搜档网
当前位置:搜档网 › 我国工业废气排放量的影响因素分析

我国工业废气排放量的影响因素分析

我国工业废气排放量的影响因素分析
我国工业废气排放量的影响因素分析

我国工业废气排放量的影响因素分析- 废气处理

摘要:随着人们对于环境的保护意识日益上升,工业废气的排放问题引起了越来越多人们的关注,文章以工业废气的电力消费量和企业个数以及工业中产值三个影响因素为出发点,通过建立模型等方式,对工业废气排放量问题进行了有关的分析,并且提出相应的建议,一起为当前的工业废气排放问题以及环境保护方面提供指导性意见。

关键词:工业废气;排放量;影响因素

空气是人类生存必不可少的屏障,倘若工业废气中的大量有害物质进入空气,会对人体产生严重的威胁,使得呼吸道等疾病的发生率显著提高,因此,对于环境问题与经济效益的协同发展一直备受各界研究人员的关注。

在我国工业的现代化建设道路上,出现的环境污染问题屡见不鲜,由于工业污染等对人们赖以生存的环境造成的污染已经影响到人类的生活,因此,有关部门需要加大进行工业废气排放先关管理力度使得经济效益和生态效益得意协同发展,因此,文章对于工业废气排放量的影响因素所进行的研究具有重要的意义。

一、研究工业废气排放与环境效益关系的有关文献

针对工业废气排放量影响因素,国内外许多学者进行了大量的研究,这些研究主要从三个方面开展,第一方面,研究人员认为污染和经济效益的关系遵从U型曲线,即库兹涅茨环境曲线,之后有关学者针对这一观点进行了深入研究,认为有效的政策以及废气排放技术工艺等的改良可以显著降低污染的发生;第二方面研究人员主要使用

V AR模型进行不同区域的经济增长与环境污染关系的分析,这方面的研究是建立在协整理论和格兰杰因果检验的基础之上所进行的反洗研究;第三方面的研究主要采用灰色关联分析法来进行环境以及经济的协整性关系研究,侧重两者之间的协调关系。

二、工业废气排放量数据分析

1、数据来源的分析

由于工业废气排放量主要与电力消费量和企业个数以及工业中产值有关,因此文章以电力消费量和企业个数以及工业中产值为自变量,以工业废气排放量为因变量进行进一步的分析,对工业废气排放量与各个自变量电力消费量、企业个数、工业中产值之间的关系,并且在这些基础上使用面板数据建立回归模型。

2、对各个变量进行说明

研究中使用的自变量为电力消费量、企业个数、工业中产值,其中自变量电力消费量X1的单位为千瓦/小时,企业个数X2的单位为个,工业中产值X3的单位为亿元,研究中的因变量工业废气排放量Y的单位为万吨,笔者将这些自变量以及变量取对数后使用MATLAB 进行直方图的描画,取对数后的结果如图1所示,自变量数据的直方图结果显示明显的非正太性,图1表示的是自变量数据取对数后的直方图,整体上趋于正太分布,所以研究采取各自变量的对数数据进行建模,生成序列LNX1=LOG(X1),LNX2=LOG(X2),LNX3=LOG (X3),以及LNX4=LOG(X4)。

3、序列的平稳性检验

为避免不平稳序列造成的伪回归问题,需要对生成的序列进行平稳性检验,第一步进行单位根检验,根据单位根是否相同面板单位根检验有不同的方法,对生成的4个序列进行不同单位根的检验结果显示P值>0.05,这一结果表明了者4个序列是非平稳的,因此下一步需要对这4个序列做查分运算,进行差分运算之后再次进行面板单位根检验,结果显示P值<0.05,结果说明经过1阶差分运算后,序列平稳可以进行协整检验,并且处理后的数据满足了面板数据建模的条件。

4、面板协整检验

进行协整检验的目的是为了确定各个变量之间是否存在长期的关系,研究采用Joansen面板协整性检验对上述LNX1、LNX2、LNX3以及LNY的协整关系进行检验,结果表明变量之间存在4个协整关系。

三、建立和分析面板数据模型

1、建立随机效应模型

建立并检验随机效应模型,采用的检验方法为Hausman检验法,Hausman检验法的使用前提为模型所包含的随机效应应该与解释变量有关,经过相关的建设以及验证结果表明选择的指标不能建立随机效应模型。

2、建立固定效应模型

经过Hausman检验法的检验结果表明所选指标无法建立随机效应模型,所以进行固定效应模型的建立,采用Eviews 7.2进行固定模

型的检验,结果表明固定效应模型成立。

3、对所建立的模型进行说明

研究所采用的固定效应模型建立的回归方程经Eviews 7.2检验,对输出的结果进行分析说明了方程具有显著性,回归方程的拟合效果高达99%。

根据模型的回归方程,自变量电力消耗量X1每增大1%,因变量工业废气排放量Y增大0.647%;自变量企业单位个数X2每增大1%,因变量工业废气排放量Y增大0.140%,;自变量电力消耗量X3每增大1%,因变量工业废气排放量Y增大0.217%,上述结果说明随着自变量电力消耗量、企业单位个数、电力消耗量的增大,因变量工业废气排放量增大,与实际的结果相符。

四、模型评价

研究通过数据面板模型建立了各影响因素与工业废气排放量的模型,第一步进行各自序列的平稳性进行分析,因为经过数据面板单位根检验别表明数据的非平稳性故而进行了1阶的差分处理将数据转化为平稳序列,后进行协整性检验并最终建立了固定效应模型。

通过Eviews 7.2检验表明,最终模型的回归方程具有显著性,且拟合率高达99%,由Eviews 7.2的输出结果得知自变量电力消耗量、企业单位个数、电力消耗量的增大,因变量工业废气排放量增大,与实际的结果相符。

五、提出建议

根据建立的模型分析结果显示,随着电力消耗量、企业单位个数、

电力消耗量的增大,我国的工业废气排放量增大呈现增长的趋势,并且经济发展速度较快的地区如西藏、北京和经济发展相对较好的地区如北京、上海等地区的固定影响较大。针对得出的结论,提出以下的建议。

1、优化产业结构

应该对传统的污染严重地产业进行改造或者逐步的进行淘汰,对产业结构进行优化,建立起效益高、消耗低的产业结构、倡导生态经济和低碳经济以及循环经济。

2、适当的对工厂数量进行控制

企业个数对工业废气排放量的影响相当大,企业个数过大会对增大对自然资源的消耗以及需要排放的废气总量,因此,需要适量的进行工厂个数的控制,同时需要严密观测空气质量,让工厂的经济效益与空气质量得以协调发展。

3、提倡环保技术

鼓励企业进行环保技术的开发以及使用,可以通过设置奖励政策来激励企业的环保工作,同时需要提高环保意识,进行有关工作的宣传教育等。

4、改善工业发展的趋势

根据研究结果,经济发展速度较快的地区如西藏、北京和经济发展相对较好的地区如北京、上海等地区的固定影响较大,为避免这些地区对于环境的污染过大,需要尽量将工业发展转移到固定影响结果为正数的地区,以促进经济和效益的和谐和平衡。

结束语

综上所述,对于工业废气排放量的影响因素电力消耗量、企业单位个数、电力消耗量等,需要进行有效的调整,通过工业结构的优化以及环保工作的加强来促进工业的经济效益与环境的生态效益协调共进。

污染物排放量计算方法

一、“三废”排放量及污染物排放量的计算方法 “三废”排放量及污染物排放量的计算方法很多,除去实测法外(实测及其计算方法 在此不作介绍),归纳起来主要有二种:一种是物料衡算法;一种是经验计算方法。 1.物料衡算法 根据物质不灭定律,在生产过程中投入的物料量等于产品重量和物料流失量的总和。 即: ΣG=ΣG1+ΣG2 式中:ΣG��投入物料量总和: ΣG1��所得产品量总和; ΣG2��物料或产品流失重量之和。 2.经验计算法 根据生产过程中单位产品的经验排放系数与产品产量,求得“三废”及污染物排放量的方法称为经验计算法。 采用经验计算法计算水和污染物的排放量时,通常又称之为“排污系数计算法”。 排污系数是指在正常技术经济和管理条件下生产某单位产品所产生的污染物数量的统计平均 值或计算值。排污系数目前使用的有二种:一种是受控排污系数,即在正常运行的污染治理 设施的情况下生产某单位产品所排放的污染物的量;另一种是非控制排污系数,即在没有污染治理设施的情况下生产某单位产品排放的污染物的量。一般情况下,非控制排放系数 大于受控制排放系数,二者之差即为污染治理设施对污染物的单位产品去除量。 排污系数是在用实测、物料衡算和经验估算三种方法所获得的原始产污和排污系数的 基础上,采用加权法计算出来的。

目前能查找到的工业产污和排污系数的主要参考手册有二本:一本是国家环保总局科技 标准司组织编辑的“工业污染物产生和排放系数手册”。该本手册给出了我国有色金属工业、 轻工、电力、纺织、化工、铜铁和建材等七个工业部门根据统一的技术要求确定的不同产 品,不同生产工艺,不同生产规模和不同技术水平下的产污和排污系数,包括原始系数、 个体系数、一次系数、二次系数、二次系数、2000年控制系数建议值,以及国外同行业的 对比数据等。同时给出了我国主要燃煤设备(包括工艺锅炉、茶浴炉和大灶)燃煤产生烟尘 、SO 2、和 NO x 等的产污和排污系数;另一本是从国家环保总局主持的科研项目 “乡镇工业 污染物排放系数研究”中筛选出来的“乡镇工业污染物排放系数手册”。该手册我国“国 民经济行业分类和代码”中规定的顺序编排,能提供22个行业大类,39个中类,98个小 类,近500种生产工艺的污染物排放系数1800个。这二本手册虽是我国目前使用排污系数 计算污染物排放量的最主要的参考手册,但仍然不能完全满足排污申报登记工作的需求。 有条件的省(自治区、直辖市)可根据计算排污系数的方法(这二本手册中均有详细介绍), 计算本省急需的一些排污系数,供申报年审、环境统计、规划、环境监测排污收费等 工作使用。 二、“三废排放量”及污染物排放量计算方法的选择 1.尽量采用实测计算法辅以其他方法进行核实。在确实无法实测时,可采用物料衡

污水与污染物排放量计算

污水及污染物排放量计算 实际排放量(吨/年)=年排放量(吨)*排放浓度(mg/L)/1000000 (排放浓度=全年四个季度平均值) 经处理去除量(吨/年)=年排放量(吨)*(处理装置进水浓度-排放浓 度)/1000000 案例分析:某厂污水排放基本情况表 排放量原水CODcr 出水CODcr 原水NH3-N 出水NH3 -N 1季度 25800 1120 165 254 22 2季度 25000 1230 190 276 26 3季度 28600 1070 154 242 20 4季度 27400 1110 96 265 19 计算: 1季度COD排放量=25800X165/1000000=4.257吨 1季度COD去除量=25800X(1120-165)/1000000=24.639吨 全年COD排放量=四个季度COD排放量之和 全年COD去除量=四个季度COD去除量之和 1季度NH3-N排放量=25800X22/1000000=0.5676吨 1季度NH3-N去除量=25800X(254-22)/1000000 =5.9856吨 全年NH3-N排放量=四个季度NH3-N排放量之和 全年NH3-N去除量=四个季度NH3-N去除量之和 废气及相关污染物的计算 一、烟气量的计算 二、燃烧废气各污染物排放量物料衡

算方法三、案例分析 固体燃料燃烧产生的烟气量计算 一、理论空气量计算 L=0.2413Q/1000+0.5 L:燃料完全燃烧所需的理论空气量,单位是m3/kg; Q:燃料低发热值,单位是kJ/kg; 二、理论烟气量计算 V=0.01(1.867C+0.7S+0.8N)+0.79L V:理论干烟气量,单位是m3/kg; C、S、N:燃料中碳、硫、氮的含量; L:理论空气量 理论湿烟气量计算再加上燃料中的氢及水分含量,系数分别为11.2、1.24 固体燃料燃烧产生的烟气量计算 三、实际产生的烟气量计算 V0=V+ (a –1)L V0:干烟气实际排放量,单位是m3/kg a: 空气过剩系数,可查阅有关文献资料选择。 按上述公式计算,1千克标准煤完全燃烧产生7.5 m3,一吨煤碳燃烧 产生10500标立方米干烟气量。 液体燃料燃烧产生的烟气量计算 一、理论空气量计算 L=0.203Q/1000+2.0

工业废气排放总量计算

工业废气排放总量计算 按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘 原煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法 当废气排放量有实测值时,采用下式计算: Q年= Q时×B年/B时/10000 式中:Q年——全年废气排放量,万标m3/y;Q时——废气小排放量,标m3/h;B年——全年燃料耗量(或熟料产量),kg/y;B时——在正常工况下每小时的燃料耗量(或熟料产量),kg/h。 2.系数推算法 1)锅炉燃烧废气排放量的计算 ①理论空气需要量(V0)的计算 a. 对于固体燃料,当燃料应用基挥发分Vy>15%(烟煤),计算公式为:V0=0.251 ×QL/1000+0.278[m3(标)/kg] 当Vy<15%(贫煤或无烟煤), V0=QL/4140+0.606[m3(标)/kg] 当QL<12546kJ/kg(劣质煤), V0=QL//4140+0.455[m3(标)/kg) b. 对于液体燃料,计算公式为:V0=0.203 ×QL/1000+2[m3(标)/kg] c. 对于气体燃料,QL<10455 kJ/(标)m3时,计算公式为: V0= 0.209 ×QL/1000[m3/ m3] 当QL>14637 kJ/(标)m3时, V0=0.260 ×QL/1000-0.25[m3/ m3] 式中:V0—燃料燃烧所需理论空气量,m3(标)/kg或m3/m3; QL—燃料应用基低位发热值,kJ/kg或kJ/(标)m3。 各燃料类型的QL值对照表(单位:千焦/公斤或千焦/标米3) 燃料类型QL 石煤和矸石8374 无烟煤22051 烟煤17585 柴油46057 V0=11.35 天然气35590

我国碳排放量预测模型

我国碳排放量预测模型 摘要 本文主要我国碳排放预测问题,同时根据预测结果提出合理性建议。以人口总量,城镇化,人均GDP,第三产业GDP比例,能源强度吨标准煤,煤炭消费比例的数据,建立GM(1,1)预测模型、多元线性回归预测模型、BP神经网络预测模型,借助Matlab软件逐个对碳排放量和影响因素数据进行模拟与预测,然后采用绝对误差与相对误差两个参数对模型进行评价与对比,接着应用关联度分析法求得影响因素的重要性排序,最后结合重要性排序向相关部门提出建议。 对于GM(1,1)预测模型,通过对1986至2010年原始单变量数据进行生成处理,寻找系统的变化规律建立相应的微分方程预测模型,代入相关单变量数据用Matlab编程得到各单变量在2011至2015年的预测值。 对于多元线性回归预测模型,确定线性预测变量和因变量,即影响因素和测度指标,将数据代入Matlab统计软件,求得多元线性方程,将1986至2010年所有数据代入该方程,同时结合GM(1,1)预测模型对2011至2015年各单变量预测结果,用Matlab编程得到对应年份的碳排放量模拟值和预测值。 对于BP神经网络预测模型,首先根据碳排放量的排放趋势,确定输出层、中间隐层和输入层,然后把样本分为训练样本和测试样本两个部分,在以上基础,对样本数据进行归一化预处理,结合GM(1,1)预测模型对2011至2015年各单变量预测结果,采用Matlab软件中的神经网络计算功能,建立合理训练模型得到对应年份的旅游人数模拟值和预测值。 在模型求解过程中,将得到其对应的平均绝对误差值和相对误差值,通过比较知3个预测模型的精确度都合格。其中BP神经网络模型误差最小,预测效果最佳,三种模型2011-2015年预测数据如下表。 模型2011 2012 2013 2014 2015 GM(1,1)模型77.8641 83.4852 89.5121 95.9741 102.9026 线性回归模 85.073 90.4646 96.1978 102.2945 108.7775 型 Bp网络模型87.2029 95.4649 104.5097 114.4115 125.2514 对于影响因素重要性确定,本文应用关联度分析法建立因素排序模型,将数据代入关联系数公式得出影响因素数列对参考数列在每个年份的关联系数,关联度即各个关联系数之和的平均值,按关联度大小排序可得影响因素的重要性排序:人均GDP>人口>煤炭消费比例>城镇化>能源强度比例>第三产业GDP比例。 最后根据重要性排序,向有关部门提出一些减少碳排放量的建议。 关键词:碳排放量预测GM(1,1)预测模型 BP神经网络预测模型多元线性回归预测关联度分析法碳排放Matlab软件

关于废气污染物排放量计算的简易计算法

关于废气污染物排放量计算的简易计算法 一、燃煤 1、燃煤烟尘排放量的估算计算公式为:耗煤量(吨)X煤的灰分(%)X灰分中的烟尘(%)X(1-除尘效率%)烟尘排放量(吨)=—————— 1- 烟尘中的可燃物(%)其中耗煤量以1吨为基准,煤的灰分以20%为例,具体可见《排污收费制度》P115页;灰分中的烟尘是指烟尘中的灰分占燃煤灰分的百分比,与燃烧方式有关,以常见的链条炉为例,15%-25%,取20%;除尘以旋风除尘为例,取80%;烟尘中的可燃物一般为15%-45%,取20%, 则1吨煤的烟尘排放量=1X20%X20%X(1-80%)/1-20%=0.01吨=10千克 如除尘效率85%,1吨煤烟尘排放量=7.5千克 如除尘效率90%,1吨煤烟尘排放量=5千克 2、燃煤SO2排放量的估算 计算公式: SO2排放量(吨)=2X0.8X耗煤量(吨)X煤中的含硫分(%)X(1-脱硫效率%) 其中耗煤量以1吨为基准,煤中的含硫分为1.5%, 则1吨煤的SO2产生量=2X0.8X1X1.5%=0.024吨=24千克 其中煤中的含硫分为1%, 则1吨煤的SO2产生量=2X0.8X1X1%=0.016吨=16千克 3、燃煤NOX排放量的估算: 计算公式: NOX排放量(吨)=1.63X耗煤量(吨)X(燃煤中氮的含量X燃煤中氮的NOX转化率% 0.000938) NOX排放量(吨)=1.63X耗煤量(吨)X(0.015X燃煤中氮的NOX转化率% 0.000938)其中耗煤量以1吨为基准,燃煤中氮的含量=1.5% 燃煤中氮的转化率=25%, 具体可见《排污收费制度》P122页 则1吨煤的NOX排放量=1.63X1X(0.015X25% 0.000938)=0.00764吨=7.6千克 根据国家环保总局编著的《排污申报登记实用手册》“第21章第4节NOX、CO、CH化合物排放量计算”,燃煤工业锅炉产生的NOX的计算公式如下: GNOX=B X FNOX GNOX:——NOX排放量,千克; B——耗煤量,吨 FNOX——燃煤工业锅炉NOX产污排污系数,千克/吨 燃煤工业锅炉NOX产污排污系数,千克/吨 二、燃油 1、燃油SO2排放量的估算 计算公式:

工业废气有哪些

工业废气有哪些? 随着工业化程度的不断提高,人为产生的空气污染物所占空气总污染物的比例在不断增加、对人类自身健康的危害在不断增大。目前,排放空气污染物最多的工业部门有:石油与化学工业、冶金工业、电力工业、建筑材料工业等等,下面就工业排放的主要有害气体污染物NOx、SO2、P、CO、卤代烃、挥发性有机物(简称为VOC) 1、硝酸生产尾气、烟道气、石灰窑气等各种工业废气中的NOx 硝酸生产过程中要排放大量的硝酸尾气,其中含有NOx。NOx不仅对人类、生物有剧毒,而且导致光化学烟雾的生成,其危害极大。我国现有硝酸生产工厂50多家,硝酸尾气中NOx的浓度一般为500~5000 ppm,每年排入大气的NOx(以NO2计)约为6万吨。如果能回收这些NOx,不仅控制了对环境的污染,同时可以增产硝酸,降低生产成本。 2、黄磷尾气 我国每年生产黄磷40万吨,生产过程中每生产一吨黄磷会产生2500Nm3尾气,每年产生的尾气量达10亿Nm3,其主要成份为一氧化碳(约85%~90%),CO是一种易燃易爆有毒的气体,尾气中含有的P、S、As、F等及其化合物的有毒组分未经处理排放到大气中也将严重污染环境;同时CO又是一种重要的碳一化工原料,尾气中含有的P、S、As等易使催化剂中毒,所以有效处理黄磷尾气具有非常重要的意义。 3、二氧化硫 硫氧化物主要是二氧化硫,它是大气中数量最大、分布最广、影响最严重的环境污染物之一,目前控制的主要方法有:高烟囱稀释法、采用低硫燃料、排放废气脱硫等,近年在采用干法(吸附废气处理)、湿法脱硫技术领域开展了较多研究,工业化应用已很成熟。吸附法脱除废气中的SO2又分为物理吸附法和化学吸附法,物理吸附时被选择性吸收的SO2可通过升温或降压解吸出来,化学吸附时吸附剂同时起催化作用,被吸附的SO2被废气中的氧氧化成SO3,后者在与水生成硫酸。目前,国内关于采用吸附法净化SO2的报道多为实验研究报告。 4含三氯乙烯、三氯乙烷等卤代烃的排放废气 含卤代烃的废气处理目前较为成熟的技术是溶剂吸收或吸附法处理,如:(1)彩色显象管生产线清洗阴罩时挥发的三氯乙烷气体刺激人体粘膜,长期接触能使运动神经系统受损,无论从环境保护还是降低生产成本来看都必须回收利用。(2)在工业上应用很广的三氯乙烯,是对人体和环境都有较大危害的有毒污染物,含三氯乙烯工业废气排放前必须脱除其中超标含量的TCE。 5、含高沸点有机物的尾气 目前,采用吸附法净化、回收排放尾气中的有机组份的工业应用是比较成功的,采用的通常流程为TSA或PTSA流程,既可有效脱除有机污染物又可回收有用组份。 6、一氧化碳 CO是一种易燃易爆有毒的气体,未经处理排放到大气中将严重污染环境,所以

环评报告总量计算方法

附件:4 总量计算方法 1、污染物量计算方法: 锅炉烟尘(颗粒物)计算方法: 改造前预测排放总量计算方法: 根据《第一次全国污染源普查工业污染源产排污系数手册》(第十分册4430热力生产和供应行业): 烟尘产生量(千克/吨-原料)=1.25A 式中:A为燃煤灰分(本项目为22.49) 改造前烟尘排放量(吨/年)=1.25A×B(吨/年)/1000×(1-η)式中:B为年燃煤量(本项目为1520) η为除尘效率(本项目改造前为96%) 改造前烟尘排放量(吨/年)=1.25×22.49×1520/1000×(1-96%) =1.71(吨/年) 改造前核定总量计算方法: 烟尘排放量(单位:吨/年)=燃煤量×工业废气量(层燃炉取10804.95,单位:标立方米/吨-原料)×排放浓度限值(取200,单位毫克/立方米)×10-9 烟尘排放量(单位:吨/年)=1520×10804.95×200×10-9=3.28t/a

改造后核定总量计算方法: 烟尘排放量(单位:吨/年)=燃煤量×工业废气量(层燃炉取10804.95,单位:标立方米/吨-原料)×排放浓度限值(取80,单位毫克/立方米)×10-9 烟尘排放量(单位:吨/年)=1520×10804.95×80×10-9=1.31t/a 改造后预测排放总量计算方法: 根据《第一次全国污染源普查工业污染源产排污系数手册》(第十分册4430热力生产和供应行业): 烟尘产生量(千克/吨-原料)=1.25A 式中:A为燃煤灰分(本项目为22.49) 改造后烟尘排放量(吨/年)=1.25A×B(吨/年)/1000×(1-η)式中:B为年燃煤量(本项目为1520) η为除尘效率(本项目改造前为99.5%) 改造后烟尘(颗粒物)排放量(吨/年)=1.25×22.49×1520/1000×(1-99.5%)=0.21(吨/年)

废气产生量计算方法

烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。 烧一吨柴油,排放2000×S%千克SO2,万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克; 砖瓦生产,每万块产品排放40-80 千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。 物料衡算公式: 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般。若燃煤的含硫率为1%,则烧1吨煤排放16公斤SO2 。 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油%,柴油。若含硫率为2%,燃烧1吨油排放40公斤SO2 。 ¬排污系数:燃烧一吨煤,排放万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放-万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】 ~,即用水量的70-90%。 【生活污水排放系数】采用本地区的实测系数。。 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】 按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘 原煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法 当废气排放量有实测值时,采用下式计算:

主要城市废气中主要污染物排放情况-(2013年)

我国主要城市废气中主要污染物排放情况 摘要 近几年来环境问题成为全社会极为关注的热点, 空气污染是其中最热门的话题,同时也是最重要的民生问题。本文针对这个现状,搜集了全国有代表性的31个城市的主要大气污染物的排放情况,先利用主成分分析评价了31个城市的综合空气质量,然后又分别用最短距离法和离差平方和法进行聚类分析,最终结果为北京、天津、石家庄等城市的空气质量较差;而海口、拉萨、南宁等城市的空气较好。特别需要说明的是北京的空气污染与其它城市相比有很大的不同,在最短距离法中被单独聚为一类且与其它类相距较远,这与北京目前空气现状是相吻合的。 在本文的最后还根据实际情况对模型的优缺点做了评价,并指出了需要改进的地方。 关键词:大气污染;主成分分析;聚类分析 1、数据资料 本文的原始数据取自《中国统计年鉴,2014》, 表1 我国主要城市废气中主要污染物排放情况

用1x 表示工业二氧化硫排放量,2x 表示工业二氧化硫排放量,3x 表示工业烟(粉)尘排放量, 4x 表示生活二氧化硫排放量,5x 表示生活氮氧化物排放量,6x 表示生活烟尘排放量。 2、主成分分析 2.1主成分分析的步骤 (1)计算相关系数矩阵()ij m m R r ?=有 (2)计算特征值和特征向量。计算相关系数矩阵R 的特征值120m λλλ≥≥???≥,以及对应的特征向量12,,m u u u ???由特征值组成m 个新的指标变量: 其中:1y 是第一主成分,2y 是第二主成分,,m y 是第m 主成分。 (3)计算特征值的信息贡献率和累积贡献率。 为主成分j y 的信息贡献率,同时有 为主成分12,, ,p y y y 的累积贡献率。 (4)根据累积贡献率选取几个主成分作为新的评价指标。 2.2 主成分分析构建评价指标 定性地考虑反应各个城市空气质量的6个评价指标, 不难看出某些指标可能存在较强的相关性,比如汽车的尾气中既含有二氧化硫也含有氮氧化物, 这两个指标之间可能存在相关性。为了验证这个想法用MATLAB 计算指标之间的相关系数矩阵的特征值以及贡献率,如下表所示: 表2 主成分分析结果

锅炉废气排放量计算

1.工业废水排放量=工业新鲜用水量×80% 2.燃煤废气量计算公式∶ V=(α+b)×K×Q低×B÷10000 式中:V—燃煤废气量(万标立方米) α—炉膛空气过剩系数(见表1) b—燃料系数(见表2) K=1.1 Q低—煤的低位发热值,取Q低=5200大卡 B—锅炉耗煤量(吨) 3.燃煤二氧化硫排放量计算公式∶ G=2×0.8×B×S×(1-η) 式中:G—燃煤二氧化硫排放量(吨) B—锅炉耗煤量(吨) S—煤中全硫分含量。 η—二氧化硫脱除率。 4.煤粉炉、沸腾炉和抛煤机炉燃煤烟尘产生量计算公式∶

G= ( B×A×dfh ) / ( 1-C fh ) ×1000 其他炉型燃煤烟尘产生量计算公式∶ G=B×A×dfh×1000 燃煤烟尘排放量=G×(1-η) 燃煤烟尘排放量=G×η 式中:G—燃煤烟尘产生量(千克) B—锅炉耗煤量(吨) A—煤的灰份,有化验的取实测值、无化验的取A=26.99%dfh—烟气中烟尘占灰份量的百分数(见表3),取中间值Cfh—烟尘中可燃物的百分含量,煤粉炉取4~8%、沸腾炉取15~25% η—除尘器的除尘效率。 5.燃煤氮氧化物产生量计算公式∶ GNOX=1630×B(β×n+10-6×Vy×CNOX) 式中:GNOX—燃煤氮氧化物产生量(千克) B—锅炉耗煤量(吨)

β—燃料氮向燃料型NO的转变率(%);与燃料含氮量n 有关。普通燃烧条件下,燃煤层燃炉为25~50%,燃油锅炉32~40%,煤粉炉20~25%。 n—燃料中氮的含量(%),见表4 Vy—1千克燃料生成的烟气量(标米3/千克),取7.8936标米3/千克。 CNOX—燃烧时生成的温度温度型NO的浓度(毫克/标米3),通常可取70ppm, 即93.8毫克/标米3。 6.燃煤炉渣产生量≈耗煤量÷3 7.对于一般锅炉燃烧一吨煤,约产生下列污染物: Ⅰ产生0.78936万标立方米燃料燃烧废气; Ⅱ产生32.00千克二氧化硫; Ⅲ产生0.33333吨炉渣; Ⅳ产生53.98千克烟尘; Ⅴ产生9.08千克氮氧化物。 8.对于废水中污染物的排放量:

中国碳排放的影响因素分析

龙源期刊网 https://www.sodocs.net/doc/5f18393715.html, 中国碳排放的影响因素分析 作者:贺红兵 来源:《经济研究导刊》2012年第15期 摘要:中国的碳排放处于快速上涨时期,通过碳排放因素分解分析可以区分不同因素对碳排放起到的作用,还可以找到碳减排在哪些方面还有潜力可挖,为政府制定目标政策提供参考。 关键词:碳排放;因素分解;能源强度 中图分类号:F124.5 文献标志码:A 文章编号:1673-291X(2012)15-0024-02 当前,中国正处于工业化和城市化的快速推进进程中,二氧化碳排放保持快速增长态 势,控制二氧化碳排放的形势十分严峻。到底是什么原因促进了中国碳排放持续快速增长,值得探讨。只有找到这些影响碳排放的重要因素,我们才可能对症下药,做出相应的对策来减缓碳排放日趋严重的趋势。因此,深入分析能源消耗碳排放的相关因素尤为重要。研究中国能源消耗碳排放的变化特征,分析其主要影响因素的作用机理并量化其贡献率,有助于提高节能减排政策制定的科学性和可操作性。 一、分解方法 Et表示t期总的能源消费、Pt表示t期总产出、Eit表示i部门t期的能源消费、Pit表示i 部门t期的产出,从上面的定义可以得出: Et=Eit (1) Pit=Pit (2) 这里m表示部门数量。考虑到不同种类的单位能源产生的碳排放不一样,可以把碳排放 分解为: Ct=Etef j S jt (3) Cit=Eitef j S j it (4) 这里,Ct表示t期总的碳排放量、ef j表示第j种能源的碳排放系数、sjt表示t期第j种能源在总的能源消费中的比重、 Cit表示t期第i部门碳排放量、sjit表示t期第j中能源在第i部门能源消费中所占的比重、F表示化石能源的种类、第i部门t期单位产出的能源消耗强度和 单位产出碳排放强度可以表示为:

废气排放量计算方法

二氧化硫排放量 煤和油类在燃烧过程中,产生大量烟气和烟尘,烟气中主要污染物有二氧化硫、氮氧化物和一氧化碳等,其方法如下: 煤炭中的全硫分包括有机硫、硫铁矿和硫酸盐,前二部分为可燃性硫,燃烧后生成二氧化硫,第三部分为不可燃性硫,列入灰分。通常情况下,可燃性硫占全硫分的70%~90%,平均取80%。根据硫燃烧的化学反应方程式可以知道,在燃烧中,可燃性硫氧化为二氧化硫,1克硫燃烧后生成2克二氧化硫,其化学反应方程式为:S+O2=SO2 根据上述化学反应方程式,燃煤产生的二氧化硫排放量公式如下:G=2×80%×W×S%×(1-η)=16WS(1-η) G——二氧化硫排放量,单位:千克(Kg) W——耗煤量,单位:吨(T) S——煤中的全硫分含量 η——二氧化硫去除率,% 【注:燃油时产生的二氧化硫排放量G=20WS(1-η)】 例:某厂全年用煤量3万吨,其中用甲地煤万吨,含硫量%,乙地煤万吨,含硫量%,二氧化硫去除率10%,求该厂全年共排放二氧化硫多少千克。

解:G=16×(15000×+15000×)×(1-10%) =16×66000×=950400(千克) §经验法 根据生产过程中单位产品的经验排放系数进行计算,求得污染物排放量的计算方法。只要取得准确的单位产品的经验排放系数,就可以使污染物排放量的计算工作大大简化。因此,我们要通过努力,不断地调查研究,积累数据,以确定各种生产规模下的单位产品的经验排放系数。如生产1吨水泥的粉尘排放量为20~120千克。 燃料燃烧过程中废气及污染物排放经验系数 ——废气: 燃烧1吨煤,排放~万标立方米燃料燃烧废气;燃烧1吨油,排放~万标立方米废气,柴油取小值,重油取大值。 ——SO2: 燃烧1吨煤,产生16S煤千克SO2。S煤为燃煤硫份,一般为~%。如硫份为%时,燃烧1吨煤产生24千克SO2 。 燃烧1吨油,产生20S油千克SO2。S油为燃油硫份,一般为重油~%,柴油~%。如硫份为2%时,燃烧1吨油产生40千克SO2 。 ——烟尘:

工业废水废气排放量污染物排放系数及污染物排放量计算方法

污染物排放系数及污染物排放量计算方法 一、废水部分 Wi=Ci×Qi×10 W——某一排放口i种污染物年排放量(公斤/年) Q——该排放口年废水排放量(万吨/年) 餐饮业及商场年废水排放量可按年用新鲜水量的80%计;美容、理发店和浴室等行业年废水排放量可按年用新鲜水量的85%计。 二、废气部分 1、年废气排放量 Q=P?B Q—某一锅炉、茶炉、大灶或工业窑炉年废气排放量(万标立方米/年)B——该锅炉、茶炉、大灶或工业窑炉年燃料消耗量(吨/年) P——该锅炉、茶炉、大灶或工业窑炉废气排放量的排放系数。 各种燃料废气排污系数

2、年烟尘排放量 G=B·K·(1-η) G——某一锅炉、茶炉、大灶或工业窑炉年烟尘排放量(吨年)。B——该锅炉、茶炉、大灶或工业窑炉年燃料消耗量。煤(吨/年);燃料油(立方米/年);燃料气(百万立方米/年)。 K——该锅炉、茶炉、大灶或工业窑炉年烟尘排放量的污染系数。η——该锅炉、茶炉、大灶或工业窑炉除尘系统的除尘效率(%)。其中旋风除尘器除尘效率为80%左右,水膜除尘器除尘效率为90%左右。 燃煤烟尘污染系数 燃料油、燃料气烟尘排污系数 注:1、燃料油比重为0.92~0.98吨/立方米。2、燃料气(指液化气)1百万立方米(常压)≈2381吨3、各种污染物排放量SO2排放量:W=β .B (1–?) CO和NOX排放量:W=β .B W—某锅炉、茶炉、大灶或工业窑炉某种污染物年排放量(吨)β—该锅炉、茶炉、大灶或工业窑炉该种污染物燃料煤、油、燃料气的排污系数B—该锅炉、茶炉、大灶或工业窑炉燃料年消耗量。煤(吨/年);燃料油(立方米/年);燃料气(百万立方米/年)?—该锅炉、茶炉、大灶或工业窑

我国碳排放量影响因素

我国碳排放量影响因素分析 摘要:当前,中国正处于工业化和城市化的快速推进进程中,二氧化碳排放保持快速增长态势,控制二氧化碳排放的形势十分严峻。是什么因素影响中国的碳排放量,值得探讨。本文通过建立多元线性回归模型,筛选出影响碳排放量的主要因素。通过对这些影响因素的分析,提出相应的对策来减缓碳排放日趋严重的趋势。 关键词:碳排放,GDP,能源 1.我国二氧化碳排放基本现状 我国已经成为世界上温室气体排放量第二多的国家,随着经济社会的继续发展,到2020年,预计中国将超过美国成为温室气体排放世界第一大国。我国的温室气体排放具有以下特点:第一,温室气体排放总量大;第二,单位GDP的二氧化碳排放率大;第三,二氧化碳的能源排放系数大;第四,相对OECD国家,GDP能耗强度较高。温室气体排放的主要来源是能源消费,我国长期以来的经济结构和能源消费结构决定了温室气体排放的上述特点:第一,我国是世界上最大的发展中国家,经济发展速度很快,2007年我国的GDP总量仅次于美国、日本和德国,达到30100亿美元,居世界第四位。经济发展需耗费大量能源,产生温室气体,因而我国的温室气体排放总量非常巨大;第二,我国的能源结构中化石能源占70%左右,煤炭是主要的能源。据预测,我国需要消耗31亿吨标准煤左右的能源,包括约23亿吨煤炭,才能实现全面建设小康社会的经济增长目标;第三,我国是以第二产业为主的经济结构,工业是最大的能源消费产业,其中,钢铁、化学、水泥、电力、造纸和玻璃等支柱行业都属于能源密集型产业,是温室气体的排放基地。 1992年,中国正式签署了联合国气候变化框架公约,对于维护全球气候正常有一定的义务;2002年8月中国又批准了京都议定书,从此合法具备参与国际碳排放交易的资格。虽然在第一承诺期我国没有减排目标,但是我国已经面临着很强的国际减排压力,在第二承诺期(2012年以后)可能被分派一定的减排任务。而减排任务的承担必然会对我国的社会、经济发展造成不小的影响。我国人口众多,社会发展形态还很初级。环境问题常常伴随在经济发展的过程当中困扰着我国。为尽早摆脱贫困,中国似乎不惜以无限制地开发自己的环境资源为代价,使得能源耗竭和环境污染等问题异常突出突出。对此,人们开始反思如何才能以更好的方式来处理日益复杂的环境和经济问题。在我国社会主义市场经济体制逐步完善的条件下,出现越来越多的以经济学的理论与方法来认识解决社会问题的研究。因此,一方面,我们应该运用经济学手段寻找导致环境问题的原因;另一方面,寻找解决环境问题的制度方法和机制。 2.影响碳排放量因素分析 2.1 二氧化碳排放的影响因素理论 通过文献回顾发现,一个国家的技术创新能力、经济发展程度和经济结构、人口结构、能源结构等通过决定了二氧化碳的排放总量。根据Ehrlich和Holden (1971)等提出的“I=PAT”方程,人口对环境的影响可以分解为四个部分:环境影响、人口数量、人均财富以及环境修复技术水平。

废气排放量及污染物的测算

1、燃料燃烧过程中废气排放量及污染物的测算 ⑴用煤作燃料时 燃料燃烧废气排放总量(万标立方米)=燃料耗用量(吨)×0.8 燃料燃烧过程中二氧化硫排放量(千克)=燃料耗用量(吨)×8×(1-脱硫效率) 燃料燃烧过程中烟尘排放量(千克)=燃料耗用量(吨)×1000×灰分×dfh× (1-除尘 效率) ÷(1-cfh) 注:本公式适用煤粉炉、沸腾炉、抛煤机炉,其他炉型应去掉分母计算。通常dfh取20﹪, cfh取30﹪。 燃料燃烧过程中氮氧化物排放量采用排污系数法,见表1。 ⑵用天然气作燃料时 燃料燃烧废气排放总量(万标立方米)=燃料耗用量(万立方米)×15.3 燃料燃烧过程中二氧化硫产生量(千克)=燃料耗用量(万立方米)×6.3 燃料燃烧过程中烟尘排放量(千克)=燃料耗用量(万立方米)×2.86 燃料燃烧过程中氮氧化物排放量采用排污系数法,见表1。 ⑶用油作燃料时 柴油:燃料燃烧废气排放总量(万标立方米)=燃料耗用量(吨)×1.56 重油:燃料燃烧废气排放总量(万标立方米)=燃料耗用量(吨)×1.42 燃料燃烧过程中二氧化硫排放量(千克)=2×燃料耗用量(吨)×1000×(1-脱硫效率) 燃料燃烧过程中氮氧化物排放量采用排污系数法,见表1。 几个常用的系数供参考(排污系数) 烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。

烧一吨柴油,排放2000×S%千克SO2,1.2万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,1.6万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克; 砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。 物料衡算公式: 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。若燃煤的含硫率为1%,则烧1吨煤排放16公斤SO2。 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油 1.5-3%,柴油0.5-0.8%。若含硫率为2%,燃烧1吨油排放40公斤SO2。 ?排污系数:燃烧一吨煤,排放0.9-1.2万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。 燃烧一吨油,排放1.2-1.6万标立方米废气,柴油取小值,重油取大值。 一、理论空气量计算 L=0.2413Q/1000+ 0.5 L:燃料完全燃烧所需的理论空气量,单位是m3/kg; Q:燃料低发热值,单位是kJ/kg; 二、理论烟气量计算 V=0.01(1.867C+0.7S+0.8N)+0.79L V:理论干烟气量,单位是m3/kg;

辽宁省大连市废气治理设施数量与工业废气排放总量数据分析报告2019版

辽宁省大连市废气治理设施数量与工业废气排放总量数据分析报告2019版

序言 本报告全面、客观、深度分析当下大连市废气治理设施数量与工业废气排放总量现状及趋势脉络,通过专业、科学的研究方法及手段,剖析大连市废气治理设施数量与工业废气排放总量重要指标即工业企业数量,废气治理设施数量,工业废气排放总量等,把握大连市废气治理设施数量与工业废气排放总量发展规律,前瞻未来发展态势。 大连市废气治理设施数量与工业废气排放总量分析报告数据来源于中国国 家统计局等权威部门,并经过专业统计分析及清洗处理。 无数据不客观,借助严谨的数据分析给与大众更深入的洞察及更精准的分析,体现完整、真实的客观事实,为公众了解大连市废气治理设施数量与工业废气排放总量提供有价值的指引,为需求者提供有意义的参考。

目录 第一节大连市废气治理设施数量与工业废气排放总量现状 (1) 第二节大连市工业企业数量指标分析 (3) 一、大连市工业企业数量现状统计 (3) 二、全省工业企业数量现状统计 (3) 三、大连市工业企业数量占全省工业企业数量比重统计 (3) 四、大连市工业企业数量(2016-2018)统计分析 (4) 五、大连市工业企业数量(2017-2018)变动分析 (4) 六、全省工业企业数量(2016-2018)统计分析 (5) 七、全省工业企业数量(2017-2018)变动分析 (5) 八、大连市工业企业数量同全省工业企业数量(2017-2018)变动对比分析 (6) 第三节大连市废气治理设施数量指标分析 (7) 一、大连市废气治理设施数量现状统计 (7) 二、全省废气治理设施数量现状统计分析 (7) 三、大连市废气治理设施数量占全省废气治理设施数量比重统计分析 (7) 四、大连市废气治理设施数量(2016-2018)统计分析 (8) 五、大连市废气治理设施数量(2017-2018)变动分析 (8) 六、全省废气治理设施数量(2016-2018)统计分析 (9)

新常态下我国碳排放达峰形势分析

新常态下我国碳排放达峰形势分析 随着2016年10月4日欧洲议会全会以压倒性多数票通过了欧盟批准《巴黎协定》的决议,《巴黎协定》已经具备正式生效的必要条件。联合国秘书长潘基文10月5日宣布应对气候变化的《巴黎协定》将于今年11月4日正式生效,并呼吁各国政府及社会各界全面执行《巴黎协定》,立即采取行动减少温室气体排放,增强对气候变化的应对能力。作为全球气候治理体系建设的一个重要里程碑,《巴黎协定》在2009年哥本哈根气候变化大会达成的2度温控目标政治共识基础上,进一步提出努力实现1.5度的目标,并建立了以国家自主贡献为核心的新的责任分担模式。但是,从相关研究看,综合各国国家自主贡献得到的全球排放路径仍难以满足全球2度温控目标的要求,因此,推动各方进一步提高减排力度将成为新形势下全球应对气候变化的重要内容,而我国作为全球第一排放大国也将面临越来越大的减排压力。在此背景下,本文对全球2度温控目标下我国的碳排放路径进行了分析,并结合当前我国经济、能源发展的新常态,对我国碳排放达峰的形势和关键影响因素进行了探讨,提出了推动碳排放达峰的工作建议。 一、全球温升控制目标对我国的碳减排路径的要求

尽管全球已就2度温控目标达成政治共识并在《巴黎协定》中进一步强化,但相关研究显示,按照当前全球碳减排努力水平测算,实现“2度温控目标”面临很大挑战。按照“政府间气候变化专门委员会”(IPCC)第五次评估报告结论,要实现“2度温控目标”,全球累积碳排放空间已不足1万亿吨CO2,若按照当前的年排放水平这一排放空间将在约30年内耗尽;全球温室气体排放到2030年应在2010年水平上下降0~40%,到本世纪中叶应在2010 年水平上下降40%~70%,到本世纪末应减至近零排放,而1.5度目标的减排要求则更加严苛。目前,按照《联合国气候变化框架公约》(以下简称“公约”)缔约方会议要求,绝大多数国家提交了包含其未来10-15年碳排放控制目标的“国家自主贡献”。按照公约秘书处的初步测算,即使各国均能实现自主贡献目标,2030年全球温室气体排放也将达到567亿吨CO2当量,较实现“2度温控目标”成本最优路径下的排放限值高出约87亿吨CO2当量(即高出约19%)。 根据笔者对我国碳排放空间的测算分析,如果各国共同分担弥合与“2度温控目标”的差距,即使按照“人年均二氧化碳排放均等”这种较为有利于我国的分配方案,我国碳排放也须于2020-2030年间达峰,2030年单位GDP碳排放(以下简称“碳强度”)相对于2005年需下降68%~78%,2050年碳排放需回到1990-2005年间排放水平。这一减排路径要求我国在国家自主贡献承诺的2030年左右达峰的基础上,加快推动经济、能源等领域的深度低碳转型并尽早实现碳排放达峰。

废气污染物排放量计算精编版

废气污染物排放量计算 1、主要排放口计算 主要排放口有烧结机头烟囱、烧结机尾烟囱、竖炉焙烧烟囱、1#高炉矿槽及出铁场烟囱、2#高炉矿槽及出铁场烟囱、1#转炉二次除尘烟囱、2#转炉二次除尘烟囱、自备电厂燃气锅炉烟囱。 主要排放口计算公式为: 其中:M—为第i个排放口污染物年许可排放量,t; R—由于本企业近3年的产量低于设计产能的30%,计算采用设计产能进行。其中企业烧结、炼铁、炼钢、轧钢的设计产能数据来源于《省经信委关于大冶华鑫实业有限公司现有生产装备及生产能力核实意见的函》(鄂经信重化函[2016]419号); C—为污染物许可排放浓度限值,单位为mg/Nm3; Q—为基准排气量,单位为Nm3/t产品。基准排气量取自《排污许可证申请与核发技术规范钢铁工业》。 主要排放口年许可量: 主要排放口年许可

一般排放口有:烧结配料、筛分工序排放口;高炉制煤、热风炉工序排放口;炼钢一次除尘排放口;石灰窑废气排放口;热轧加热炉排放口等。 一般排放口计算公式为: 一般排放口年许可 其中:M—为第i个单元大气污染物年许可排放量,t; R—由于本企业近3年的产量低于设计产能的30%,计算采用设计产能进行。其中企业烧结、炼铁、炼钢、轧钢的设计产能数据来源于《省经信委关于大冶华鑫实业有限公司现有生产装备及生产能力核实意见的函》(鄂经信重化函[2016]419号); G—为第i个单元污染物一般排放口排放量绩效值,单位为kg/t。一般排放口排放量绩效值取自《排污许可证申请与核发技术规范钢铁工业》。

钢铁工业排污单位污染物无组织年许可排放量计算公式: 其中:W—为第i个单元大气污染物年许可排放量,t; R—由于本企业近3年的产量低于设计产能的30%,计算采用设计产能进行。其中企业烧结、炼铁、炼钢、轧钢的设计产能数据来源于《省经信委关于大冶华鑫实业有限公司现有生产装备及生产能力核实意见的函》(鄂经信重化函[2016]419号); G—为第i个单元污染物无组织排放量绩效值,单位为kg/t。无组织排放量绩效值取自《排污许可证申请与核发技术规范钢铁工业》。 一般排放口年许可

辽宁省朝阳市废气治理设施数量与工业废气排放总量数据分析报告2019版

辽宁省朝阳市废气治理设施数量与工业废气排放总量数据分析报告2019版

序言 本报告全面、客观、深度分析当下朝阳市废气治理设施数量与工业废气排放总量现状及趋势脉络,通过专业、科学的研究方法及手段,剖析朝阳市废气治理设施数量与工业废气排放总量重要指标即工业企业数量,废气治理设施数量,工业废气排放总量等,把握朝阳市废气治理设施数量与工业废气排放总量发展规律,前瞻未来发展态势。 朝阳市废气治理设施数量与工业废气排放总量分析报告数据来源于中国国 家统计局等权威部门,并经过专业统计分析及清洗处理。 无数据不客观,借助严谨的数据分析给与大众更深入的洞察及更精准的分析,体现完整、真实的客观事实,为公众了解朝阳市废气治理设施数量与工业废气排放总量提供有价值的指引,为需求者提供有意义的参考。

目录 第一节朝阳市废气治理设施数量与工业废气排放总量现状 (1) 第二节朝阳市工业企业数量指标分析 (3) 一、朝阳市工业企业数量现状统计 (3) 二、全省工业企业数量现状统计 (3) 三、朝阳市工业企业数量占全省工业企业数量比重统计 (3) 四、朝阳市工业企业数量(2016-2018)统计分析 (4) 五、朝阳市工业企业数量(2017-2018)变动分析 (4) 六、全省工业企业数量(2016-2018)统计分析 (5) 七、全省工业企业数量(2017-2018)变动分析 (5) 八、朝阳市工业企业数量同全省工业企业数量(2017-2018)变动对比分析 (6) 第三节朝阳市废气治理设施数量指标分析 (7) 一、朝阳市废气治理设施数量现状统计 (7) 二、全省废气治理设施数量现状统计分析 (7) 三、朝阳市废气治理设施数量占全省废气治理设施数量比重统计分析 (7) 四、朝阳市废气治理设施数量(2016-2018)统计分析 (8) 五、朝阳市废气治理设施数量(2017-2018)变动分析 (8) 六、全省废气治理设施数量(2016-2018)统计分析 (9)

相关主题