搜档网
当前位置:搜档网 › 对称加密算法实验报告

对称加密算法实验报告

对称加密算法实验报告
对称加密算法实验报告

DES算法实验报告

DES算法实验报告 姓名:学号:班级: 一、实验环境 1.硬件配置:处理器(英特尔Pentium双核E5400 @ 2.70GHZ 内存:2G) 2.使用软件: ⑴操作系统:Windows XP 专业版32位SP3(DirectX 9.0C) ⑵软件工具:Microsoft Visual C++ 6.0 二、实验涉及的相关概念或基本原理 1、加密原理 DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。 三、实验内容 1、关键代码 ⑴子密钥产生

⑵F函数以及加密16轮迭代 2、DES加密算法的描述及流程图 ⑴子密钥产生 在DES算法中,每一轮迭代都要使用一个子密钥,子密钥是从用户输入的初始密钥产生的。K是长度为64位的比特串,其中56位是密钥,8位是奇偶校验位,分布在8,16,24,32,40,48,56,64比特位上,可在8位中检查单个错误。在密钥编排计算中只用56位,不包括这8位。子密钥生成大致分为:置换选择1(PC-1)、循环左移、置换选择2(PC-2)等变换,分别产生16个子密钥。 DES解密算法与加密算法是相同的,只是子密钥的使用次序相反。 ⑵DES加密算法 DES密码算法采用Feistel密码的S-P网络结构,其特点是:加密和解密使用同一算法、

密码学对称加密算法

对称加密算法 一、网络安全 1.网络安全 (1) 网络的安全问题:有以下四个方面 A. 端-端的安全问题,主要指用户(包括代理)之间的加密、鉴别和数据完整性维护。 B. 端系统的安全问题,主要涉及防火墙技术 C. 安全服务质量问题,主要指如何保护合法用户的带宽,防止用户非法占用带宽。 D. 安全的网络基础设施,主要涉及路由器、DNS服务器,以及网络控制信息和管理信息的安全问题。 (2)网络的安全服务:有以下五个方面 A.身份认证:这是考虑到在网络的应用环境下,验证身份的双方一般是通过网络而非直接交互,所以传统的验证手段如根据对方的指纹等方法就无法应用。同时大量的黑客随时都可能尝试向网络渗透,截获合法用户的口令并冒充顶替,以合法身份入网。所以应该提供一种安全可靠的身份认证的手段。 B.授权控制:授权控制是控制不同用户对信息资源的访问权限。授权控制是以身份认证为基础的。通过给不同用户的提供严格的不同层次和不同程度的权限,同时结合可靠的身份认机制,可以从很大程度上减少非法入侵事件发生的机会。 C.数据加密:数据加密技术顾名思义。在互联网上应用加密技术来保证信息交换的可靠性已经的到了人们普遍的认可,已经进入了应用阶段。目前的加密技术主要有两大类:一类是基于对称密钥加密的算法,另一类是基于非对称密钥加密的算法。它们都已经达到了一个很高的强度,同时加密算法在理论上也已经相当的成熟,形成了一门独立的学科。而从应用方式上,一般分成软件加密和硬件加密。前者成本低而且实用灵活,更换也方便;而后者加密效率高,本身安全性高。在应用中,可以根据不同的需要来进行选择。 D.数据完整性:数据完整性是指通过网上传输的数据应该防止被修改、删除、插入、替换或重发,以保证合法用户接收和使用该数据的真实性。 E.防止否认:在网上传输数据时,网络应提供两种防止否认的机制:一是防止发送方否认自己发送过的信息,而谎称对方收到的信息是别人冒名或篡改过的;二是防止接收方否认自己收到过信息。利用非对称加密技术可以很好的实现第一个否认机制。 二、加密技术 (1) 加密技术的产生和发展 A. 古代,目前记录的比较早的是一个在公元前2世纪,由一个希腊人提出来的,26个字母放在一个5×5的表格里,这样所有的源文都可以行列号来表示。 B. 近代,在第二次世界大战里,密码机(如紫罗兰)得到了比较广泛的已经技术,同时破译密码的技术也得到了发展,出现了一次性密码技术。同时密码技术也促进了计算机的发展。 C. 现代,由于计算机和计算机网络的出现,对密码技术提出了更高的需求。密码学的论文和会议不断的增加,以密码技术为主的商业公司开始出现,密码算法层出不穷,并开始走向国际标准化的道路,出现了DES,AES等国家(美国的)标准。同时各个国家和政府对密码技术也越来越重视,都加密技术的出口和进口都作了相当严格的规定。 (2) 加密技术的分类 A.对称加密技术 a. 描述 对称算法(symmetric algorithm),有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的。所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信性

现代密码学实验报告

现代密码学 实验报告 学生姓名 学号 专业班级计算机科学与技术指导教师段桂华 学院信息科学与工程学院完成时间2016年4月

实验一密码算法实验 [实验目的] 1.掌握密码学中经典的对称密码算法AES、RC4的算法原理。 2.掌握AES、RC4的算法流程和实现方法。 [实验预备] 1.AES算法的基本原理和特点。 2.流密码RC4的密钥流生成以及S盒初始化过程。 [实验内容] 1. 分析AES、RC4的实现过程。 2. 用程序设计语言将算法过程编程实现。 3. 完成字符串数据的加密运算和解密运算 输入十六进制明文:11223344556677889900AABBCCDDEEFF 输入十六进制密钥:13579BDF02468ACE1234567890ABCDEF [实验步骤] 1. 预习AES、RC4算法。 2. 写出算法流程,用程序设计语言将算法过程编程实现。 3. 输入指定的明文、密钥进行实验,验证结果。 4. 自己选择不同的输入,记录输出结果。 写出所编写程序的流程图和运行界面、运行结果。 一、AES算法 1、AES算法简介 AES 是一种可用来保护电子数据的新型加密算法。特别是,AES 是可以使用128、192 和 256 位密钥的迭代式对称密钥块密码,并且可以对 128 位(16 个字节)的数据块进行加密和解密。与使用密钥对的公钥密码不同的是,对称密钥密码使用同一个密钥来对数据进行加密和解密。由块密码返回的加密数据与输入数据具有相同的位数。迭代式密码使用循环结构来针对输入数据反复执行排列和置换运算。 2、算法实现及流程 以加密函数为例,如下所示,首先对密钥进行预处理密钥扩展,然后明文进行Nr(Nr与密钥长度有关)次迭代运算,包括字节替换SubBytes、移位行运算ShiftRows、混合列运算MixColumns、以及轮秘钥加密AddRoundKey。

实验四RSA加解密算法的实现

实验四 RSA加解密算法的实现 一.实验目的 1、对算法描述可进行充分理解,精确理解算法的各个步骤。 2、完成RSA软件算法的详细设计。 3、用C++完成算法的设计模块。 4、编制测试代码。 二.实验内容 1.实验原理及基本技术路线图(方框原理图) 加密过程: 第一步,用户首先输入两个素数p和q,并求出 n = p*q,然后再求出n的欧拉函数值phi。 第二步,在[e,phi]中选出一个与phi互素的整数e,并根据e*d ≡1(mod phi),求出e的乘法逆元。至此我们已经得到了公开密钥{e,n}和秘密密钥{d,n}。 第三步,让用户输入要进行加密的小于n一组正整数(个数不超过MAXLENGTH=500),输入以-1为结束标志,实际个数存入size中,正整数以clear[MAXLENGTH]保存。 第四步,对第三步所得的明文clear[MAXLENGTH]进行加密。遍历clear[size],对每一个整数用以下算法进行加密,并将加密后的密文保存在Ciphertext[MAXLENGTH]中。 注意:此处不能用m2[j] = clear[j] ^ e整数的幂,因为当e和clear[j]较大时,会发生溢出,至使出现无法预料的结果。 第五步,输出加密后的密文。 解密过程: 第一步,根据在以上算法中求出的解密密钥[d,phi],对加密后的密文Ciphertext[MAXLENGTH]进行解密,结果保存在DecryptionText[MAXLENGTH]中,算法如下: 第二步,输出对加密前的明文和加密并解密后的密文进行比较,判断两个数组是否一致,从而得知算法是否正确。

2.所用仪器、材料(设备名称、型号、规格等) 计算机一台、vc6.0 3.实验方法、步骤 #include #include using namespace std; #define MAXLENGTH 500 //明文最大长度,即所允许最大整数个数 int size = 0;//保存要进行加密的正整数的个数 int p, q; //两个大素数 int n, phi; //n = p * q,phi = (p-1) * (q-1) 是n的欧拉函数值 int e; //{e, n}为公开密钥 int d; //{d, n}为秘密密钥 int clear[MAXLENGTH], Ciphertext[MAXLENGTH];//分别用于存放加//密前的明//文和加密后的密文int DecryptionText[MAXLENGTH];//存放解密后的明文 //////////////////////////////////////////////////////////// //以下为加密算法 void Encryption() {//加密算法 cout << " 请输入两个较大的素数:" ; cin >> p >> q ; cout << " p = " << p << ", q = " << q << endl; n = p * q;//求解 n, phi = (p - 1) * ( q - 1 );//求解 n 的欧拉函数值 cout << " n = " << n << ", phi = " << phi << endl; cout << " 请从[0," << phi - 1 << "]中选择一个与 " << phi << " 互素的数 e:"; cin >> e; float d0; for( int i = 1; ; i++) {///求解乘法逆元 e * d ≡ 1 (mod phi) d0 = (float)(phi*i+1) / e; if( d0 - (int)d0 == 0 ) break; } d = (int)d0; cout << endl; cout << " e = " << e << ", d = " << d << endl; cout << " 公开密钥 Pk = {e,n} = {" << e << "," << n << "}" << endl; cout << " 秘密密钥 Sk = {d,n} = {" << d << "," << n << "}" << endl; cout << endl;

数据加密实验报告

实验报告 课程:计算机保密_ _ 实验名称:数据的加密与解密_ _ 院系(部):计科院_ _ 专业班级:计科11001班_ _ 学号: 201003647_ _ 实验日期: 2013-4-25_ _ 姓名: _刘雄 _ 报告日期: _2013-5-1 _ 报告评分:教师签字:

一. 实验名称 数据加密与解密 二.运行环境 Windows XP系统 IE浏览器 三.实验目的 熟悉加密解密的处理过程,了解基本的加密解密算法。尝试编制基本的加密解密程序。掌握信息认证技术。 四.实验内容及步骤 1、安装运行常用的加解密软件。 2、掌握加解密软件的实际运用。 *3、编写凯撒密码实现、维吉尼亚表加密等置换和替换加解密程序。 4、掌握信息认证的方法及完整性认证。 (1)安装运行常用的加解密软件,掌握加解密软件的实际运用 任务一:通过安装运行加密解密软件(Apocalypso.exe;RSATool.exe;SWriter.exe等(参见:实验一指导))的实际运用,了解并掌握对称密码体系DES、IDEA、AES等算法,及非对称密码体制RSA等算法实施加密加密的原理及技术。 ?DES:加密解密是一种分组加密算法,输入的明文为64位,密钥为56位,生成的密文为64位。 ?BlowFish:算法用来加密64Bit长度的字符串或文件和文件夹加密软件。 ?Gost(Gosudarstvennyi Standard):算法是一种由前苏联设计的类似DES算法的分组密码算法。它是一个64位分组及256位密钥的采用32轮简单迭代型加密算法. ?IDEA:国际数据加密算法:使用128 位密钥提供非常强的安全性; ?Rijndael:是带有可变块长和可变密钥长度的迭代块密码(AES 算法)。块长和密钥长度可以分别指定成128、192 或256 位。 ?MISTY1:它用128位密钥对64位数据进行不确定轮回的加密。文档分为两部分:密钥产生部分和数据随机化部分。 ?Twofish:同Blowfish一样,Twofish使用分组加密机制。它使用任何长度为256比特的单个密钥,对如智能卡的微处理器和嵌入在硬件中运行的软件很有效。它允许使用者调节加密速度,密钥安装时间,和编码大小来平衡性能。 ?Cast-256:AES 算法的一种。 (同学们也可自己下载相应的加解密软件,应用并分析加解密过程) 任务二:下载带MD5验证码的软件(如:https://www.sodocs.net/doc/5a10258510.html,/downloads/installer/下载(MySQL):Windows (x86, 32-bit), MSI Installer 5.6.11、1.5M;MD5码: 20f788b009a7af437ff4abce8fb3a7d1),使用MD5Verify工具对刚下载的软件生成信息摘要,并与原来的MD5码比较以确定所下载软件的完整性。或用两款不同的MD5软件对同一文件提取信息摘要,而后比较是否一致,由此可进行文件的完整性认证。

1密码学-DES实验报告

南京信息工程大学实验(实习)报告实验(实习)名称对称密码实验(实习)日期得分指导教师 系计软院专业网络工程年2011 班次 1 姓名学号20111346026 一.实验目的 1.理解对称加密算法的原理和特点 2.理解DES算法的加密原理 二.实验内容 第一阶段:初始置换IP。在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。 第二阶段:16次迭代变换。DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。其算法的核心是算法所规定的16次迭代变换。DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。 第三阶段:逆(初始)置换。他是初始置换IP的逆置换,记为IP-1。在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,得到的结果即可作为DES加密的密文Y输出,即Y = IP-1 (R16 L16) 三.流程图&原理图

流程图

DES原理图

实验四 公钥加密算法实验(改)

实验四公钥加密算法实验 1、实验目的 掌握消息RSA密钥生成和加密算法的原理。 2、实验环境 硬件:ZXBee CC2530 节点板2 块、USB 接口的CC2530 仿真器,PC 机; 软件:Windows 7/Windows XP、IAR 集成开发环境、串口监控程序。 3、实验原理 RSA算法的关键是生成公钥私钥对。本实验采用了一个简化的算法,通过一个给定的seed(实验组号)搜索两个不同的素数(100以内),并计算出公钥PubliceKey(e,n)和私钥PrivateKey(d,n)。 RSA加/解密公式为C=P e mod n和P=C d mod n,其中的幂指数运算速度慢,可采用下面的公式进行转换: C=P e mod n=((...((P*P mod n)*P mod n)*P mod n)... ...)*P mod n 此外,RSA算法的明文和密文均为0到n-1之间的整数,而一般传送消息的长度单位为字节(8 bits),n 的大小与消息长度难以匹配。因此,本实验采用如下的特殊处理方法: (1)令选定公钥/私钥的n值小于65536,即n值小于16bits的二进制。 (2)将消息的每个字节(8bits)作为一个明文块。 (3)每个明文块进行RSA加密后,得到的密文块为16bits,用2个字节存放。即密文的长度为明文的2倍。 (4)接收方收到的密文,按2个字节为一个密文块进行RSA解密,解密后的结果只保留低8bits。 4、实验步骤 1)本实验程序可在《指导书》4.4节程序上进行修改,可节约时间。信道编号不用更改。

5 代码:

6)修改接收数据函数rfRecvData()。接收节点不断接收各个发送节点发送的信息,先判断数据的第一个字节是不是本站点,如果是再进行解密。通过串口显示结果。

AES加密算法实验报告

四川大学计算机学院、软件学院实验报告 学号::专业:班级:第10 周

在程序运行读取需要加密的图片时,需要进行图片的选取,本次实验中使用在弹窗中选取文件的方式,使用头文件commdlg.h来实现在文件夹中选择需要的文件的选取。 三、加密算法流程 AES加密算法流程如下 字节代替:用一个S盒完成分组的字节到字节的代替; 行移位:进行一次行上的置换; 列混合:利用有限域GF(28)上的运算特性的一个代替; 轮密钥加:当前分组和扩展密钥的一部分进行按位异或。

四、代码实现 cryptograph.h #include #include class plaintext { public: plaintext(); static void createplaintext(unsigned char a[]); static void SubBytes(unsigned char p[16]); static void inSubBytes(unsigned char p[16]); static void ShiftRows(unsigned char e[]); static void inShiftRows(unsigned char e[]); static void MatrixToByte(unsigned char e[]); static void inMatrixToByte(unsigned char e[]); static unsigned char FFmul(unsigned char a, unsigned char b); static void KeyAdding(unsigned char state[16], unsigned char k[][4]); static void KeyExpansion(unsigned char* key, unsigned char w[][4][4]); ~plaintext(); private: }; cryptograph.cpp #include"cryptography.h" using namespace std; static unsigned char sBox[] = {};/定义加密S盒/ unsigned char insBox[256] ={};//定义解密S盒 plaintext::plaintext() {

DES加密算法实验报告

苏州科技学院 实验报告 学生姓名:杨刘涛学号:1220126117 指导教师:陶滔 刘学书1220126114 实验地点:计算机学院大楼东309 实验时间:2015-04-20 一、实验室名称:软件实验室 二、实验项目名称:DES加解密算法实现 三、实验学时:4学时 四、实验原理: DES算法由加密、子密钥和解密的生成三部分组成。现将DES算法介绍如下。1.加密 DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:

图2-1:DES算法加密过程 对DES算法加密过程图示的说明如下: 待加密的64比特明文串m,经过IP置换(初始置换)后,得到的比特串的下标列表如下: 表2-1:得到的比特串的下标列表

该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串 f1,f1与L0做不进位的二进制加法运算。运算规则为: f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2……一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。 R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1(终结置换)后所得比特串的下标列表如下: 表2-2:置换后所得比特串的下标列表 经过置换IP-1后生成的比特串就是密文e。 变换f(Ri-1,Ki): 它的功能是将32比特的输入再转化为32比特的输出。其过程如图2-2所示:

AES加密算法实验报告

实验报告 学号:姓名:专业:班级:第10周

简介 #in elude vstri ng> #in elude class pla in text { public : plai ntext(); static void createplaintext( unsigned char a[]); 实验内容(算法、 程 序、 步骤 和方 法)

static void SubBytes( unsigned char p[16]); static void inSubBytes( unsigned char p[16]); static void ShiftRows( unsigned char e[]); static void inShiftRows( unsigned char e[]); static void MatrixToByte( unsigned char e[]); static void inMatrixToByte( unsigned char e[]); static unsigned char FFmul( unsigned char a, unsigned char b); static void KeyAdding( unsigned char state[16], unsigned char k[][4]); static void KeyExpansion( unsigned char* key, unsigned char w[][4][4]); ~plai ntext(); private : }; #in elude "" using namespacestd; static unsigned char sBox[] = {}; /定义加密S盒/ unsigned char insBox[256] ={}; //定义解密S盒 pla in text ::plai ntext() { unsigned int p[16]; for (int j = 0; j<200; j++) { p[i] = a[i]; a[i] = a[i + 16]; } void pla in text ::createpla in text( un sig ned char a[]) // 仓U建明文 int i = 0; if ( a[j] == 0) for (; i<16; i++)

DES实验报告

DES加密算法 一、实验目的 1、理解对称加密算法的原理和特点 2、理解DES算法的加密原理 二、实验步骤 第一阶段:64位明文进行初始置换IP(initial permutation) 第二阶段:在密钥控制下16轮迭代 第三阶段:交换左右32比特 IP 第四阶段:初识逆置换1 三、实验原理 对称密钥机制即对称密钥体系,也称为单钥密码体系和传统密码体系。对称密码体系通常分为两大类,一类是分组密码(如DES、AES算法),另一类是序列密码(如RC4算法)。对称密码体系加密和解密时所用的密钥是相同的或者是类似的,即由加密密钥可以很容易地推导出解密密钥,反之亦然。同时在一个密码系统中,我们不能假定加密算法和解密算法是保密的,因此密钥必须保密。发送信息的通道往往是不可靠的或者不安全的,所以在对称密码系统中,必须用不同于发送信息的另外一个安全信道来发送密钥。 四、实验内容 第一阶段:置换规则如下矩阵,即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是 输出的左32位,R0 是右32位,例:设置换前的输入值為D1D2D3 (64) 则经过初始置换后的结果為:L0=D550...D8;R0=D57D49 (7) 第二阶段: 1、变换密钥 取得64位的密钥,每个第8位作为奇偶校验位,舍弃64位密钥中的奇偶校验位,根据下表PC-1进行密钥变换得到56位的密钥。将变换后的密钥分为两个部分,开始的28位称为C0,最后的28位成为D0。然后同时将C0、D0循环左移1位形成C1、D1。C1D1经过PC-2从56位中选出48位输出,即为K1。循环左移LSi(i=1,2,……,16)分别是: 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1C1、D1分别循环左移LS2位,再合并,经过PC-2,生成子密钥K2。依次类推直至K16形成。 2、加密数据 将32位的RI-1按下表(E)扩展为48位的EI-1: 异或Ei-1和Ki,即E[i-1] XOR K[i],将异或后的结果分为8个6位长的部分,第1

DES算法实验报告

DES算法实验报告 导读:就爱阅读网友为您分享以下“DES算法实验报告”的资讯,希望对您有所帮助,感谢您对https://www.sodocs.net/doc/5a10258510.html,的支持! 实验报告 姓名:xxxx 学号:0XXXXX 班级:XXXXXXX 日期:2013/11/* 题目:DES算法实验 一、实验环境 1.硬件配置: 处理器:Inter(R) Core(TM) i5-2430M CPU @ 2.40GHz (4

CPUs) ,~2.4GHz 内存:2048MB RAM 2.使用软件: (1) 操作系统:win7 旗舰版 (2) 软件工具: Microsoft Visual c++ 6.0 二、实验涉及的相关概念或基本原理 DES是一个分组密码算法,使用64位密钥(除去8位奇偶校验,实际密钥长度为56位)对64比特的数据分组(二进制数据)加密,产生64位密文数据。DES是一个对称密码体制,加密和解密使用同意密钥,解密和加密使用同一算法(这样,在硬件与软件设计时有利于加密单元的重用)。DES 的所有的保密性均依赖于密钥。 DES的加密过程可分为加密处理,加密变换和子密钥生成几个部分组成。 1.加密处理过程(1)初始置换IP。加密处理首先要对64位的明文按表1所示的初始换位表IP进行变换。表中的数值表示输入位被置换后的新位置。

(2)加密处理。上述换位处理的输出,中间要经过16轮加密变换。初始置换的64位的输出作为下一次的输入,将64位分为左、右两个32位,分别记为L0和R0,从L0、R0到L16、R16,共进行16轮加密变换。其中,经过i轮处理后的点左右32位分别为Li和Ri则可做如下定义: Li=Ri-1 Ri=Li-1 ⊕F(Ri-1,K) 其中,F为F变换 (3)最后换位。进行16轮的加密变换之后,将L16和R16合成64位的数据,再按照表2所示的最后换位表进行IP-1的换位,得到64位的密文,这就是DES算法加密的结果。 2.加密变换过程 64位的密钥先由置换选择1减少至56六位,进行循环左移,然后通过置换选择2减少至48位。而通过扩展运算将32位按表3扩展换位表扩展为48位的右半部分通过异或操作和48位的密钥结合,并分成6位的8个分组,通过8个S-盒

AES加密算法原理(图文)

AES加密算法原理(图文) 随着对称密码的发展,DES数据加密标准算法由于密钥长度较小(56位),已经不适应当今分布式开放网络对数据加密安全性的要求,因此1997年NIST公开征集新的数据加密标准,即AES[1]。经过三轮的筛选,比利时Joan Daeman和Vincent Rijmen提交的Rijndael算法被提议为AES的最终算法。此算法将成为美国新的数据加密标准而被广泛应用在各个领域中。尽管人们对AES还有不同的看法,但总体来说,AES作为新一代的数据加密标准汇聚了强安全性、高性能、高效率、易用和灵活等优点。AES设计有三个密钥长度:128,192,256位,相对而言,AES的128密钥比DES的56密钥强1021倍[2]。AES算法主要包括三个方面:轮变化、圈数和密钥扩展。 AES 是一个新的可以用于保护电子数据的加密算法。明确地说,AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和256 位密钥,并且用128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换(permutations )和替换(substitutions)输入数据。Figure 1 显示了AES 用192位密钥对一个16位字节数据块进行加密和解密的情形。

Figure 1 部分数据 AES算法概述 AES 算法是基于置换和代替的。置换是数据的重新排列,而代替是用一个单元数据替换另一个。AES 使用了几种不同的技术来实现置换和替换。为了阐明这些技术,让我们用Figure 1 所示的数据讨论一个具体的AES 加密例子。下面是你要加密的128位值以及它们对应的索引数组: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 192位密钥的值是: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 170 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23

计算机网络安全实验报告--非对称密码算法RSA

实验二非对称密码算法RSA 一、实验目的 通过实际编程了解非对称密码算法RSA的加密和解密过程,加深对非对称密码算法的认识。 二、实验环境 运行Windows或Linux操作系统的PC机,具有gcc(Linux)、VC(Windows)等C语言编译环境。 三、实验内容和步骤 1)编写一个程序,随机选择3个较大的数x、e、n,然后计算xe mod n, 记录程序运行时间。实际中应用的素数为512位,n也就为1024位。 这样的大数在计算机上如何表示、如何进行运算,查阅资料给出简单说明。 RSA依赖大数运算,目前主流RSA算法都建立在512位到1024位的大数运算之上,所以我们在现阶段首先需要掌握1024位的大数运算原理。 大多数的编译器只能支持到64位的整数运算,即我们在运算中所使用的整数必须小于等于64位,即:0xffffffffffffffff也就是 18446744073709551615,这远远达不到RSA的需要,于是需要专门建立大数运算库来解决这一问题。 最简单的办法是将大数当作字符串进行处理,也就是将大数用10进制字

符数组进行表示,然后模拟人们手工进行“竖式计算”的过程编写其加减乘除函数。但是这样做效率很低,因为1024位的大数其10进制数字个数就有数百个,对于任何一种运算,都需要在两个有数百个元素的数组空间上做多重循环,还需要许多额外的空间存放计算的进位退位标志及中间结果。当然其优点是算法符合人们的日常习惯,易于理解。 另一种思路是将大数当作一个二进制流进行处理,使用各种移位和逻辑操作来进行加减乘除运算,但是这样做代码设计非常复杂,可读性很低,难以理解也难以调试。 (2)计算机在生成一个随机数时,并不一定就是素数,因此要进行素性检测。 是否有确定的方法判定一个大数是素数,要查阅资料,找出目前实际可行的素数判定法则,并且比较各自的优缺点。 所谓素数,是指除了能被1和它本身整除而不能被其他任何数整除的数。 根据素数的定义,只需用2到N-1去除N,如果都除不尽则N是素数,结束知其循环。由此得算法1。 (1)flay=0,i=2. /*flay为标志,其初值为0,只要有一个数除尽,其值变为1. (2)If n mod i=0 then flay=l else i=i+1/* n mod i是n除以i的余数. (3)If flay=0 and I<=n-1 then(2) else go (4) (4)If flay=0 then write“n是素数。”else write“不是素数” 最坏的情形下,即N是素数时,算法1需要执行N-2次除法,时间复杂

AES加密算法实验报告

实验报告 姓名:陈清扬学号:2051313 班级:信息安全日期:2011-04-23 AES加密算法 一、实验环境 1.硬件配置:酷睿i3cpu ,2G内存 2.使用软件: (1) 操作系统:windows7旗舰版 (2) 软件工具:visualc++6.0 二、AES涉及的相关概念或基本原理 简介: 密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。 密码说明: 严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支援更大范围的区块和密钥长度:AES的区块长度固定为128 位元,密钥长度则可以是

128,192或256位元;而Rijndael使用的密钥和区块长度可以是32位元的整数倍,以128位元为下限,256位元为上限。加密过程中使用的密钥是由Rijndael密钥生成方案产生。大多数AES计算是在一个特别的有限域完成的。AES加密过程是在一个4×4的字节矩阵上运作,这个矩阵又称为“体(state)”,其初值就是一个明文区块(矩阵中一个元素大小就是明文区块中的一个Byte)。(Rijndael加密法因支援更大的区块,其矩阵行数可视情况增加)加密时,各轮AES加密循环(除最后一轮外)均包含4个步骤: 1AddRoundKey—矩阵中的每一个字节都与该次回合金钥(round key)做XOR运算;每个子密钥由密钥生成方案产生。 2SubBytes—透过一个非线性的替换函数,用查找表的方式把每个字节替换成对应的字节。 3ShiftRows—将矩阵中的每个横列进行循环式移位。 4MixColumns—为了充分混合矩阵中各个直行的操作。这个步骤使用线性转换来混合每行内的四个字节。 最后一个加密循环中省略MixColumns步骤,而以另一个AddRoundKey取代。 安全性: 截至2006年,针对AES唯一的成功攻击是旁道攻击。旁道攻击不是攻击密码本身,而是攻击那些实作于不安全系统上的加密系统。

加密解密程序实验报告

程序设计实践 加密解密程序实验报告 课题概述 1.1课题目标和主要内容: 利用MFC类或者win32编写windows程序,实现加密解密的功能。 1.2系统的主要功能: 1.实现用户界面友好的操作。 2.具有对称编码体制,可以实现: i.凯撒密码:能够自定义密钥,自由输入明文,进行加密、解密,在对话框中返回加密和 解密后的内容。

ii.置换密码:能够自定义密钥,自由输入明文,经矩阵变换进行加密、解密,在对话框中返回加密和解密后的内容 iii.对称加密DES:用MFC调用WIN32编写的程序,在用户友好界面操作的同时显示程序加密,解密结果。 3.具有非对称编码体制: i. RSA加密解密:随机产生p,q,经检验是否互质,若不互质接着产生两个随机数,直 到二者互质为止。自动生成p,q,N及加密解密的密钥,可以自由输入明文,返回加密、 解密的内容。 ii. MD5消息摘要计算:用MFC调用WIN32编写的程序,在用户友好界面操作的同时显示程序的加密结果。 4.信息隐藏技术: 用LSB在图片(bmp格式,任意位置的图片)中写入信息,读取信息并显示出来,可 以擦除信息。可以自定义密钥。 5. AES加密解密:用MFC调用WIN32编写的程序,在用户友好界面操作的同时显示程序 加密,解密结果。 6. 以上的所有对文字加密解密的方法(除LSB以外其余所有方法),都可以用于文件加 密,解密,并能够及时保存加密,解密的信息到一个TXT文档,可以存在用户想存放 的地方。 7.更多: 链接了一个可加密解密,功能更为齐全的网站,若是上述方法不能满足用户需求, 可以在程序运行的窗口中点击相应按钮,在联网的条件下进行在线加密解密。 一、系统设计 2.1系统总体框架: 2.2主要的层次逻辑为:

信息安全实验报告DES加密算法

. 中北大学大学软件学院《网络攻击与防御》 实验报告 课程名称:信息安全技术 实验名称: DES加密算法 指导教师: 班级: 学生姓名: 学号: 实验日期: 16-5-10 16:00-17:45 实验地点:软件学院 实验成绩: 计算机科学与技术学院 计算机系网络教研室制

一、实验目的 通过用DES算法对实际数据进行加密和解密来深刻了解DES的运行原理,进而加深对对称加密算法的理解与认识。 预备知识: 1)数据加密标准(DES,Data Encryption Standard)是一种使用密钥加密的块密码,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。它基于使用56位密钥的对称算法。这个算法因为包含一些机密设计元素,相对短的密钥长度以及怀疑内含美国国家安全局(NSA)的后门而在开始时有争议,因此DES因此受到了强烈的学院派式的审查,并以此推动了现代的块密码及其密码分析的发展。 2) DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。 3)DES算法的安全性,DES现在已经不是一种安全的加密方法,主要因为它使用的56位密钥过短。1999年1月,https://www.sodocs.net/doc/5a10258510.html,与电子前哨基金会合作,在22小时15分钟内即公开破解了一个DES密钥。也有一些分析报告提出了该算法的理论上的弱点,虽然在实际中难以应用。为了提供实用所需的安全性,可以使用DES的派生算法3DES来进行加密,虽然3DES也存在理论上的攻击方法。在2001年,DES作为一个标准已经被高级加密标准(AES)所取代。 4)对称密码算法(Symmetric cipher):加密密钥和解密密钥相同,或实质上等同,即从一个易于推出另一个。又称传统密码算法(Conventional cipher)、秘密密钥算法或单密钥算法。 5)分组密码(Block cipher):将明文分成固定长度的组,用同一密钥和算法对每一块加密,输出也是固定长度的密文。——DES、IDEA、RC2、RC4、RC5 分组密码是将明文消息编码表示后的数字(简称明文数字)序列,划分成长度为n的组(可看成长度为n的矢量),每组分别在密钥的控制下变换成等长的输出数字(简称密文数字)序列。 6)CAP(Cryptographic Analysis Program)是由DR. Richard Spillman专门为教学而研制的密码制作与分析工具,已经在美国的很多高校得到了广泛地使用,受到了密码学习者的普遍欢迎。 二、实验环境 操作系统:运行Windows ,VS2010编译环境。 三、实验内容与实验要求 对学号姓名加解密 任务一:DES加解密算法的原理

加密技术及密码破解实验报告

第九章、实验报告 实验一、设置Windows启动密码 一、实验目的:利用Windows启动密码保存重要文件。 二、实验步骤: 1、在Windows XP系统中选择开始——运行,在打开输入框中“syskey.exe”,点击确定,打开“保证Windows XP账户数据库的安全”对话框。 2、单击【更新】,打开【启动密码】对话框,然后输入密码,在【确认】文本框中再次输入密码,单击【确定】

实验二、为word文档加密解密 一、实验目的:保护数据的安全 二、实验步骤: 1、打开一个需要加密的文档,选择【工具】——【选项】——【安全性】然后输入想要设置打开文件时所需的密码 2、单击【高级(A)】打开加密类型对话框,选中【加密文档属性】复选框,单击【确定】。 3、打开文件的【确认密码】对话框,输入打开文件时需要的密码,单击【确定】,随即打开【确认密码】对话框,输入密码。 4、保存文件后,重新打开Word文档,打开【密码】,输入打开文件所需的密码,单击【确定】输入修改的密码,单击【确定】

破解word密码 (1)安装Advanced Office Password Recovery软件,安装完成后打开需要破解的word文档,进行暴力破解,结果如图所示: 实验三、使用WinRAR加密解密文件 一.实验目的:加密文件,保证文件的安全性。 二.实验步骤: 1、在需要加密的文件夹上右击,选中【添加到压缩文件】打开【压缩文件名和参数】 2、选中【压缩文件格式】组合框中的【RAR】并在【压缩选项】中选中【压缩后删除源文件】然后切换到【高级】,输入密码,确认密码。

3、关闭对话框,单击确定,压缩完成后,双击压缩文件,系统打开【输入密码对话框】 破解WinRAR加密的文件 (1)安装Advanced RAR Password Recovery软件,打开WinRAR加密文件,进行暴力破解,获得密码。结果如图: 实验四:使用文件夹加密精灵加密文件夹 一、实验目的:对文件进行加密,保证其安全性 二、实验步骤: 1、安装文件夹加密精灵软件,设置登录密码。重新选择【文件加密精灵】,出现登录框。如图

相关主题