古谱踏二世(公元前375-413年)时期建造的。这根铁柱露在外面的的部分锈蚀率基本为零,甚至埋在地下的部分的也是在以很缓慢的速度在锈蚀。这一定是先铸造然后再捶打到现在的模样。 1.2优点和局限性 铸造在制造过程中被广泛应用是因为它有很多优点。由于熔融金属可以流入模具的任何一个小的地方,因此无论是内部形状复杂的还是外部形状复杂的都可以用铸造来造成。无论是有色金属还是无色金属都可以用铸造来完成。另外,铸造所需的模具的工具非常的简单和便宜。因此试生产和小批量生产,铸造是一种理想的生产方法。只有在铸造工艺过程中才能计算出所需的材料的准

金属的铸造成形工艺

第二篇金属的塑性成形工艺 金属塑性成形——在外力作用下,金属产生了塑性变形,以此获得具有一定形状、尺寸和机械性能的原材料、毛坯或零件。 此生产方法称金属塑性成形(也称压力加工) 外力冲击力——锤类设备 压力——轧机、压力机 有一定塑性的金属——压力加工(热态、冷态) 基本生产方法: 1.轧制——钢板、型材、无缝管材(图6-1)(图6-2) 2.挤压——低碳钢、非铁金属及其合金(图6-3)(图6-4) 3.拉拔——各种细线材,薄壁管、特殊几何形状的型材(图6-5)(图6-6)4.自由锻——坯料在上、下砥铁间受冲击力或压力而变形(图6-7a) 5.模锻——坯料在锻模模腔内受冲击力或压力而变形(图6-7b) 6.板料冲压——金属板料在冲模之间受压产生分离或变形的加工方法(图6-7c) 金属的原材料,大部通过轧制、挤压、拉拔等制成。 第六章金属塑性成形的工艺理论基础 压力加工——对金属施加外力→塑性变形 金属在外力作用下,使其内部产生应力——发生弹性变形外力>屈服应力塑性变形 塑性变形过程中一定有弹性变形存在,外力去除后,弹性变形将恢复→“弹复”现象,它对有些压力加工件的变形和工件质量有很大影响,须采取工艺措施的保证产品质量。 §6-1 塑性变形理论及假设 一、最小阻力定律 金属塑性成形问题实质,金属塑性流动,影响金属流动的因素十分复杂(定量很困难)。应用最小阻力定律——定性分析(质点流动方向) 最小阻力定律——受外力作用,金属发生塑性变形时,如果金属颗粒在几个方向上都可移动,那么金属颗粒就沿着阻力最小的方向移动。 利用此定律,调整某个方向流动阻力,改变金属在某些方向的流动量→成形

金属型铸造生产实例

金属型铸造生产实例 关键词:生产实例 由于金属型铸造的合金很多,铸件的形状、大小、复杂程度以及技术要求差别很大,因此铸造工艺是千变万化的。对于具体问题,必须进行具体分析,并结合实际情况,灵活处理,反复实验总结,才能得出比较合适的工艺方案,现将铸件的生产实例按铸造合金分类介绍如下。 1 铸铁件金属型铸造实例 1.1 球墨铸铁齿轮 齿轮是最常见的机械零件,工作运行中承受较大的负荷,因此不仅机械加工尺寸精度高,对铸件的质量和力学性能要求也十分严格。鉴于金属型铸造的优点(见1.2金属型铸造工艺特点),现将齿轮作为轮形铸件的典型代表,介绍其金属型铸造生产工艺。 1)铸件情况:材质QT500-7,零件净重10.4kg,见图JSXT-114;铸件毛重13kg,见图JSXT-115。 2)金属型形式:由于生产批量大,为提高效率,采用金属型铸造机生产。考虑到具体齿轮毛坯的结构和尺寸(见图JSXT-116),确定采用垂直分型式金属型,定型和动型结构尺寸见图JSXT-117~图JSXT-118。同时由于254/66>1(见2.2.2 浇注系统的结构形式),故采用底注式。 3)冒口:鉴于球墨铸铁的糊状凝固方式和石墨化膨胀特性,集中设置一个明冒口补缩兼排气和集渣。冒口的尺寸计算见表JSXB-35,尺

寸为下端70×32mm,上端100×48mm,高105mm,见图JSXT-116。4)浇注系统:直浇道和横浇道截面选择见图JSXT-16 和图JSXT-18,考虑到动型开合及顶出铸件方便选为为半圆形。尺寸计算见2.2.4金属型浇注系统计算方法,尺寸为φ36mm(半圆);内浇道一个(过多内浇口数量不仅增加铸件顶出阻力、清理麻烦,同时也容易产生因浇注不稳定所造成的卷气现象。因此,在满足浇注系统各截面积比例而又确保不增大铸件热节的情况下尽量减少内浇口数量),尺寸为 60×8mm,参见铸造工艺图(图JSXT-116)。 5)涂料:该齿轮铸件由于轴孔和辐板减重孔分别铸出,开型相对比较困难,铸件顶出阻力较大,故采用润滑性好的石墨涂料——即铸铁Ⅰ号(见表JSXB-125) 6)金属型工作温度:见表JSXB-97。由于铸件表面产生皱纹,故适当提高金属型的工作温度——大于240℃。 7)浇注:浇注温度(见表JSXB-129)为1340~1380℃;浇注时间按(JSX-3)式和(JSX-4)式计算为12~15s。 8)开型;铸件的开型时间见6.3.3铸件脱型,考虑到季节的温差,确定夏季浇注后3~5min开型;冬季浇注后2~4min开型 9)铸造工艺卡:作为主要生产技术文件之一,工艺卡内容的填写应根据前述理论数据、表格、计算公式并结合具体铸件的实际情况和生产试制结果、经验来完成。 金属型铸造工艺卡填写说明

金属锻造成形的基本知识

金属锻造成形的基本知识 锻造的根本目的:获得所需形状和尺寸的锻件,同时要求性能和组织符合一定的技术要求。锻造的特点是利用金属的塑性流动来成形的,(借助于外力的作用产生塑性变形,获得所需形状、尺寸)在成形过程中不仅坯料的重量基本是不变的,而且体积也是基本不变,只有组织和性能发生变化。优点是锻件内部致密且组织比较均匀,性能高于铸件和焊接件,缺点是需要较大的变形力。 锻造的分类: 按工具和模具安置情况分为自由锻和模锻;按温度分为热锻、温锻、冷锻。 钢的加热规范: 指钢料从装炉开始到出炉前(始锻温度)的整个过程,对炉温和料温随时间变化的关系所作的规定。 火焰加热是利用燃料(煤、油、气)燃烧所产生的热能直接加热金属的方法。优点:炉子修造容易,费用低,加热适应性强;缺点:劳动条件差,加热质量难控制。 电加热是利用电能转换为热能来加热金属的方法。优缺点与上相反,但铝合金由于熔点低必须电加热。 锻造温度范围的确定: 是指始锻温度和终锻温度间的一段温度间隔,在锻造温度范围内金属应具有良好的可锻性(足够的塑性,低的变形抗力)和合适的金相组织,为了减少火次,都力求扩大温度范围。

始锻温度:一般低于Fe-C液相图150~250℃,首先保证无过烧现象。 一般低碳1300℃,中碳1230℃,高碳1150℃。 终端温度:在结束锻造之前,金属还应有足够的塑性,以锻后能获得再结晶组织,没有加工硬化现象为原则。过高的终锻温度会使锻件晶粒在冷却过程中继续长大,从而降低机械性能;过低终锻温度,由于塑性极低造成加工硬化现象,甚至产生裂纹。 锻造比:是表示金属变形程度大小的指标,它关系着铸造粗大晶粒的破碎,内部缺陷的锻合,是保证锻件内部质量和满足性能要求的重要依据。 1、镦粗比的计算:镦粗的目的是为了增大横截面积,打碎金属内 部粗大晶粒结构,获得较好的内部质量。Y镦=(S后/S前截面积)(H ) 前/H后高度 2、拔长锻造比的计算:拔长目的在于减小截面尺寸,增大长度尺 寸。Y拔=(S前/S后)(L后/L前长度) 3、有镦粗和拔长,两者叠加。 锻造比的选择:由于标志金属变形程度的大小。 钢锭作为锻造坯料时:碳素钢Y≥3;合金钢Y≈3~4。 轧材或锻坯作坯料时:Y≥1.5。 镦粗前坯料的高度与直径之比,应控制2~2.5,最大不超过3。 工艺: 1、热锻:是目前应用最广的一种锻造工艺。经过热锻,内部组织发

相关主题