搜档网
当前位置:搜档网 › 初中奥数讲义_圆幂定理附答案

初中奥数讲义_圆幂定理附答案

初中奥数讲义_圆幂定理附答案
初中奥数讲义_圆幂定理附答案

1

【例题求解】

【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= .

(成都市中考题)

思路点拨 综合运用圆幂定理、勾股定理求PB 长.

注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段:

(1)平行线分线段对应成比例;

(2)相似三角形对应边成比例;

(3)直角三角形中的比例线段可以用积的形式简捷地表示出来;

(4)圆中的比例线段通过圆幂定理明快地反映出来.

【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( )

A .3

B .4

C .415

D .5

16 (全国初中数学联赛题)

思路点拨 连AC ,CE ,由条件可得许多等线段,为切割线定理的运用创设条件.

《1.3.1圆幂定理》教学案3

《1.3.1圆幂定理》教学案 【教学目标】 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 【教学重难点】 重点:相交弦定理、切割线定理及其推论之间的关系以及应用; 难点:灵活运用圆幂定理解题. 【教学过程】 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等. 定理 圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言:若弦AB、CD交于点P则P A·PB=PC·P D(相交弦定理) 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B.(圆 周角推论2: 同(等)弧所对圆周角相等.) ∴△P AC∽△PDB ∴P A∶PD=PC∶PB,P A·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性.其逆定理也可用于证明四点共圆. 3比较 相交弦定理、切割线定理以及他们的推论统称为圆幂定理.一般用于求线段长度. 4相交弦定理推论 定理 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项. 说明几何语言:若AB是直径,CD垂直AB于点P,则=P A·PB(相交弦定理推论)

切割线定理 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.是圆幂定理的一种. 切割线定理示意图 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=P A·PB(切割线定理) 推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=P A·PB(切割线定理推论)(割线定理) 由上可知:PT2=P A·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=P A·PB 证明:连接AT,BT ∵∠PTB=∠P AT(弦切角定理 ) 切割线定理的证明 ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT2=PB·P A

圆知识梳理+题型归纳附答案_详细知识点归纳+中考真题

圆 【知识点梳理】 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; A

三、直线与圆的位置关系 1、直线与圆相离 ? d r > ? 无交点; 2、直线与圆相切 ? d r = ? 有一个交点; 3、直线与圆相交 ? d r < ? 有两个交点; 四、圆与圆的位置关系 外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧 AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 B D

圆幂定理及其应用

[文件] sxc3jja0008.doc [科目] 数学 [年级] 初三 [章节] [关键词] 圆/圆幂定理/应用 [标题] 圆幂定理及其应用 [内容] 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方 法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程, 从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一 点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的 切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋 转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和 切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2;

数学竞赛辅导讲义——圆幂与根轴

数学竞赛辅导讲义——圆幂与根轴 一、圆幂的定义: 在平面上,从点P 作半径为r 的圆O 的割线,从P 起到和该圆周相交为止的两线段之积是一个定值,称为点P 对于此圆周的圆幂. 圆幂定理: (1)当P 在圆O 外时,点P 对于此圆的幂等于22OP r -; (2)当P 在圆O 内时,点P 对于此圆的幂等于22r OP -; (3)当P 在圆O 上时,规定:点P 对于此圆的幂等于0. 二、根轴及其性质 1.根轴的定义: 对于两个已知圆的圆幂相等的点的轨迹是一条直线,该直线称为这两圆的根轴. 2.根轴的性质: (1)若两圆1O 与2O 相离(半径分别为1r ,2r 且12r r ≤),点M 为12O O 的中点,点H 在 线段1O M 上,且2221122r r MH O O -=,则此两圆的根轴是过点H 且垂直于12O O 的直线.特别 地,当两圆相离且半径相等时,它们的根轴是线段12O O 的中垂线. (2)若两个圆是同心圆,则这两个圆不存在根轴. (3)若两个圆相交,则它们的公共弦所在的直线就是它们的根轴. (4)若两圆相切,则过两圆切点的公切线是它们的根轴. (5)若三个圆的圆心互不相同,则任意两个圆的根轴共三条直线,它们相交于一点或互相平行. (6)若两圆相离,则两圆的四条公切线的中点共线(都在根轴上). 思考:能否从解析几何的角度看根轴?

三、例题 例1 如图,设I 和O 分别是ABC ?的内心和外心,r 和R 分别是ABC ?的内切圆和 外接圆的半径,过I 作ABC ?的外接圆的弦AK . 求证:(1)IK BK =; (2)2AI IK Rr ?=; (3)222OI R Rr =-.(欧拉公式) 例2 如图,设圆1O 与圆2O 相离,引它们的一条外公切线切圆1O 于A ,切圆2O 于B , 又引它们的一条内公切线切圆1O 于C ,切圆2O 于D , 求证:(1)AC BD ⊥;(2)直线12O O 是分别以AB ,CD 为直径的圆3O ,4O 的根轴;(3)直线AC 和BD 的交点K 在两圆的连心线12O O 上 . 例1 K

初一奥数专题讲义——完全平方公式与平方差公式

完全平方公式与平方差公式 一?知识要点 1 ?乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算一一除法等。 2. 基本公式 完全平方公式:(a 士b)2=a2士2ab+b2 平方差公式:(a+b)(a—b)=a2—b2 立方和(差)公式:(a 士b)(a2」ab+b2)=a3士b3 3?公式的推广 (1)多项式平方公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc 即:多项式平方等于各项平方和加上每两项积的2倍。 (2)二项式定理:(a 士b)3=a3± 3a2b+3ab2士b3 (a士b)4=a4士4a3b+6a2b2士4ab3+b4 (a 士b)5=a5士5a4 b+10a3b2士10a2b3+ 5ab4士b5 注意观察右边展开式的项数、指数、系数、符号的规律 4 ?公式的变形及其逆运算 由(a+b) 2=a2+2ab+b2得a2+b2=(a+b)2—2ab 由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3—3ab(a+b) 5 ?由平方差、立方和(差)公式引伸的公式 (a+b) (a3—a2b+ab2—b3)=a4—b4 (a+b)(a4—a3b+a2b2—ab3+b4)=a5+b5 (a+b)(a5—a4b+a3b2—a2b3+ab4—b5)=a6—b6 注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n—1—a2n—2b+a2n —3b2—…+ ab2n—2—b2n —1)=a2n—b2n (a+b)(a2n—a2n —1b+a2n—2b2-…-ab2n —1+b2n)=a2n+1+b2n+1 类似地: (a—b)(a n—1+a n—2b+a n—3b2+…+ ab n—2+b n—1)=a n—b n 由公式的推广③可知:当n为正整数时 a n— b n能被a—b整除, a2n+1 +b2n+1能被a+b 整除, a2n—b2n能被a+b及a—b整除。 二?例题精选 例1 .已知x、y满足x2+y2+ 5 =2x+y,求代数式一~的值。 4 x + y 例2 ?整数x,y满足不等式x2+y2+1 < 2x+2y,求x+y的值。 例3 .同一价格的一种商品在三个商场都进行了两次价格调整 甲商场:?第一次提价的百分率为a,第二次提价的百分率为b;

圆幂定理及其证明#(优选.)

圆幂的定义 假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P点到圆O的幂; 若P点在圆内,则圆幂为R^2-OP^2; 综上所述,圆幂为|OP^2-R^2|。 圆幂恒大于或等于零。 圆幂的由来 过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值) 若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2| 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。 圆幂定理 定理内容 过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有 。[1] 圆幂定理的所有情况 考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有

圆幂定理的证明 图Ⅰ:相交弦定理。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以 。所以有: ,即: 图Ⅱ:割线定理。如图,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以有 ,同上证得 图Ⅲ:切割线定理。如图,连接AC、AD。∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有 易证

(完整)圆幂定理讲义(带答案)

(完整)圆幂定理讲义(带答案) 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)圆幂定理讲义(带答案))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)圆幂定理讲义(带答案)的全部内容。 1 / 29

圆幂定理 STEP 1:进门考 理念:1。检测垂径定理的基本知识点与题型。 2。垂径定理典型例题的回顾检测。 3. 分析学生圆部分的薄弱环节. (1)例题复习。 1.(2015?夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器 的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=cm. 【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形. 【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△A OE中,利用勾股定理求得半径OA的长,则MN即可求解. 【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E. 在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°, ∴CD=BC?sinB=4×=2(cm), ∴OE=CD=2, 在△AOE中,AE=AB=4cm, 则OA===2(cm),则MN=2OA=4(cm).故答案是:4. 2 / 29

人教版初中数学讲义

人教版初中数学讲义 第一章有理数 一、正数和负数 1、正数、负数:大于零的数叫做正数,小于零的数叫做负数。应用:生产收入,海拔高低,气温的冷热,方位的指向,比赛的胜负,比例的增长等等。 二、有理数 1、概念:整数和分数统称为有理数。 ??正整数??正整数?正数???整数正分数?零??????负整数 2、分类?零或????负整数??正分数?负数?分数????负分数??负分数?? 注:分数和小数可以互化,所以小数可以归为分数类。 3、“0”表示的意义: (1)0既不是正数也不是负数(2)0是整数(3)0不是表示没有,有时表示一种趋于正负的状态(4)0是最小的自然数,即是最小的非负整数(5)0不能作为分母(6)0等相反数是0(7)0的绝对值是0(8)0没有倒数(9)0乘以任何数都为0(10)0除以任何不为0的数都为0. 4、数轴:通常用一条直线上的点表示数,这条直线叫做数轴。数轴的三要素:原点,正方向,单位长度。 数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。 5、相反数:只有符号不同的两个数叫做互为相反数。与原点距离相等的两个数互为相反数。互为相反数的两个数相加得0(a,b互为相反数,则a+b=0) 6、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a| |a|=??a(a≥0) ?-a(a<0) 两个负数,绝对值大的反而小。 三、有理数的加减法 1、有理数的加法: (1)加法法则: 同号两数相加,取相同的符号,并把绝对值相加; 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0. 一个数同0相加,仍得这个数。 (2)运算律:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c) 2、有理数的减法: 减法法则:减去一个数,等于加上这个数的相反数。a-b=a+(-b)) 引入相反数后,加减混合运算可以统一为加法运算。 四、有理数的乘除法 1、有理数的乘法:

《1.3.1圆幂定理》教学案1

《1.3.1圆幂定理》教学案 教学目标 1.知识与技能:(1)理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;(2)学会作两条已知线段的比例中项; 2.过程与方法:师生互动,生生互动,共同探究新知; 3.情感、态度、价值观:通过推论的推导,向学生渗透由一般到特殊的思想方法.教学重、难点 重点:正确理解相交弦定理及其推论 难点:相交弦定理及其推论的熟练运用 教学过程 前面讨论了与圆有关的角之间的关系.下面我们讨论与圆有关的线段的关系及其度量问题.下面沿用从特殊到一般地思路,讨论与圆的相交弦有关的问题. 探究1如图2-20,AB是⊙O的直径,CD⊥AB.AB与CD相交于P,线段P A、PB、PC、P D之间有什么关系? ?=?(老师引导学生完成推导过程) . PA PB PC PD 探究2将图2-20中的AB向上(或向下)平移,使AB不再是直径(图2-21),探究1的结论还成立吗? 连接AD、BC,请同学们自己给出证明. 探究3如果CD与AB不垂直,如图2-22,CD、AB是圆内的任意两条相交弦,探究1的结论还成立吗? 事实上,AB、CD是圆内的任意相交弦时,探究1仍然成立,而证方法不变.请同学们自己给出证明. 由上诉探究和论证,我们有 1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等. 探究4在图2-24中,使割线PB绕P运动到切线的位置(图2-25),线段P A(或PB)、PC、P D之间有什么关系? 2. =?(老师引导学生完成推导过程) PA PC PD

由上诉探究和论证,我们有 3.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 探究5下面对相交弦定理和切割弦定理作进一步分析: 由切割线定理和相交弦定理不难看出,不论点P在圆内或圆外,通过圆的任一条割线交圆于A,B两点,只要点P的位置确定了,则P A? PB都是定值. 设定植为k,则: 当点P在圆外时,如图,由切割线定理,可得 k = P A? PB = PT2= PO2- r2( r表示⊙O的半径 ) 当点P在圆内时,如图,过点P作AB垂直于OP,则: k = P A? PB = P A2= r2 - PO2( r表示⊙O的半径 ) 当点P在圆上时,显然k=0. 由上,我们可以得到: 圆幂定理: 已知⊙(O,r),通过一定点的任意一条割线交圆于A,B两点,则: 当点P在圆外时,k= PO2- r2; 当点P在圆内时,k= r2- PO2; 当点P在⊙O上时,k= 0. 我们称定值k为点P对⊙O的“幂” 【自主检测】 1. 圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为_ ____. 2. 已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若P A·PB=24,OP=5,则⊙O的半径长为_______. 3 . 若P A为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,P A=P C的长为_______. 4. AB、CD是⊙O切线,AB∥CD,⊙O的切线EF和AB、CD分别交于E、F,则∠EOF =______.

圆幂定理讲义带答案

圆幂定理 STEP 1:进门考 理念:1. 检测垂径定理的基本知识点与题型。 2. 垂径定理典型例题的回顾检测。 3. 分析学生圆部分的薄弱环节。 (1)例题复习。 1.(2015?夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=cm. 【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形. 【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△AOE中,利用勾股定理求得半径OA的长,则MN即可求解. 【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E. 在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°,∴CD=BC?sinB=4×=2(cm),∴OE=CD=2, 在△AOE中,AE=AB=4cm, 则OA===2(cm),则MN=2OA=4(cm).故答案是:4.

【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.

2.(2017?阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为() A.2cm B.cm C.2cm D.2cm 【考点】M2:垂径定理;PB:翻折变换(折叠问题). 【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长. 【解答】解:过点O作OD⊥AB交AB于点D,连接OA, ∵OA=2OD=2cm,∴AD===(cm), ∵OD⊥AB,∴AB=2AD=2cm.故选:D. 【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键. 3.(2014?泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()

初中奥数讲义_动态几何问题透视附答案

【例题求解】 【例1】如图,把直角三角形ABC的斜边AB放在定直线上,按顺时针方向在l上转动两次,使它转到A″B″C″的位置,设BC=1,AC=3,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是. (黄冈市中考题) 思路点拨解题的关键是将转动的图形准确分割.RtΔABC的两次转动,顶点A所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l所围成的面积不只是两个扇形面积之和. 【例2】如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,当点P从点A移到点B时,A′B′的中点的位置( ) A.在平分AB的某直线上移动 B.在垂直AB的某直线上移动 ⌒ C.在AmB上移动 D.保持固定不移动 (荆州市中考题) 思路点拨画图、操作、实验,从中发现规律.

【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A →B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题: (1)当x=3时,y的值是多少? (2)就下列各种情形: ①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式. (3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系. (吉林省中考题) 思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算. 注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

圆幂定理(垂直弦定理)偏难

【例题求解】 【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= . (市中考题) 思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例; (3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来. 【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C . 415 D .5 16 (全国初中数学联赛题) 思路点拨 连AC ,CE ,由条件可得多等线段,为切割线定理的运用创设条件.

注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键. 【例3】如图,△ABC接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B. (1)求证:PA是⊙O的切线; (2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值. (北京市海淀区中考题) 思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的程. 【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE (省竞赛题) 思路点拨由切割线定理得EG2=EF·EP,要证明EG=D E,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明. 注:圆中的多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁. 需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几各种类型的问题

初三数学上册春季班培优讲义.第17讲 托勒密定理-测试题(含答案)【精品】

【精品】

(托勒密定理)四边形ABCD 内接于圆,求证:AC BD AD BC AB CD ?=?+ ?. 【解析】如图,在BD 上取一点P ,使其满足12∠=∠. ∵34∠=∠,∴ACD BCP △∽△,AC AD BC BP = , 即AC BP AD BC ?=? ① 又ACB DCP ∠=∠,56∠=∠, ∴ACB DCP △∽△,AB AC DP CD = ,AC DP AB CD ?=?. ② ①+②,有AC BP AC PD AD BC AB CD ?+?=?+?. 即()AC BP PD AD BC AB CD +=?+?,故AC BD AD BC AB CD ?=?+?. 【教师备课提示】这道题主要考查利用圆幂定理证明四点共圆. (1)如图2-1,点P 为等边ABC △外接圆的?BC 上一点,线段PA 、PB 、PC 间的数量关系为____. (2)如图2-2,AB 为⊙O 的直径,∠ABD =45°,点C 为ABD △外接圆的?AB 上一点,线段CA 、CB 、CD 间的数量关系为____________. (3)如图2-3,30ABC ACB ∠=∠=?,点D 为ABC △外接圆的?BC 上一点,线段DA 、DB 、DC 间的数量关系为_____________. 图2-1 图2-2 图2-3 【解析】(1)PA PB PC =+;(2)2CA CB CD +=;(3)3DB DC DA +=. 【教师备课提示】这道题主要利用托勒密定理解决圆中的Y 字模型,建议讲2中方法. O D C B A B C P O g D A g O C D C A B D C 126345P A B

圆幂定理讲义(带答案解析)知识讲解

圆幂定理讲义(带答案 解析)

圆幂定理 STEP 1:进门考 理念:1. 检测垂径定理的基本知识点与题型。 2. 垂径定理典型例题的回顾检测。 3. 分析学生圆部分的薄弱环节。 (1)例题复习。 1.(2015?夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN= cm. 【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形. 【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△AOE中,利用勾股定理求得半径OA的长,则MN 即可求解. 【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E. 在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°, ∴CD=BC?sinB=4×=2(cm),∴OE=CD=2, 在△AOE中,AE=AB=4cm,

则OA===2(cm),则MN=2OA=4(cm).故答案是:4. 【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.

2.(2017?阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为() A.2cm B.cm C.2cm D.2cm 【考点】M2:垂径定理;PB:翻折变换(折叠问题). 【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA, ∵OA=2OD=2cm,∴AD===(cm), ∵OD⊥AB,∴AB=2AD=2cm.故选:D. 【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键. 3.(2014?泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

初一数学基础知识讲义

第一讲 和绝对值有关的问题 一、 知识结构框图: 二、 绝对值的意义: (1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。 (2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数; ③零的绝对值是零。 也可以写成: ()()() ||0a a a a a a ??? =??-??当为正数当为0当为负数 三、 典型例题 例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图: 则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( ) A .-3a B . 2c -a C .2a -2b D . b 例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( ) A .是正数 B .是负数 C .是零 D .不能确定符号 例3.(分类讨论思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢? 例4.(整体思想)方程x x -=-20082008 的解的个数是( ) A .1个 B .2个 C .3个 D .无穷多个 例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值. ()()()() ()() 1111 112220072007ab a b a b a b ++++ ++++++ 说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。

例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题: (1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ . (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离 可以表示为 ________________. (3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___. (4) 满足341>+++x x 的x 的取值范围为 ______ . 第二讲:代数式的化简求值问题 一、知识链接 1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容. 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式( ) x y x x x mx 5378522 2 2 +--++-的值与x 无关, 求()[] m m m m +---45222 的值. 例2.x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式63 5-++cx bx ax 的值。 例3.当代数式532 ++x x 的值为7时,求代数式2932 -+x x 的值. 例4. 已知012 =-+a a ,求200722 3 ++a a 的值.

圆的相关定理及其几何证明(含答案)

圆的相关定理及其几何证明 典题探究 例1:如图,圆是的外接圆,过点C 作圆的切线交的延长线于点.若 O ABC ?O BA D ,,则线段的长是 ;圆的半径是 . CD =2AB AC ==AD O 例2:如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E (E 在A ,O 之间),EF BC ^,垂 足为F .若6AB =,5CF CB × =,则AE =

例3:如图已知与圆相切于,半径,交于,若, PA O A OC OP ⊥AC PO B 1OC =,则 , . 2OP =PA ==PB 例4:如图,从圆外一点引圆的切线和割线,已知, O P O PA PBC 30BPA ∠=?,, 则 ,圆的半径等于 11BC =1PB =PA =O 演练方阵 A 档(巩固专练) 1.如图,已知直线PD 切⊙O 于点D ,直线PO 交⊙O 于点E,F.若,则⊙O 的21PF PD =+=半径为 ; . EFD ∠=A B C O P

D C B P A O

C B A 5.如图所示,以直角三角形的直角边为直径作⊙,交斜边于点,过点 ABC AC O AB D 作⊙的切线,交边于点.则 . D O BC E =BC BE 6.如图,直线AM 与圆相切于点M, ABC 与ADE 是圆的两条割线,且BD ⊥AD ,连接MD 、EC 。则下面结论中,错误的结论是( ) A .∠ECA = 90o B .∠CEM=∠DMA+∠DBA C .AM 2 = AD·AE D .AD·D E = AB·BC 7.如图,切圆O 于点,为圆O 的直径,交圆O 于点,为的中点,AB A AC BC D E CD 且则__________;__________. 5,6,BD AC ==CD =AE =

圆幂定理及其证明

圆幂定理 圆幂的定义:一点P 对半径R 的圆O 的幂定义如下:22 OP R - 所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。 圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。 (1) 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 如图,AB 、CD 为圆O 的两条任意弦。相交于点P ,连接AD 、BC ,则∠D=∠B , ∠A=∠C 。所以△APD ∽△BPC 。所以 AP PD AP BP PC PD PC BP =??=? (2) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点 的两条线段长的比例中项。 如图,PT 为圆切线,PAB 为割线。连接TA ,TB ,则∠PTA=∠B (弦切角等于同弧圆周角)所以△PTA ∽△PBT ,所以 2PT PA PT PA PB PB PT =?=? (3) 割线定理:从圆外一点P 引两条割线与圆分别交于 A.B.C.D 则有 PA·PB=PC·PD 。 这个证明就比较简单了。可以过P 做圆的切线,也可以连接CB 和AD 。证相似。

存在:PA PB PC PD ?=? 进一步升华(推论): 过任意在圆O 外的一点P 引一条直线L1与一条过圆心的直线L2,L1与圆交于 A 、 B (可重合,即切线),L2与圆交于 C 、 D 。则PA·PB=PC·PD 。若圆半径为r ,则 2222()()||PC PD PO R PO R PO R PO R ?=-?+=-=-(一定要加绝对值,原因见下)为定值。这个值称为点P 到圆O 的幂。(事实上所有的过P 点与圆相交的直线都满足这个值) 若点P 在圆内,类似可得定值为2222||R PO PO R -=- 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。(这就是“圆幂”的由来)

初中奥数讲义_几何不等式附答案

1 几何不等式 1.三角形的不等关系是研究许多几何不等问题的基础,这种不等关系分为两类:一类是在同一三角形中进行比较;一类是在两个三角形中比较.这里主要方法是把要比较的边或角如何转化到同一个三角形或适当安排在两个三角形之中. 2.在同一个三角形中有关边或角不等关系的证明,常有以下定理: (1)三角形任何两边之和大于第三边. (2)三角形任何两边之差小于第三边. (3)三角形的一个外角大于任何一个与它不相邻的内角. (4)同一三角形中大边对大角. (5)同一三角形中大角对大边. 例题求解 【例1】 如图19-2,在等腰梯形ABCD 中,A ∥BC ,AB=CD ,E 、F 分别在AB 、CD 上且AE=CF .求证:)(2 1BC AD EF +≥. 思路点拨 如图所示,延长AD 至D 1使DD 1=BC ,延长BC 至C l ,使CC l =AD ,连结C l D l ,则ABC 1D l 是平行四边形,ABCD 和CDD l C l 是两个全等的梯形,在D 1C 1上取一点G 使D 1G=AE ,连结FG 和EG . 由AE=CF ,则EF=FG ,又EG=AD 1=AD+BC , ∴ 2EF=EF+FG ≥EG=AD+BC . 即)(2 1BC AD EF +≥. 注 当且仅当点F 落在EG 上时,即E 为AB 的中点时,结论中的等号成立.证明这类不等式的一个常用方法是能过添加辅助线,把要比较大小的线段或角集中到一个三角形中,或者适当地安排在两个三角形中,以便应用上述基本不等式关系. 【例2】 如图19-3,△ABC 中,AB>AC ,BE 、CF 是中线,求证:B E>CF .

相关主题