搜档网
当前位置:搜档网 › 酶工程技术在环境保护中的应用

酶工程技术在环境保护中的应用

酶工程技术在环境保护中的应用
酶工程技术在环境保护中的应用

酶工程技术在环境保护中的应用

摘要:酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,研究和应用显示了酶在环境污染治理中有着广阔的应用前景。综述了酶的固定化技术,包括酶的固定化方法、选择与比较等;膜式酶生物反应器的基本概念和利弊、及其应用;以及酶在污染治理中的研究和应用,其中包括水净化、环境监测、白色污染的治理和有机废水的酶处理等方面。酶在环境污染治理中的研究和应用显示了生物工程在环境污染治理和生物修复上有着广阔的应用

前景。

关键词:酶固定技术;酶反应器;环境保护;应用

1 酶的固定化

1.1 酶固定化的方法

酶的固定化方法主要有四种: 包埋法(entrapment) 、吸附法(adsorption) 、共价法(covalent blinding) 、交联法(cross linking)。

1.1.1 包埋法

包埋固定化法是把酶定位于聚合物材料的格子结构或微胶囊结构中。这样可以防止酶蛋白释放, 但是底物仍能渗人格子内与酶相接触. 此法较为简便,酶分子仅仅是被包埋起来, 生物活性破坏少, 但此法对大分子底物不适用。

( l) 凝胶包埋。凝胶包埋法是将酶包埋在交联的水不溶性凝胶的空隙中的方法. 交联聚丙烯酞胺凝胶包埋法是首先被采用的包埋技术。

(2) 微胶囊包埋。将酶包埋于半透性聚合体膜内, 形成直径为1-100um的微囊。这种固定化酶是以物理方法包埋在膜内的只要底物和产物分子大小能够通过半

透膜底物和产物分子就能够以自由扩散的方式通过膜。

1.1.2 吸附法

吸附固定是最简单的方法, 酶与载体之间的亲和力是范德华力、离子键和氢键。此方法又可分为物理吸附法和离子吸附法:

(l) 物理吸附法

使用对蛋白质具有高度吸附能力的非水溶性载体, 如活性碳、几丁质: “多孔玻璃二”等作为吸附剂将酶吸附到表面上使酶固定化这种方法操作简单, 反应条件温和, 载体可反复使用, 但结合不牢固, 酶易脱落。

(2) 离子吸附法。利用酶蛋白在解离状态下可用电荷引力而固着于带有与酶蛋白电荷相异的离子交换剂(水不溶性载体)上的固定化方法。此法操作简单, 固定较为牢固, 在工业上用途颇广。

1.1.3 共价法

酶蛋白分子上的官能团和固相支持物表面上的反应基团之间形成共价键连接的方法。其优点是酶与载体之间的连接很牢固,稳定性好, 但反应条件激烈, 操作复杂, 控制条件苛刻。目前, 已建立的方法包括:

(l) 重氮法。这是共价键法中使用最多的一种如下式所示, 将具有氨基的不溶性载体, 以稀盐酸和亚硝酸钠处理,成为重氮化物, 再与酶分子偶联酶蛋白中的游离氨基, 组氨酸中的咪哇基, 酪氨酸中的酚基, 可与其结合

R 一NH Z 一〔R 一N 三N ]Cl-1一十[酶〕一R 一N 二N 一[酶]

(2) 肤键法。此法是将有功能基团的载体与酶白中赖氨酸的: 一氨基或N 末端的。一氨基作用形成肤键成为固定化酶。

(3 )基化法和芳基化法。以卤素为功能基团的载体与酶蛋白的氨基或琉基发生烷基化或芳基化反应形成固定化酶。

1.1.4 交联法

使酶与带两个以上的多官能团试剂进行交联反应,生成不溶于水的二维交联聚集体, 交联形成的固定化酶称为交联酶。与共价结合法一样, 都是靠化学结合的方法使酶固定化。其区别在于交联法使用了交联剂常用的交联剂有戊醛: 蹂酸。单用戊二醛交联得到固定化酶的方法很少单独使用。将此法与吸附法或包埋法联合使用可以达到良好的加固效果例如: 先用几丁质吸附, 再用戊二醛交联等。

1.2 酶固定化的选择与比较

虽然发展了许多固定化技术, 并用于多种酶, 但现在还没有一种能适合所有应用和所有酶的全能方法。因为各种酶的化学特性和组成差别很大, 底物和产物性质不同, 产物的用途也不一样。因此, 对固定化酶的每一种应用来说必须

找到既简便又廉价的方法,并且要在给出产品的同时很好地保留酶活性, 还要有高的工作稳定性。

各类固定化方法的特点比较:

2 酶反应器

在选择酶反应器的时候, 一般应考虑以下几个方面: 酶的应用形式、底物的物理性质、酶反应动力学、酶的稳定性、操作要求、应用的可塑性等。

最简单的酶反应器为分批式反应器, 只需要加入固定化酶, 使之悬浮于搅拌罐中, 而不需要支持性装置。另一种酶反应器是连续流反应器, 可将粉状、块状固定化酶制成酶柱使用, 通人底物溶液, 产物便可连续流出。这种反应的速度决定于搅拌速度, 对于固定化酶来说, 反应结束后只需离心或过滤, 便可从中分离出酶。这种反应器适各种反应, 设备成本低,但固定化酶在回收过程中易

损失, 因此工业规模应用较少, 对小规模试验适合。

另一种酶反应器是连续流反应器, 可将粉状、块状固定化酶制成酶柱使用, 通入底物溶液, 产物便可连续流出。连续流反应器比分批式反应器工作固定、操作费用低, 易于自动控制和掌握产品的质量。

2.1 膜式酶生物反应器

2.1.1 膜生物反应器的有关概念

膜式反应器通过膜的选择性透过作用在有外推动力的情况下实现目标成分从反应混合物中的分离。膜也能被用作固定化酶的载体。即在进行催化反映的同时, 实现产品的分离浓缩。

2.1.2 膜生物反应器的分类

以酶和底物的接触机制来对各种酶反应器进行分类。

(1)超过滤式膜反应器

这类反应器的酶可以是固定化酶或以游离态存在,底物一进入膜的一侧, 就能与可溶性的酶接触进行反应。图1是典型的3种型式。

(2)扩散型膜反应器

这类反应器底物分子需经过被动扩散通过膜微孔后到达酶反应区。酶可以固定化或游离态存在。这就要求反应底物是小分子量的。催化反应得到的产物又扩散回到未反应的底物中不断循环。这类反应器常使用中空纤维膜, 酶一般位于纤维的外层。溶质是以浓度差而不是压力作为推动力通过膜的。因此与超过滤膜式

反应器相比, 其以扩散作为底物的主要传质动力,存在着一些缺点。举例来说,由于底物的跨膜渗透是一限速步聚, 使得酶的动力学行为低于游离酶反应。

(3)接触式多相膜反应器

这是指能促使底物和酶在膜上进行相界面接触的一类反应器。

2.1.3 膜式反应器的应用

采用膜式反应器, 可以实现酶反应的连续操作,提高产物得率。膜式酶反应器常用在大分子的水解,辅基再生系统的共轭反应, 脂酶催化的水解与合成,逆

向胶团催化等。

(1)大分子的水解

要是指蛋白、糖类( 淀粉和纤维素) 、肽类、麦芽糊精等大分子的水解。设计这类反应器的主要目标是截留大分子的底物, 分离出低分子量的产品, 这就

要求采用超过滤型反应器, 使酶和底物直接接触。

(2)脂酶催化的水解和合成反应

脂酶的特殊结构和作用机制, 即其在相界面激活起作用使得在膜式反应器

尤其是在多相膜式反应器中脂酶的活性显著提高, 因为这有利于酶和底物的界

面接触。可以油脂为底物分解生成脂肪酸、单/ 双甘油酯和甘油, 或者合成酯类( 包括酯交换反应) 。

(3)逆向胶团催化

通过逆向胶团体系将酶微胶囊化, 采用膜式反应器进行的酶反应, 其主要

限制因素是反应体系中的表面活性剂带来的污染。这使产物的分离纯化及酶的回收变得困难。因此, 发展逆向胶团技术, 关键是实现在连续进行反应的同时分离部分产物。

3 酶在污染治理中的研究和应用

人类赖以生存的环境质量, 是目前举世瞩目的重大问题。随着科学技术的不断发展, 人类开发利用自然资源的能力和范围不断扩大, 随之而来的环境污染

问题也越来越严重。作为生物工程的重要组成部分, 酶和酶工程受到生物化学工作者的重视, 几种新兴的技术产业已成为优先发展的高科技领域。在此介绍了酶工程基本技术及其在环境保护方面的研究和应用现状。

3.1 水净化

早在20 世纪70 年代, 固定化酶已被用于水和空气的净化。法国工业研究所积极开展利用固定化酶处理工业废水的研究, 将能处理废水的酶制成固定化酶。处理静止废水时直接用酶布或酶片; 处理流动废水时根据废水所含污物的种类

和数量, 确定玻璃酶柱或塑料酶柱的高度和直径, 采用多酶酶柱或单一酶柱。3.1.1含酚废水

芳香族化合物, 包括酚和芳香胺, 属于优先控制的污染物, 塑料厂、树脂厂、

染料厂等企业的废水中都含有这类污染物, 很多酶已用于这类废水处理。辣根过氧化物酶( HRP) 的应用集中在含酚污染物的处理方面, 使用HRP 处理的污染物包括苯胺、羟基喹啉、致癌芳香族化合物等。HRP 可以与一些难以去除的污染物一起沉淀, 形成多聚物而使难处理物质的去除率增大。如多氯联苯可以与酚一起从溶液中沉淀下来。马秀玲等研究了用磁性CS-M 固定化

HRP 处理含酚废水, 不仅有较高的酚去除率, 并可利用其磁响应性简便地回收磁性酶。

3.1.2 造纸废水处理

(1)过氧化物酶和漆酶辣根过氧化物酶和木质素过氧化物酶已用于造纸废水脱色。它们的固定化形式的处理效果比游离形式好。木质素过氧化物酶作用的机理为: 通过将苯环单元催化氧化成能自动降解的阳离子基团而降解木质素。漆酶可通过沉淀作用去除漂白废水中的氯酚和氯化木质素。

(2)分解纤维素的酶这类酶主要用于造纸浆和脱墨操作中的污染处理。纸浆和造纸操作中的废水处理产生的污泥纤维素含量高, 可用于生产乙醇等能源物质。所使用的酶是纤维二糖水合酶、纤维素酶和B- 葡萄糖酶组成的混合酶系。脱墨操作中产生的低含量纤维质废物可转化为可发酵的糖类。所使用的酶在高浓度墨存在时不被抑制。

3.1.3 食品工业废水

将固定化蛋白酶应用于粮食加工废水的预处理,其后续工艺可以采用任何一种生物处理法。因为固定化蛋白酶已将废水中不易生化降解的大分子转化为易于生物降解的小分子, 大大提高了废水的可生化性。固定化蛋白酶稳定、可重复使用的特点, 使得将酶应用于废水处理成为一种经济可行的方法, 具有良好的发展前景。淀粉酶是一类多糖水解酶, 多糖转变为单糖和发酵能同时进行, 淀粉酶用于含淀粉废水处理, 可使大米加工产生的废水中的有机物转化为酒精。淀粉酶还可缩短活性污泥法处理废水的时间。何国庆等研究了同时采用A-淀粉酶和葡萄糖淀粉酶的双酶法来处理小麦淀粉废水, 以实现利用此废水生产单细胞蛋白的目的。

3.1.4 重金属废水

台湾成功大学等将筛选出的耐铜、耐镍真菌用于电镀废水的处理。Tsezos 等

发现每克Rhizopusorrhizus菌丝( 干重) 去除铜高达180 mg 以上, 真菌表面的连接酶将溶于水中的重金属吸附在微生物表面,在能出入细胞壁传输营养物的酶的作用下, 将重金属离子带入细胞内, 细胞内重金属酶将其进行生物合成。

3.2 石油和工业废油的处理

每年由于各种原因排入海中的石油达200 万t , 如不及时处理, 不仅会造成鱼类的大量死亡, 而且石油中的有害物质也会通过食物链进入人体。人们用含有酶及其它成分的复合制剂处理海中的石油, 可以将石油降解成适合微生物的营养成分, 为浮在油表面的细菌提供优良的养料, 使得分解石油的细菌迅速繁殖, 以达到快速降解石油的目的。

脂酶生物技术应用于被污染环境的修复以及废物处理是一个新兴的领域。石油开采和炼制过程中产生的油泄漏、脂加工过程中产生的含脂废物以及饮食业产生的废物, 都可以用不同来源的脂酶进行有效的处理。

3.3 白色污染的治理

开发可生物降解高分子材料的传统方法包括天然高分子的改造法、化学合成法等, 但效果不佳。酶法合成可生物降解高分子兼有化学法和微生物法的优点, 它以酶代替化学催化剂, 高效率、高选择地催化某一化学反应, 催化条件温和, 克服了微生物法代谢产物复杂、产物难分离的缺点。

参考文献:

[1]张伟,杨秀山.酶固定化技术及其应用[J].北京:自然杂志,2000,22(5).

[2]陈陶声等固定化酶理论与应用,北京: 轻工业出版社. 1987.

[3] 杨雪梅, 张兰英, 张蕾, 等. 固定化酶在高浓度有机废水处理中的应[J].吉林大学学报, 2005, 35(3):398- 402.

[4]秦燕,吴国杰,宁正祥.膜式酶生物反应器及其应用[J].粮油加工与食品机械,2002:21-25.

[5]董科利,马晓健,鲁锋. 酶在环境保护方面的应用[J].化学与生物工程,2007,(2).

[6]邵风琴, 韩庆祥. 酶工程在污染治理中的应用[J]. 石油化工高等学校学报, 2003, 16( 2) : 36- 40.

酶工程的研究进展及前景展望

酶工程的研究进展及前景展望 摘要:概述了21 世纪国际上酶工程研究的新进展和新趋势。本文意在阐述近年来酶工程在分子水平的研究进展,并对其未来前景进行了展望。简单介绍了酶工程研究的进展, 对酶工程的发展前景进行了探讨。介绍了酶工程的应用现状,并对酶工程的作用和发展做出了展望。 关键词: 酶工程; 抗体酶;酶的固定化;开发研究; 进展; Abstract:An overview of the enzyme engineering in the 21st century international research progress and new trends. This paper aims to elaborate in recent years, progress in enzyme engineering research at the molecular level, and its future prospects. Briefly introduced the progress of the study of enzyme engineering, discussed the prospects for the development of enzyme engineering. Introduced the application status of the enzyme works , and the role and development of enzyme engineering to make the outlook. Keywords:Enzyme Engineering; Antibody enzyme; Immobilization; Research and development;Progress 1 前言 跨入21 世纪,人们在20 世纪认识生命本质高度一致性的基础上,迎来了后基因组时代,将有可能从整个基因组及其全套蛋白质产物的结构- 功能机理的角度,进一步阐明生命现象的核心和本质, 并系统整合生物学的全部知识,建立起真

酶工程发展概况及应用前景

酶工程发展概况及应用前景 【摘要】酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。 【关键词】酶工程;概况;应用;前景 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、人工合成酶、模拟酶、核酸酶、抗体酶、酶的定向固定化技术、酶化学技术、非水酶学、糖生物学、糖基转移酶、极端环境微生物和不可培养微生物的新品种等。 酶工程的应用 酶工程的发展日新月异,现举几个例子更加形象地说明酶工程地应用: 酶工程在污染处理中的作用:可利用过氧化物酶和聚酚氧化酶处理含酚废水和造纸废水,如辣根过氧化物酶,木质素过氧化物酶,植物来源的过氧化物酶;酪氨酸酶,漆酶等;可利用氰化物酶和氰化物水合酶处理含氰废水;利用蛋白酶,淀粉酶处理食品加工废水;并且,可以通过设计复合代谢途径,拓宽氧化酶的专一性等基因工程的运用,提高微生物的降解速率;拓宽底物的专一性;维持低浓度下的代谢活性;改善有机污染物降解过程中的生物催化稳定性等。酶在废物处理及资源化过程中正在发挥重要作用, 利用基因工程和蛋白质工程扩展酶的代谢途经, 是治理难降解有毒污染物的重要方法。

酶在环境保护方面的应用

酶在环境保护方面的应用 摘要:随着科学技术的迅速发展,人类赖以生存的环境质量,是目前举世瞩目的重大问题。对日益严峻的全球化环境污染问题,酶在环保方面的应用日益受到关注,呈现出良好的发展前景。为环境保护污染治理提供了新的技术手段。?本文介绍了酶工程基本技术,包括酶制剂的生产、酶的分离纯化,酶的固定化技术、酶的改造和修饰等,综述了酶在环境保护方面,包括水净化、石油和工业废油的处理、白色污染的治理和环境监测等方面的研究和应用现状。 关键词:酶工程;环境保护;环境监测;废水处理;可生物降解材料开发;石油和工业废油 众所周知,酶作为一种高效生物催化剂,能在十分温和的条件下起高数率的催化作用, 并且具有高度的区域选择性和立体专一性。因此, 它有着化学催化剂所无可比组的优越性, 已经广泛应用在食品工业、药物工业和洗议剂工业。 近年来环境污染越来越严重,酶的作用也从工业生产转移至环境治理中来。 人类的生产和生活与自然环境密切相关,随着科学技术的不断发展,地球环境由于受到各方面因素的影响,正在不断恶化,人类开发利用自然资源的能力和范围不断扩大,随之而来的环境污染问题也越来越严重,已经成为举世瞩目的重大问题。环境污染已成为制约人类社会发展的重要因素,我国每年排放大量废水(416亿t)、废气和烟尘(2000万t)以及固体废弃物(i000亿t),污染达到相当严重的地步。因此环境保护问题越来越受到人们的重视。20世纪以来,在化学和生物学之间的交叉地带形成的生物

技术占据了重要的地位,在工业、农业、医药、食品等方面得到了广泛的应用,并对解决当代资源、能源、环保等多方面问题起着举足轻重的作用。而作为生物工程的重要组成部分,酶和酶工程受到生物化学工作者的重视,几种新兴的技术产业已成为优先发展的高科技领域。 酶在环境保护方面的应用 1.酶在环境监测方面的应用 环境监测是了解环境情况、掌握环境质量变化,进行环境保护的一个重要环节。酶在环境监测方面的应用越来越广泛,已经在农药污染的监测、重金属污染的监测、微生物污染的监测等方面取得重要成果。? (1)利用胆碱酯酶检测有机磷农药污染? 最近几十年来,为了防治农作物的病虫害,大量使用各种农药。农药的大量使用,对农作物产量的提高起了一定的作用,然而由于农药,特别是有机磷农药的滥用,造成了严重的环境污染,破坏了生态环境。 为了监测农药的污染,人们研究了多种方法,其中采用胆碱酯酶监测有机磷农药的污染就是一种具有良好前景的检测方法。?胆碱酯酶可以催化胆碱酯水解生成胆碱和有机酸:?有机磷农药是胆碱酯酶的一种抑制剂,可以通过检测胆碱酯酶的活性变化,来判定是否受到有机磷农药的污染。20世纪50年代,就有人通过检测鱼脑中乙酰胆碱酯酶活力受抑制的程度,来检测水中存在的极低浓度的有机磷农药。现在可以通过固定胆碱酯酶的受抑制情况,检测空气或水中微量的酶抑制剂(有机磷等),灵敏度可达L。(2)利用乳酸脱氢酶的同工酶监测重金属污染?

酶工程的应用及发展前景.

酶工程的应用及发展前景 生物技术一班 41208220 杨青青

酶工程的应用及发展前景 杨青青 (陕西师范大学生命科学学院生物技术专业1201班) 摘要:酶工程是现代生物技术的重要组成部分,它作为一项高新技术将为各工业的发展起重要推动作用。本文概要介绍了酶工程的概念,酶工程在农产品加工、医药工业、食品工业、污染治理工业、蛋白质高值化加工等方面的应用以及探讨了在各个工业中的发展前景。 关键词:酶工程、应用、发展前景 一、酶工程的概念 酶是由生物体产生的具有催化活性的蛋白质,它能特定的促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点。这些特点比传统的化学反应具有较大的优越性。酶的应用不仅可以增强产量,提高质量,降低原材料和能源消耗,改善劳动条件,降低成本,而且可以生产出用其他方法难得到的产品,促进新产品、新技术和新工艺迅速发展。随着现代生物技术的兴起,酶工程技术应运而生,并在制药、食品工业和农产品加工显示出强大的生命力。酶工程就是利用酶催化作用,

通过适当的反应器工业化的生产人类所需的产品或是达到某一目的,它是酶学理论与化工技术相结合而形成的一种新技术。酶工程包括自然酶的开发和利用、固定化酶、固定化细胞、多酶反应器(生物反应器)、酶传感器等。 二、酶工程的应用以及发展前景 1、酶工程在农产品加工上的应用与前景 以前,人们认为氨基酸是人体吸收蛋白质的主要途径。随着研究的发现,蛋白质经消化道中的酶水解后,主要以小肽的形式被吸收,比完全游离的氨基酸更易吸收利用。这一发现启发了科研工作者采用酶工程技术用蛋白质生产生物活性肽的新思路。生物活性肽是蛋白质中20种天然氨基酸以不同排列组合方式构成的从二肽到复杂的线性或环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能。主要是通过酶法降解蛋白质而制得。 目前已经从大豆蛋白、玉米蛋白、牛奶蛋白、水产蛋白的酶解物中制得一系列功能各异的生物活性肽。因为各类蛋白质存在的差异性,所以在生产活性肽方面有略微的不同。不论哪种方法,都会用到一定的酶类水解蛋白质。比如:文献报道采用中性蛋白酶、木瓜蛋白酶水解大豆蛋白,配合活性炭的吸附处理、超滤、真空浓缩和喷雾干

酶工程的发展状况及其应用前景

酶工程的发展状况及其应用前景 摘要:酶在现代生物生产中扮演着重要角色,酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,以及酶工程不断的技术性突破,使得酶在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。 关键词:酶工程生物催化剂酶的固定 正文: 随着酶生产的不断发展,酶的应用越来越广泛。现在,酶工程已在医药、食品工业、农业、饲料、环保、能源、科研等领域广泛应用。成为基因工程、细胞工程、蛋白质工程等新技术领域的科学研究和技术开发中不可取代的工具。 一、酶工程的发展及应用现状 (一)国内外酶制剂的发展现状 BCC最新研究报告显示,未来4年全球工业酶制剂市场价值将以%的复合年增长率继续增长,由2011年的39亿美元增加至2016年的约61亿美元。该报告将工业酶市场细分成3个部分:生物酶、食品和饮料酶以及其他酶制剂。2011年生物酶的市场价值达12亿美元,预计还将以%的复合年增长率继续增长,2016年达17亿美元。2011年食品和饮料活性酶的市场价值接近13亿美元,未来4年还将以%的年均复合增长率增长,预计2016年达21亿美元。2011年其他酶制剂的市场价值为15亿美元,预计还将以%的复合年增长率增长,到2016年市场价值将达到22亿美元①。 我国酶制剂工业面经过近几十年的发展,初步具有一定的规模,取得了很大的进步。但是,国外酶制剂公司仍然处于绝对的领先地位,特别是一些比较出色的公司,例如,诺和诺德公司(Novo Nordisk)、丹尼斯克公司(Danisco)等②。 (二)酶工程的应用现状 一、酶工程技术在医药工业中的应用 1、酶的固定化技术 酶的固定化(enzyme immobilization)是指采用有机或无机固体材料作为载体(carrierorsupport),将酶包埋起来或束缚、限制于载体的表面和微孔中,使其仍具有催化活性,并可回收及重复使用的酶化学方法与技术。不使用固体材料作为载体,通过酶分子之间的相互交联形成聚集体,也可将酶固定化,称为无载体酶固定化。由于酶的蛋白质属性,进人人体后产生免疫反应,因稀释效应,而无法集中于靶器官组织,常不能保持最适合的治疗浓度,而固定化酶则很好的克服了游离酶的这些缺点,应用于治疗镁缺乏症、代谢异常症及制造人工内脏方面,如固定化L-天冬酰胺酶用于治疗白血病。葡萄糖氧化酶被固定化在纳米微带金电极上可用于活体检测的微生物传感器③。 固定化酶技术可用于治疗一些代谢障碍疾病。已知人类关于新陈代谢的疾病已过120余种,很多病因归结为人体缺乏某种酶的活性,一种可能的治疗方法就是通过某种方式给病人提供他所缺乏的酶。其提供的方式主要有:①将固定化酶用于体内作为治疗药物;②将固定化酶组装成体外生物反应器,通过体外循环作为临床治疗剂。将固定化酶用于临床诊断的例子很多,如各种酶测试盒层出不穷,采用固定化酶柱反应器的FIA(流动注射法)可用于临床诊断检测尿酸、葡萄糖、氨、尿素、胆甾醇、谷氨酸、乳酸、无机磷等。 2、酶催化技术 主要介绍非水相介质中的酶催化,传统的酶催化反应主要在水相中进行,但自1987年Kilibanov等。用脂肪酶粉或固定化酶在几乎无水的有机溶剂中成功地催化合成了肽以及手性的醇、脂和酰胺以来,对酶在非水相介质的催化反应技术的开发及研究报道迅速增加,特别在手性药物的不对称合成及手性药物拆分的生物技术开发中得到了很多应用。目前非水相中的酶催化技术已衍生出以下几类体系:①水与有机溶剂的互溶均相体系;②水与有机溶剂形

酶工程的概念其主要研究内容和任务有哪些

酶工程电子教案 第三章酶的提取与分离纯化 ◆酶的提取与分离纯化是指将酶从细胞或其它含酶原料中提取出来,再与杂质分开,而获得所要求的酶制品的过程。 ◆主要内容包括细胞破碎,酶的提取,离心分离,过滤与膜分离,沉淀分离,层析分离,电泳分离,萃取分离,浓缩,干燥、结晶等。 1.细胞破碎 ◆细胞破碎方法可以分为机械破碎法,物理破碎法,化学破碎法和酶促破碎法等,如表3-1所示。 表3-1 细胞破碎方法及其原理

1.1 机械破碎法 ◆通过机械运动所产生的剪切力的作用,使细胞破碎的方法称为机械破碎法。 ◆常用的破碎机械有组织捣碎机,细胞研磨器,匀浆器等。 ◆机械破碎法分为3种:捣碎法,研磨法和匀浆法。 1.2物理破碎法 ◆通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法,称为物理破碎法。物理破碎法多用于微生物细胞的破碎。 ◆常用的物理破碎法方法有温度差破碎法、压力差破碎法、超声波破碎法等,现简介如下: (1)温度差破碎法:利用温度的突然变化,由于热胀冷缩的作用而使细胞破碎的方法称为温度差破碎法。 (2)压力差破碎法:通过压力的突然变化,使细胞破碎的方法称为压力差破碎法。常用的有高压冲击法、突然降压法、及渗透压变化法等。 (3)超声波破碎法:利用超声波发生器所发出的声波或超声波的作用,使细胞膜产生空穴作用(cavitation)而使细胞破碎的方法称为超声波破碎法。 1.3化学破碎法 ◆通过各种化学试剂对细胞膜的作用,而使细胞破碎的方法称为化学破碎法。 ◆常用的化学试剂有甲苯、丙酮、丁醇、氯仿等有机溶剂,和特里顿(Triton)、吐温(Tween)等表面活性剂。 ◆有机溶剂可以使细胞膜的磷脂结构破坏,从而改变细胞膜的透过性,使胞内酶等细胞内物质释放到细胞外。

基因工程技术在环境保护中的应用

基因工程技术在环境保护中的应用 基因工程技术在环境保护中的应用随着科技的发展,人类在为自己生产出越来越多生活资料的同时,产生有害物质的数量和种类也大幅度增加,环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术是在DNA分子水平上按照人们的意愿进行的定向改造生物的新技术。而利用基因工程技术提高微生物净化环境的能力是用于环境治理的一项关键技术。这一技术发展到今天,正形成产业化并列为世界领先专业技术领域之一,广泛应用于食品、医药、化工、农业、环保、能源和国防等许多部门,并日益显示出其巨大的潜力。 一、基因工程在废水处理中的应用 基因工程技术应用于废水处理是水处理领域一项具有广泛应用前景的新兴技术。常规的废水处理方法有物化法、生物法等。由于一般的物化方法只是污染物的转移,不能从根本上治理,且容易造成二次污染,成本也较高,生物法逐渐成为废水处理的主要方法。但是由于废水的多样性及其成分的复杂性,自然进化的微生物降解污染物的酶活性往往有限,如果能利用基因工程技术对这些菌株进行遗传改造,提高微生物酶的降解活性,并可大量繁殖,就可以定向获得具有特殊降解性状的高效菌株,方便有效地应用于水污染处理。因此,构建基因工程菌成为现代废水处理技术的一个重要研究方向,且日益受到人

们的重视。基因工程技术在废水处理中的应用有以下几个方面。 1、基因工程在环境污染监测中的应用 目前,聚合酶反应(简称PCR)技术和核酸探针技术是常用于水环境中微生物的检测技术。PCR技术是一种在体外模拟自然DNA复制过程的核酸扩增技术,常用于监测海洋环境中存在的微生物。标记的核酸探针可以用于待测核酸样本中特定基因序列,如监测饮用水中病毒的含量。PCR技术和核酸探针技术可能取代常规的水质分析,发展成为一种快速可靠水体微生物的检测技术,并将在细菌、病毒及其他毒物检测中得以迅速的应用发展。 2、基因工程菌对水体中重金属离子的生物富集 利用基因工程菌代替普通微生物处理重金属是近年来研究的热点。基因工程技术在重金属废水治理中的作用主要体现在提高微生物菌体细胞对重金属离子的富集容量以及提高菌体对特定重金属离子的选择性两个方面。此法采用生物工程技术将微生物细胞中参与富集的主导性基因导入繁殖力强、适应性能佳的受体菌株内,大大提高了菌体对重金属的适应性和处理效率。 2.1提高重组菌重金属离子的富集容量

现代生物技术在环境保护中的应用和前景(最新版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 现代生物技术在环境保护中的应用和前景(最新版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

现代生物技术在环境保护中的应用和前景 (最新版) 摘要:针对我国目前生态环境状况,论述了现代生物技术在治理环境污染,保护生态环境中的应用和发展前景。 关键词:现代生物技术生态环境环境保护 1我国生态环境现状 目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8000万人和6000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2500万亩;人们的身体健康受到严重威胁,疾病发病率急

剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。 2现代生物技术与环境保护 现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20世纪80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点。 (1)生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。 (2)利用发酵工程技术处理污染物质,最终转化产物大都是无

酶工程技术在环境保护中的应用

酶工程技术在环境保护中的应用 摘要:酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,研究和应用显示了酶在环境污染治理中有着广阔的应用前景。综述了酶的固定化技术,包括酶的固定化方法、选择与比较等;膜式酶生物反应器的基本概念和利弊、及其应用;以及酶在污染治理中的研究和应用,其中包括水净化、环境监测、白色污染的治理和有机废水的酶处理等方面。酶在环境污染治理中的研究和应用显示了生物工程在环境污染治理和生物修复上有着广阔的应用 前景。 关键词:酶固定技术;酶反应器;环境保护;应用 1 酶的固定化 1.1 酶固定化的方法 酶的固定化方法主要有四种: 包埋法(entrapment) 、吸附法(adsorption) 、共价法(covalent blinding) 、交联法(cross linking)。 1.1.1 包埋法 包埋固定化法是把酶定位于聚合物材料的格子结构或微胶囊结构中。这样可以防止酶蛋白释放, 但是底物仍能渗人格子内与酶相接触. 此法较为简便,酶分子仅仅是被包埋起来, 生物活性破坏少, 但此法对大分子底物不适用。 ( l) 凝胶包埋。凝胶包埋法是将酶包埋在交联的水不溶性凝胶的空隙中的方法. 交联聚丙烯酞胺凝胶包埋法是首先被采用的包埋技术。 (2) 微胶囊包埋。将酶包埋于半透性聚合体膜内, 形成直径为1-100um的微囊。这种固定化酶是以物理方法包埋在膜内的只要底物和产物分子大小能够通过半 透膜底物和产物分子就能够以自由扩散的方式通过膜。 1.1.2 吸附法 吸附固定是最简单的方法, 酶与载体之间的亲和力是范德华力、离子键和氢键。此方法又可分为物理吸附法和离子吸附法: (l) 物理吸附法

酶工程技术极其在医药领域的应用

酶工程技术极其在医药领域的应用 摘要:随着生物技术的迅速发展,酶工程在生物工程中的核心地位得到了更好的体现。酶工程作为一种高新技术,已在医药、食品、轻工业、纺织等行业中得到越来越广泛的应用。本文将从酶的固定化技术、酶催化技术、酶的化学修饰、脱氧核酶、抗体酶和酶学诊断等几个方面来对酶工程在医药行业中的应用进行综述。 关键词:酶工程;医药;应用 Enzyme engineering technology and it’s application in the medical field Abstract: With the rapid development of biotechnology, enzyme engineering as a hard core of biological engineering has been better reflected. Enzyme engineering, as a new high-tech, has been widely used in medicine, food, light industry, textile and other industries. This article told the application of enzyme engineering in the medical industry from these aspects ,Enzymes Immobilization, Enzyme Catalysis, Enzymes Modification, Deoxyribozyme, Catalytic Antibody and Enzymatic diagnosis. Key words: Enzyme Engineering; Medicine; Application 1 引言:回顾20世纪,生物科学与生物工程在全球崛起并迅速发展,已经从整体水平发展到细胞水平和分子水平,在基础与应用研究领域取得了举世瞩目的成果。酶工程作为生物工程的重要组成部分,

酶工程复习要点

1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。 2、酶研究的两个方向:理论研究方向和应用研究方向。理论研究方向:酶的理化性质、催化性质、催化机制等。应用研究:促进了酶工程的形成。 3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。 4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。 5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。 6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。 8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。 9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。 10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部分分子具有了比初态更高一些的能量,高出的这一部分能量称为活化能,使这些分子进入“过渡态”,这时就能形成或打破一些化学键,形成新的物质——产物(P)。即S变为P。这些具有较高能量,处于活化态的分子称为活化分子,反应物中这种活化分子愈多,反应速率就越快。活化能的定义是在一定温度下一摩尔底物全部进入活化态所需要的自由能,单位是焦耳/摩尔。 11、酶的专一性:酶的专一性是指一种酶只能催化一种或一类结构相似的底物进行某种类型的反应。如果没有酶的专一性,在细胞中有秩序的物质代谢将不复存在,而且酶的应用将如同其他非酶催化剂那样受到局限。酶的专一性可以分为两类:①绝对专一性:一种酶只能催化一种物质进行一种反应,这种高度的专一性称为绝对专一性。②相对专一性:一种酶能够催化一类结构相似的物质进行某种相同类型的反应,这种专一性称为相对专一性。 12、酶的专一性确定过程:首先要选择一种该酶可催化的物质作为该酶的作用底物,通过实验确定其最适PH、温度等反应条件,其次是实验底物浓度对反应速度的影响,确定其米氏常数K m,然后用其他有可能是该酶作用底物的物质,在相同条件下逐个进行实验,有时要在不同条件下逐个试验,观察是否有催化反应发生,从而确定该酶是属于绝对专一性还是相对专一性,可作用于一类物质,可以选择几种有代表性的底物,求出各自的值,在某些情况下,不同底物有不同的最适PH值,而PH对K m有一定的影响,此时必须作出不同底物各自的PH曲线。然后再在各自的最适PH值条件下进行试验,以确定各底物相对应的K m值,在进行酶的专一性试验时,所使用的酶和各种底物都要尽可能地纯。对于有对称碳原子的物质,应分别对不同的光学异构进行试验。 13、酶活力是酶的数量的量度指标,酶的比活力是酶纯度的量度指标,酶转换数是酶催化效率的量度指标,而酶结合效率是酶被固定比例的量度指标。

现代生物化工中酶工程技术研究与应用

现代生物化工中酶工程技术研究与应用 张智梁 摘要:酶是生物体内进行新陈代谢不可缺少的受多种因素调节控制的具有催化功能的生物催化剂。在现代生物化工发展的过程中,酶工程技术发挥着至关重要的作用。相对而言,这种技术的内容比较丰富,像酶反应器与酶的应用、酶制剂生产等,都属于酶工程技术的主要内容。生物化工对于人们日常的生产生活有着重要的影响,关系着人们的身心健康。经过100多年的发展,酶工程已经成为生物工程的主要内容之一,在世界科技和经济大发展中起着重要的作用。今后随着工业生物技术的发展,酶工程将继续向纵深发展,显示出更广阔的前进。做好现代生物化工中酶工程的技术研究工作,扩大这种技术的应用范围,具有重要的现实参考意义。 关键词:现代生物化工;酶工程技术;酶反应器;应用范围 在生物体细胞中,每时每刻都在进行新陈代谢的作用。通过新陈代谢,排除衰老死亡的细胞、以新生的细胞为主维持机体的正常运作,对于生命周期的循环起着重要的保障作用,因此新陈代谢不可忽视。新陈代谢包含了一些重要的有机化学,作为常见的生物催化剂,酶的存在有利于加快新陈代谢速度,从根本上保证了相关化学反应的持续进行。最初的淀粉酶主要是从麦芽提取液中得到的。此后随着现代生物工程技术的不断发展,研究工作者对于各种生物酶的结构和特性有了更加深入的了解,为这些酶应用范围的扩大奠定了坚实的基础。 1酶工程技术的研究的相关内容 1.1生物酶的主要特点 生物酶其本质是一种蛋白质,主要存在于活细胞中,为细胞的生存、代谢、繁殖等一系列生物反应提供了良好的促进和调节作用,在实际生产应用中也常常具有良好的催化效果,。一般的工程酶主要是指的是有生物酶参加的反应,在一定程度上确保了一些物质进行代谢的速度。生物酶的主要特点包括:(1)高效的催化效率。相对而言,酶的催化效率远远高于一般的催化剂,最大为1013倍;(2)稳定性差。作为机体活细胞的蛋白质,生物酶很容易受到各种存在因素的影响,导致蛋白质现象的出现,从而使酶失去了活性。这些内容客观地反映了生物酶稳

酶工程的研究及进展

LUOYANG NORMAL UNIVERSITY 2010年酶工程学年论文分子酶工程研究进展 院(系)名称生命科学系 专业名称生物科学 学生姓名李艳艳 学号101314022 指导教师程彦伟 完成时间2013年12月

分子酶工程研究进展 李艳艳 (生命科学系生物科学专业学号:101314022) 摘要:酶工程的研究已经发展到分子水平,通过基因操作,已实现了许多酶的克隆和表达定点突变成为研究酶结构与功能的常规手段,并被广泛用于改善酶的性能。体外分子进化方法则大幅提高了酶分子的进化效率,并有可能发展新功能酶。融合蛋白技术的发展使构建新型多功能融合酶成为可能。这里对分子酶工程学的研究与发展情况进行了综述。 关键词:分子酶工程;基因克隆;改造;定向进化;融合;人工模拟 酶,由于其特异和高效的催化作用,在生命活动中扮演重要的角色。其中,尤其是源于微生物的酶。很早就被广泛开发服务于人类的各种需求,如酿造、酶法转化、疾病诊断与治疗、药物生产、环境污染物去除,等等。然而,天然酶常常十分昂贵,且大多数酶由于非常“娇嫩”而难以实际应用。近年来,结构生物学和基因操作技术的发展使得科学家能够对酶分子进行有效地改造,甚至开始为“目的”而设计,从而导致了分子酶工程学的发展。概括地说,分子酶工程学就是采用基因工程和蛋白质工程的方法和技术,研究酶基因的克隆和表达、酶蛋白的结构与功能的关系以及对酶进行再设计和定向加工,以发展性能更加优良的酶或新功能酶。当前的研究热点可以概括为3个方面:一是利用基因工程技术大量生产酶制剂;二是通过基因定点突变和体外分子定向进化对天然酶蛋白进行改造;三是通过基因和基因片段的融合构建双功能融合酶。 1 酶的基因克隆与异源表达 天然酶在生物体中含量一般较低,难以提取和大量制备。限制了它的推广应用。重组DNA技术的建立,使人们可以较容易地克隆各种各样天然的酶基因,并将其在微生物系统中高效表达,从而在很大程度上摆脱对天然酶源的依赖。这一技术已成功地应用于酶制剂的工业生产。世界上最大的工业酶制剂生产商丹麦Novozymes公司生产的酶制剂80%为基因工程产品。我国在这个领域中也取得了令世人瞩目的研究成果。黄日波教授研究小组从广西象州温泉中分离到一株硫

酶在环境保护方面的应用

酶在环境保护方面的应用 材料与化工学院生物工程 摘要:随着科学技术的迅速发展,人类赖以生存的环境质量,是目前举世瞩目的重大问题。对日益严峻的全球化环境污染问题,酶在环保方面的应用日益受到关注,呈现出良好的发展前景。为环境保护污染治理提供了新的技术手段。本文介绍了酶工程基本技术,包括酶制剂的生产、酶的分离纯化,酶的固定化技术、酶的改造和修饰等,综述了酶在环境保护方面,包括水净化、石油和工业废油的处理、白色污染的治理和环境监测等方面的研究和应用现状。 关键词:酶工程;环境保护;环境监测;废水处理;可生物降解材料开发;石油和工业废油 人类的生产和生活与自然环境密切相关,随着科学技术的不断发展,地球环境由于受到各方面因素的影响,正在不断恶化,人类开发利用自然资源的能力和范围不断扩大,随之而来的环境污染问题也越来越严重,已经成为举世瞩目的重大问题。环境污染已成为制约人类社会发展的重要因素,我国每年排放大量废水(416亿t)、废气和烟尘(2000万t)以及固体废弃物(i000亿t),污染达到相当严重的地步。因此环境保护问题越来越受到人们的重视。20世纪以来,在化学和生物学之间的交叉地带形成的生物技术占据了重要的地位,在工业、农业、医药、食品等方面得到了广泛的应用,并对解决当代资源、能源、环保等多方面问题起着举足轻重的作用。而作为生物工程的重要组成部分,酶和酶工程受到生物化学工作者的重视,几种新兴的技术产业已成为优先发展的高科技领域。 一、酶工程基本技术 1.酶制剂的生产 酶的来源主要有植物、动物和微生物。最早酶多从植物、动物组织中提取,目前广泛使用的动物酶有猪胰蛋白酶和胃蛋白酶等,植物来源的酶有木瓜蛋白酶、菠萝蛋白酶、无花果蛋白酶、麦芽淀粉水解酶、大豆脂肪氧化酶等。但大多数酶由微生物生产,因为微生物种类多,几乎所有的酶都能在微生物中找到。由于微生物容易培养、繁殖快、产量高,故可在短时间内大量生产。连续发酵生产可以提供经济有效的酶制剂产品。 2.酶的分离纯化 酶分离纯化的目的在于获得一定量不含或含少量杂质的酶制品或者提纯为结晶,以利于科学研究和生产应用,属于生物技术的下游工程,包括粗制工艺和精制工艺。自1926年Sumner 从刀豆中分离提纯第一个结晶脲酶以来,酶的分离纯化研究进展迅速,迄今为止,科学家们已制成了300多种纯净酶,达到了相当高的纯化程度,并发展了各种类型的分离纯化方法。 3.酶的固定化技术 酶的固定化是指用物理或化学手段,把酶束缚在一定的区域内,使其在一定的范围内起催化作用。固定化酶既具有酶的催化特性,又具有一般化学催化剂能回收、反复使用等优点,并且生产工艺可以连续化、自动化。经过50多年的研究和发展,酶固定化技术取得了长足的进步,采用这种技术不仅能改善酶的特性,还能创造适应特殊要求的新酶。 酶的固定化方法见表。 表-酶的固定化方法 固定化方法分类

生物技术-酶在环境保护中的应用

走进生物技术 -----酶在环境保护中的应用 摘要: 人类赖以生存的环境质量,是目前举世瞩目的重大问题。对日益严峻的全球化环境污染问题,环境工程技术与生物技术的结合发展,为环境保护污染治理提供了新的技术手段。本文论述了现代生物技术酶在治理环境污染,保护生态环境中的应用和其发展的前景。 关键词:酶环境保护应用发展前景 Application of enzymes in Environmental Protection Abstract: The environmental quality of human life, is a major issue of world interest. Increasingly serious global environmental problems, environmental engineering technology and biological technology, combined with development, environmental pollution control technology provides a new means. This article discusses the modern biotechnology activity in environmental pollution, protect the ecological environment of the application and its development prospects. Key words: Enzyme Environmental development in the future Medical Marketing Medical School of Business 08 (1) Class 0,807,605,118 Mai yini 一、我国生态环境现状 目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8 000万人和6 000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2 500万亩;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。 二、酶技术与环境保护 酶是由活细胞生成的具有催化作用的蛋白质,也称生物催化剂。广泛存在于生物体,将酶提取加工后的产品,即称为酶制剂。

酶工程在医药工业中的应用

酶工程在医药工业中的应用 1161001413168 郑峰 摘要:酶工程是现代工业生物技术的重要组成部分,它作为一项高新技术,为各工业的发展起到了极大的推动作用,本文简要介绍了酶固定化、基因工程菌(细胞)的固定化、植物细胞培养产酶、酶的化学修饰、核酸酶、杭体酶、酶标药物的理论和技术研究的最新进展以及酶工程在医药工业中的应用,对酶工程的发展前景进行了探讨。 关键词:酶工程;酶的固定化;核酸酶;抗体酶;医药应用

目录 一、酶工程技术 (3) (一)酶和细胞的固定化 (3) (二)酶的化学修饰 (3) (三)核酸酶和抗体酶 (4) (四)酶标药物 (4) (五)职务细胞培养产酶 (5) 二、酶工程技术在医药工业中的应用 (5) (一)应用酶工程制备生物代谢产物 (5) (二)应用酶工程技术转化凿体 (6) (三)应用酶工程生产抗生素 (6) (四)应用酶工程生产氨基酸和有机酸 (6) (五)应用酶工程生产维生素 (7) (六)应用酶工程生产核苷酸类药物 (7) 三、酶工程在医疗中的应用 (7) 四、展望 (8) 参考文献: (9)

一、酶工程技术 (一)酶和细胞的固定化 将酶或细胞通过物理或化学方法固定在水溶性或非水溶性的膜状、颗粒状、管状的载体土,称为固定化酶或固定化细胞。我国研制过的固定化酶(细胞)已有50种左右,分为二种类型:固定化单酶或含特定酶的细胞、固定化双酶、固定化各类激酶构成ATP再生系统。一般能明显地提高酶对热与酸碱度的稳定性。固定化的方法主要有吸附、共价结合、包埋和选择性热变性等。目前又发展了利用光、辐射等物理技术和定点固定化技术固定酶[1]。在制药工业中包埋法应用较多,其次是吸附法。 固定化细胞包括微生物细胞(含基因工程菌)、动物细胞和植物细胞,目前更多地注重活细胞和增殖细胞的固定化。植物细胞固定化大多采用包埋法,至今已报道了固定化南洋金花、烟草、胡萝卜等十多种细胞的研究,植物细胞固定化技术在中药有效成分的生产应用研究上有更好的前景。动物细胞只有吸附和包埋法得以成功。目前动物细胞微囊化法用得最多的是聚赖氨酸/海藻酸(PIJL/Al,G)法,细胞生长密度可达106一109个·mL。微囊化细胞主要有两方面的应用:培养微囊化动物细胞生产一些药物;作为药物直接用于治疗或作为药物筛选之用,如用来生产单克隆抗体、干扰素、组织纤溶酶原激活剂(TPA)、自细胞介素、胰岛素生长因子和乙肝病毒表面抗原等。未来将有一大批具有生物活性的蛋白质可依靠固定化细胞在生物体外大规模的合成。应用基因重组技术将生物细胞中存在极少的催化某一生化反应的酶通过基因扩增和增强表达,建立高效表达特定酶制剂的基因工程菌或基因工程细胞,从而进一步构建成固定化一工程菌或固定化工程细胞的新一代催化剂。如德国BM公司应用蛋白质工程技术对表达青霉素酞化的基因进行点突变改造,重建了青霉素酞化酶工程菌,从而大大延长了固定化青霉素酞化酶的使用半衰期,其酶柱可连续使用700d以上[2]。 (二)酶的化学修饰 酶的化学修饰是指利用化学手段将某些化学物质或基团结合到酶分子上,或

生物化学在环境保护和治理中的应用

龙源期刊网 https://www.sodocs.net/doc/5f7884039.html, 生物化学在环境保护和治理中的应用 作者:刘宇澳 来源:《祖国》2017年第23期 摘要:近些年,随着环境恶化带来的恶劣效应逐渐的加重,使得环境保护的重要性逐渐受到了广泛的关注,而在对环境的保护以及恶劣环境的治理方面,生物化学的产品以及技术方法起到了明显的作用,值得更为广泛的关注和研究。 关键词:生物化学环境保护应用 就我国而言,近些年较为明显的环境恶化带来的后果就是雾霾,以2013年为例,该年的一月份总共发生四次严重的雾霾天气,总共影响到我国三十多个城市,以首都北京为例,2013年一月份北京只有五天不是雾霾天气,由此可见环境恶化威胁了人类的正常生活,也因此,对环境的保护以及对恶劣环境的治理在当下极其重要,本文就阐述了生物化学技术及其在环境保护和治理中的应用,以及在应用中的问题并提出具有针对性的解决措施。 一、生物化学简介及我国环境现状 (一)生物化学简介 生物化学是生物和化学的分支学科,通过对化学的理论和方法的运用,来研究生命现象,并阐述生命现象的化学和生物本质,包括对生命体的物质组成、物质的代谢以及调控、结构和功能、酶、生物膜和生物力、激素与维生素、生命起源以及进化和其中的方法学,其多学科融合的性质也使得在医学、工业、农业、国防等多个领域有着较为广泛的应用,并通过其对生命现象的详细研究作为研究的基础和工具,以实现对其他领域各种技术的突破。 (二)我国环境现状 我国目前的环境状况可以概括为如下几点;其一,空气质量较差,据统计,我国有超过58%的城市,其空气中的微细粒子含量超过了100微克,而被认为空气质量良好的标准才仅仅是低于20微克。其二,土地沙漠化仍旧较为严重,据统计,到2014年,我国荒漠化土地面积261.16万平方公里,沙化土地面积172.12万平方公里,除此之外,仍有约30.03万平方公里的土地有明显的沙漠化的趋势。其三,水资源匮乏且污染严重,虽然我国水资源总量较多,但人口较多导致人均水资源却很少,且工业化进程也导致水资源污染严重。其四,我国绿色植被总量也堪忧,多为近些年补充栽种的较小的植被。除上述外,还频发多种自然灾害。 二、生物化学技术在环境保护治理中的应用 (一)酶在环境保护中的应用

相关主题