搜档网
当前位置:搜档网 › 生物信息学期末考试答案分析解析

生物信息学期末考试答案分析解析

生物信息学期末考试答案分析解析
生物信息学期末考试答案分析解析

一、名词

Bioinformatics:生物信息学——是一门综合运用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法,以互联网为媒介、数据库为载体、利用数学和计算机科学对生物学数据进行储存、检索和处理分析,并进一步挖掘和解读生物学数据。

Consensus sequence:共有序列——决定启动序列的转录活性大小。各种原核启动序列特定区域内(通常在转录起始点上游-10及-35区域)存在共有序列,是在两个或多个同源序列的每一个位置上多数出现的核苷酸或氨基酸组成的序列。

Data mining:数据挖掘——数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常是利用计算方法分析生物数据,即根据核酸序列预测蛋白质序列、结构、功能的算法等,实现对现有数据库中的数据进行发掘。

EST:(Expressed Sequence Tag)表达序列标签——是某个基因cDNA克隆测序所得的部分序列片段,长度大约为200~600bp。

Similarity:相似性——是直接的连续的数量关系,是指序列比对过程中用来描述检测序列和目标序列之间相同DNA碱基或氨基酸残基顺序所占比例的高低。

Homology:同源性——是两个对象间的肯定或者否定的关系。如两个基因在进化上是否曾具有共同祖先。从足够的相似性能够判定二者之间的同源性。

Alignment:比对——从核酸以及氨基酸的层次去分析序列的相同点和不同点,以期能够推测它们的结构、功能以及进化上的联系。或是指为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。

BLOSUM:模块替换矩阵——是指在对蛋白质数据库搜索时,采用不同的相似性分数矩阵进行检索的相似性矩阵。以序列片段为基础,从蛋白质模块数据库BLOCKS中找出一组替换矩阵,用于解决序列的远距离相关。在构建矩阵过程中,通过设置最小相同残基数百分比将序列片段整合在一起,以避免由于同一个残基对被重复计数而引入的任何潜在的偏差。在每一片段中,计算出每个残基位置的平均贡献,使得整个片段可以有效地被看作为单一序列。通过设置不同的百分比,产生了不同矩阵。

PAM(Point Accepted Mutation):突变数据矩阵PAM即可接受点突变——指1个PAM表示100个残基中发生一个残基突变概率的进化距离。在序列比对中,能够反映一个氨基酸发生改变的概率与两个氨基酸随机出现的概率的比值的矩阵。

Contig:叠连群——是指一组相互两两头尾拼接的可装配成长片段的DNA序列克隆群,也指彼此间可通过重叠序列而连接成连续的、扩展的、不间断的DNA序列的交叠片段产物。通过比对不同的序列,我们能够发现片段的顺序,并且contigs能被添加、删除、重排列来形成新的序列。

Phylogenetic tree:系统发生树又称为演化树(evolutionary tree)——是表明被认为具有共同祖先的各物种间演化关系的树,是一种亲缘分支分类方法。在树中,每个节点代表其各分支的最近共同祖先,而节点间的线段长度对应演化距离(如估计的演化时间)。它用来表示系统发生研究的结果,用它描述物种之间的进化关系。

In Silico Cloning:电子克隆——是近年来发展起来的一门基于表达序列标签(ESTs)的快速克隆基因的新技术,其利用种子序列从EST及UniGene数据库中搜索相似性序列,进行拼装、检索、分析等,以此获得目标基因的全长cDNA,在此基础上也能够实现基因作图定位。

二、问题思考

1、生物信息学这门学科是如何发展起来的?

答:生物学数据爆炸式增长

生物大分子数据库相继建立

生物技术与计算机技术并行飞速发展

Internet的广泛应用

人类基因组计划(HGP)的推动

生物信息学的产生是生命科学发展的必然。

2、举例说明生物信息学的主要应用?

答: a. 获取各种生物的全基因组及其他数据;

b. 新基因发现;

c. 单核苷酸多态性分析;

d. 基因组中非编码区域的结构与功能;

e. 从基因组水平研究生物进化及其他遗传语言的可能;

f. 全基因组的比较研究;

g. 基因功能预测;

h. 遗传疾病的研究以及关键基因鉴定;

i. 蛋白质组学研究;

j. 新药设计和定向化酶;

k. 生物芯片.

3、为什么说生物信息学是大规模研究生命科学的利器?

答:生物信息学主要是一门研究生物学系统和生物学过程中信息流的综合系统学科,是综合运用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法,以互联网为媒介、数据库为载体、利用数学和计算机科学对生物学数据进行储存、检索和处理分析,并进一步挖掘和解读生物学数据。目前,其核心是基因组信息学,包括基因组信息的获取、处理、存储、分配和解读。还包括:蛋白质空间结构模拟、预测和药物分子设计;软件开发和方法学研究。未来,生物信息学将进一步揭示生命系统的复杂性、遗传语言、基因表达谱、基因组、蛋白质组、代谢组、细胞信号组、系统生物学等等。因此,生物信息学是大规模研究生命科学的利器。

4、生物信息学涉及的生物大分子信息有哪些?

答:涉及的有:

1)核算序列DNA

包括:基因组序列、基因序列、cDNA、EST、碱基修饰、DNA功能模块/位点(如启动子、剪接体、表达调控位点等)。

2)蛋白质Protein

包括:氨基酸组成、氨基酸序列、理化性质、原子坐标、二级结构、模体、结构域、功能域/位点、3D结构。

5、在大分子序列分析中,为何局部比对比全局比对更有意义?

答:全局比对(global alignment)——指全长序列比对,用于相似性很高的序列间的分析。

局部比对(local alignment)——指生物分子序列常常是局部具有较高的相似性,呈板块分布。此法用于整体相似性较低的序列分析,灵敏度高。

原因:

1)全局比对是沿整个长度实现序列之间匹配的最大化,尝试对齐整个序列。而局部比对是对动态规划算法的修改,是给两个序列之间得分最高的地方进行匹配,集中在寻找相似度高的序列的延伸。因此相比而言,在序列分析中将未知序列同已知序列进行相似性比较,局部比对的准确性比全局比对更高。因为要实现整个序列长度的相似性匹配,比起局部匹配分析带来的误差更大;

2)另外,与局部序列比对算法相比,全序列比对算法会导致一些局部序列相似性较高而全序列相似性很小,因为全序列的平均效应而将两者的相似性漏检。一般对于2个未知关系的序列,使用局部序

列比对工具要比用全序列比对工具好。而对于一个较长的序列和一个较短的序列的比对,也应该使用局部序列比对工具。

3)再则全局比对的最高分是最后一个,而局部比对的任何一个地方都可能是最高分,即任何地方都可以是对位起始点,可见局部比对操作更为灵敏。

4)应用范围上,全局比对仅适用于相似性很高的序列间分析,而局部比对一般用于相似性较低的序列分析,但是也可以用于高相似性序列分析,这样的分析结果会更加精准。

所以局部比对比全局比对更加有意义。

6、在大分子序列分析中,为何蛋白质的取代矩阵比核酸的取代矩阵更复杂?

答:取代矩阵(substitution matrix)的规则是“奖励匹配位点,罚扣不匹配位点”,故又称为计分矩阵(scoring matrix)。核算序列分析利用碱基取代矩阵,通过相似性比对匹配与否进行打分,便可以分析出其大致的碱基组成,特异位点等。而蛋白质序列利用其氨基酸残基取代矩阵分析,由于蛋白质的序列组成复制,而且蛋白质的功能是通过其三维高级结构来执行的,该结构又不一定处于静态,在行使功能的过程中,一般会发生相应的改变,所以氨基酸残基的进化取代不能简单地表述各种残基在结构和功能上的关系,所以要对蛋白质序列进一步的分析就需要更加复杂的取代矩阵。

7、多重比对的用途?BLAST的用途?

答:多重比对的用途主要用于:

1)系统演化分析,解释物种之间的进化关系;

2)基因预测;

3)蛋白质结构域的三级结构与二级结构,甚至是个别的氨基酸或核苷酸;

4)研究一个家族中的相关蛋白质序列中的保守区域,进而分析蛋白质的结构和功能。

BLAST是现在应用最广泛的序列相似性搜索工具,主要用于:

1)新DNA序列的发现、定位与分析、结构和功能预测;

2)ESTs的分析;

3)寻找分析远源关系的蛋白质序列;

4)实验设计如PCR Primer,Mutagenesis Studies,构建Profile(--谱)等;

5)揭示相似性和同源性,发现系统发育的信息;

6)寻找数据库中没有标注的编码区、发现保守区域、特定序列框等重要信息。

8、聚类分析的策略?

答:聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。其策略方法为:

先将多个序列两两比对构建距离矩阵,反应序列之间两两关系;然后根据距离矩阵计算产生系统进化指导树,对关系密切的序列进行加权;然后从最紧密的两条序列开始,逐步引入临近的序列并不断重新构建比对,直到所有序列都被加入为止。

第一步:点击File→Load Sequences输入序列文件。

第二步:点击Alignment设定比对的一些参数。

第三步:点击Alignment→Do Complete Alignment开始序列比对。

第四步:点击File→Save Sequence as...比对完成,选择保存结果文件的格式。

9、电子克隆比传统的实验克隆有何优势?为何能实现电子克隆?

答:电子克隆利用种子序列从EST及UniGene数据库中搜索相似性序列,进行拼装、检索、分析等,以此获得目标基因的全长cDNA,在此基础上也能够实现基因作图定位。

其相比实验克隆所具有的优势有:

1)实验进程短、快捷、设备简单;

2)成本低、得率高、针对性强等;

3)对操作人员技术要求不高;

4)另外运用电子克隆的方法延伸得到的cDNA几乎囊括了所有疑似为目的基因的cDNA序列。

能实现电子克隆是因为:EST数据库的不断完善,使得电子克隆策略已成为克隆新基因的重要方法。

从GenBank的核酸(nr)数据库中检索已测序列生物的目的基因,获得目的基因cDNA序列,以该序列为模板对另一种未测序列生物EST数据库进行BLAST检索,获得与之部分同源的EST群,从中选取一条EST作为种子序列BLAST检索该生物的EST数据库,将检出与种子序列同源性较高或有部分重叠的EST序列拼接组装为重叠群(contig),再以此重叠群序列重复以上BLAST检索过程,反复进行EST重叠群序列的拼接和比对,直至检出所有的重叠EST或重叠群不能继续延伸,最终获得未测序列生物基因的cDNA全序列。

10、蛋白质分子结构的层次?相应的分析工具?

答:蛋白质一级结构分析:

1)ProtParam:蛋白质理化参数检索;

2)ProtScale:蛋白质亲疏水性分析;

3)coiled-coil 卷曲螺旋预测。

蛋白质二级结构预测:二级结构指α‐helix,β‐sheet,无规则卷曲(coil),motif等组件。

预测方法:

1)神经网络、遗传算法、机器学习等;

2)与已知二级模板建立序列谱矩阵(profile matrix)、PSI‐BLASTP;

3)与同源蛋白多重比对。

模式和序列谱分析:EBI:InterProScan

整合出的部分数据库有:

Proside 蛋白质结构域、家族和功能位点;

Pfam 蛋白质家族比对;

TMHMM 跨膜区预测。

蛋白质三级结构预测:

实验测定方法:X-ray、NMR、Cryo-EM;

理论预测方法:同源建模、折叠识别、从头计算。

三、综合分析

1、DNA序列的鉴定策略

答:鉴定三步骤:

1)找到序列中的非编码区

编码区与非编码区显著不同,重复序列和低复杂序列排除基因的可能性,首先屏蔽掉。屏蔽重复序列的分析程序有:RepeatMasker, XBLAST, CENSOR等。此外,确定待检序列是否真实(载体污染,宿主序列污染,纯度因素等),载体序列污染分析程序有:NCBI / VecScreen;EMBL / Blast2 EVEC。

2)找基因

根据基因特征信号,如保守序列(启动子,CpG岛)、起始和终止密码子、polyA,碱基频率,密码子偏好,EST。原核生物采用可读框ORF检测基因非常有效。

CpG岛的预测工具:EMBL-EBIK的在线工具CpGPlot;

转录终止信号的预测方式:真核生物基因末端有终止子信号,在mRNA终止密码子下游具有polyA 加

尾信号AATAAA,可用于基因终止位点的预测。在线预测工具:POLYAH;

启动子预测分析工具:TRES、Neural network、Dragon promoter finder、PromoterScan;

可读框ORF=起始密码子ATG——终止密码子TGA或TAG或TAA。

开放读框的识别分析程序有:ORF Finder (NCBI), GenScan, GenomeScan。

采用mRNA序列预测基因:以公共数据库获得mRNA /cDNA,从基因组序列预测基因,在线预测工具(NCBI) Spidey。

3)鉴定找到的基因

建立基因模型以便核对,同源性搜索增加可信度

2、蛋白质结构分析和预测的策略

答:策略为:

1)在数据库中搜寻与蛋白质序列相似的模板;

2)查询序列和已知三维结构的蛋白质序列的相似性比对;

3)如果符合相似则直接进行结构比较建模;

4)如果不相似则先进行蛋白质家族、功能域、聚类分析,再与已知的蛋白质结构比对,有关

系的才进行比较建模;

5)若还是不相关,则对蛋白质序列进行结构分析,对可以预想出其结构的蛋白质预测其三维

结构,对无法预想出结构的蛋白质在实验室中进行进一步结构分析。

知识点

生物信息学研究的基本方法

?生物学数据库的建立

?生物学数据的检索

?生物学数据的处理

?生物学数据的利用

生物信息数据的存储格式

一般由两/三部分组成:纪录信息、特性注释、序列本身

FASTA格式(序列最简单注释)

?序列文件的第一行是由大于符号(>)打头的任意文字说明,主要为标记序列用。

?从第二行开始是序列本身,标准核苷酸符号或氨基酸单字母符号。通常核苷酸符号

大小写均可,而氨基酸一般用大写字母。

?文件中和每一行都不要超过80个字符(通常60个字符)。

GenBank和EMBL数据库基本数据的格式

序列名称、长度、日期

序列说明、编号、版本号

物种来源、学名、分类学位置

相关文献作者、题目、刊物、日期

序列特征表

碱基组成

序列本身(每行60个碱基)

PDB格式

记录除了原子坐标外,还包括物种来源、化合物名称、结构递交以及有关文献等基本注释信息。此外,还给出分辨率、结构因子、温度系数、蛋白质主链数目、配体分子式、金属离子、二级结构信息、二硫键位置等和结构有关的数据。

蛋白质序列的格式

FASTA、序列文件格式、PDB数据格式

一次数据库

直接来源于实验获得的原始数据,只经过简单的归类、整理和注释。

一级核酸数据库:GenBank数据库、EMBL数据库、DDBJ数据库

一级蛋白质序列数据库:SWISS-PROT库、PIR库

一级蛋白质结构数据库:PDB数据库

二次数据库

在一级数据库、实验数据、文献数据和理论分析的基础上,针对不同的研究内容和需要,对生物学知识和信息的进一步整理得到的数据库。

人类基因组图谱库GDB、转录因子和结合位点库、TRANSFAC、蛋白质序列功能位点数据库Prosite等。蛋白质数据库

序列数据库(序列及其注释):

SWISS-PROT、PIR (protein information resource)、NCBI(其功能和应用范围快速拓展)

模体和结构域数据库(结构域、功能域):

PROSITE、Pfam (protein families database of alignments and HMMs)

结构数据库:

PDB (protein databank)

蛋白质分类数据库:

SCOP、CATH、FSSP

PDB是目前最主要的收集生物大分子(蛋白质、核酸和糖,以及病毒)三维结构的数据库,是通过X射线单晶衍射、核磁共振、电子衍射等实验手段确定的蛋白质、多糖、核酸、病毒等生物大分子的三维结构数据库。

NCBI数据库检索系统Entrez

Entrez是NCBI开发的基于WWW的数据库检索工具,它可以用来搜索20多个集成在NCBI中的数据库信息。

数据库搜索:BLAST & FASTA

多序列比对工具

Clustal W:对DNA和蛋白质进行多序列联配并且生成亲缘树的工具。

EMBL:提供在线的基于万维网界面的ClustalW服务:

对Clustal W的结果进行观察的程序为:njplotWIN95, treeview, 等

构建进化树------基于大分子序列进化

分子系统发育:DNA在进化过程中积累突变,从而导致不同株系后代的DNA、RNA和蛋白质的分支。这个原则被用于进化树的构建。

进化树构建的基本步骤

1、多序列比对(自动或手动):用Clustal,有些软件已整合上Clustal, 如MEGA。

2、确定建树方法(取代模型):距离(UPGMA, NJ, ME)、最大节约(MP)、最大似然(ML),

3、建树;

4、进化树评估。

电子克隆

7.1 利用UniGene数据库进行序列电子延伸

7.2 从数据库中获取cDNA全长序列

7.3 序列拼接

本地拼接软件

Windows:Sequencher, DNAstar, …

Unix: CAP3, Phrap, TIGR Assembler, Velvet, …

在线服务:CAP3 网址

7.4 基因的电子表达谱分析

7.5 核酸序列的电子基因定位分析

蛋白质序列的获取

直接测序:Edman,蛋白质组技术

翻译编码的DAN序列:ORF,EBI protein machine搜索或检索数据库

同源建模是将目标序列在蛋白质结构数据库(PDB)比对搜索, 找出最好的

模板来构建新的结构, 再做能量最小化运算, 获得接近”真实”的蛋白质结构.

ExPASY提供三种生物信息学蛋白结构预测工具

1 Homology modeling;同源建模(25%以上一致性被认为有相似的结构)

2 Threading; 串线法(一致性低于30%时)

3 ab initio从头算(基于能量最低原则,分子力学、分子动力学)

同源建模的基本步骤

1 同源的参考蛋白搜索(PDB)

2 确定结构保守区: 如果目标蛋白有2个以上已知结构的参考蛋白,可将之叠加确定保守区,若仅一个有空间结构则做多重比对.

3 蛋白主链建模: 保守区主链坐标直接来自参考蛋白的, 环区可用片段搜索或自动生成.

4 侧链安装: 在转子文库中挑选最佳残基侧链构象组合.

5 优化处理: 根据分子动力学和分子力学.(能量最小化计算)

6 合理性检测: 常用Profiles-3D检测.

PubMed文献检索

PubMed是美国国家医学图书馆下属的国家生物技术信息中心(NCBI)开发的、基于WWW的查询系统:

1.如何理解生物信息语言的复杂性和生物信息学的局限性?

答:物体或者事物的属性,分为单一或者极度复杂,他们可通过任何方式,比如声音、光波、电波、颜色、行为、温度、气体、形态、能量等,传递到与之关联的事物的外界,却又得到多种应答:沟通、接纳、排斥、刺激。

2、几种常用的序列格式:

①GenBank序列格式②GCC序列格式③EMBL序列格式④ASN.1序列格式

⑤PIR/CODATA序列格式⑥SwissProt序列格式⑦Plain/ASCII.Staden序列格式

⑧FASTA序列格式⑨NBRF序列格式⑩GDE格式

⑾Intelligenetics序列格式⑿PDB格式

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

生物信息学期末考试重点

第一讲 生物信息学(Bioinformatics)是20世纪80年代末随着人类基因组计划的启动而兴起的一门新型交叉学科,它体现了生物学、计算机科学、数学、物理学等学科间的渗透与融合。 生物信息学通过对生物学实验数据的获取、加工、存储、检索与分析,达到揭示数据所蕴含的生物学意义从而解读生命活动规律的目的。 生物信息学不仅是一门学科,更是一种重要的研究开发平台与工具,是今后进行几乎所有生命科学研究的推手。 生物技术与生物信息学的区别及联系 生物信息学的发展历史 ?人类基因组计划(HGP) ?人类基因组计划由美国科学家于1985年提出,1990年启动。根据该计划,在2015年要把人体约4万个基因的密码全部揭开,同时绘制出人类基因的谱图,也就是说,要揭开组成人体4万个基因的30亿个碱基对的秘密。HGP与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划,被誉为生命科学的登月计划。(百度百科) 随着基因组计划的不断发展,海量的生物学数据必须通过生物信息学的手段进行收集、分析和整理后,才能成为有用的信息和知识。换句话说,人类基因组计划为生物信息学提供了兴盛的契机。上文所说的基因、碱基对、遗传密码子等术语都是生物信息学需要着重研究的地方。 :

】 第二讲回顾细胞结构 细胞是所有生命形式结构和功能的基本单位 细胞组成 细胞膜主要由脂类和蛋白质组成的环绕在细胞表面的双层膜结构 细胞质细胞膜与细胞核之间的区域:包含液体流质,夹杂物存储的营养、分泌物、天然色素和细胞器 细胞器细胞内完成特定功能的结构:线粒体、核糖体、高尔基体、溶酶体等 细胞核最大的细胞器 DNA的结构 碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶G) 。 核苷酸 核苷酸是构成DNA分子的重要模块。每个核苷酸分子由一分子称作脱氧核糖的戊 糖(五碳糖)、一分子磷酸和一分子碱基构成。每种核苷酸都有一个碱基对,也就 是A、T、C、G 基因是什么 基因是遗传物质的基本单位 基因就是核苷酸序列。 大部分的基因大约是1000-4000个核苷酸那么长。 基因通过控制蛋白质的合成,从微观和宏观上影响细胞、组织和器官的产生。 基因在染色体上。

生物信息学软件及使用概述

生物信息学软件及使 刘吉平 liujiping@https://www.sodocs.net/doc/613529646.html, 用概述 生 物秀-专心做生物! w w w .b b i o o .c o m

生物信息学是一门新兴的交叉学生物信息学的概念: 科,它将数学和计算机知识应用于生物学,以获取、加工、存储、分类、检索与分析生物大分子的信息,从而理解这些信息的生物学意义。 生 物秀-专心做生物! w w w .b b i o o .c o m

分析和处理实验数据和公共数据,生物信息学软件主要功能 1.2.提示、指导、替代实验操作,利用对实验数据的分析所得的结论设计下一阶段的实验 3.实验数据的自动化管理 4.寻找、预测新基因及其结构、功能 5.蛋白质高级结构及功能预测(三维建模,目前研究的焦点和难点) 生 物秀-专心做生物! w w w .b b i o o .c o m

功能1. 分析和处理实验数据和公共数据,加快研究进度,缩短科研时间 ?核酸:序列同源性比较,分子进化树构建,结构信息分析,包括基元(Motif)、酶切点、重复片断、碱基组成和分布、开放阅读框(ORF ),蛋白编码区(CDS )及外显子预测、RNA 二级结构预测、DNA 片段的拼接; ?蛋白:序列同源性比较,结构信息分析(包括Motif ,限制酶切点,内部重复序列的查找,氨基酸残基组成及其亲水性及疏水性分析),等电点及二级结构预测等等; ?本地序列与公共序列的联接,成果扩大。 生 物秀-专心做生物! w w w .b b i o o .c o m

Antheprot 5.0 Dot Plot 点阵图 Dot plot 点阵图能够揭示多个局部相似性的复杂关系 生 物秀-专心做生物! w w w .b b i o o .c o m

生物信息学分析实践

水稻瘤矮病毒(RGDV)外层衣壳蛋白 P8的同源模建 高芳銮(Raindy) 同源模建(homology modeling) ,也叫比较模建(Compatative modeling),其前提是一个或多个同源蛋白质的结构已知,当两个蛋白质的序列同源性高于35%,一般情况下认为它们的三维结构基本相同;序列同源性低于30%的蛋白质难以得到理想的结构模型。同源模建是目前最为成功且实用的蛋白质结构预测方法, SWISS-MODEL 是由SwissProt 提供的目前最著名的蛋白质三级结构预测服务器,创建于1993年,面向全世界的生物化学与分子生物学研究工作者提供免费的自动模建服务。SWISS-MODEL 服务器提供的同源模建有两种工作模式:首选模式(First Approach mode)和 项目模式(Project mode)。 本实例以RGDV P8蛋白为研究对象采用首选模式进行同源模建。 图1 SWISS-MODEL 的主界面 操作流程如下: 1.选择模式 单击左侧的“MENU ”菜单下方的“First Approach mode ”,右侧窗口自动SWISS-MODEL 工作窗口,在相应文本框中分别输入的E-mail 、项目标题、待模建的蛋白质序列,SWISS-MODEL 支持以FASTA 格式直接输入或提交UniProt 的登录号,如图2所示。 《生物信息学分析实践》样 稿

图2 SWISS-MODEL 的序列提交页面 2.参数设置 当前版本只有一个选项可设置,如果用户需要使用指定的模板,可在“Use a specific template ”后的输入框填入ExPDB 晶体图像数据库中的模板代码,其格式为“PDBCODE+ChainID ”,如“1uf2P ”。本例不使用指定模板,默认留空。完毕,点击“Submit Modeling Request ”提交模建请求,服务器返回提交成功的提示,如图3所示: 图3 成功提交 SWISS-MODEL WORKSPACEW 页面会自动刷新,直至模建完成,如图4所示,同时模建结果也会发送到指定的邮箱。 3结果解读 点击下图右上方的“Print/Save this page as ”后的图标,可以将整个结果以PDF 文档格式保存到本地计算机中。模建结果给出了五个部分的信息:模建详情(Model Details)、比对信息(Alignment)、模建评价 (Anolea/Gromos/Verify3D)、模建日志(Modelling log)、模板选择日志(Template Selection Log)。 《生物信息学分析实践》样稿

生物信息学考试试卷修订稿

生物信息学考试试卷 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、名词解释(每小题4分,共20分) 1、生物信息学 广义:生命科学中的信息科学。生物体系和过程中信息的存贮、传递和表达;细胞、组织、器官的生理、病理、药理过程的中各种生物信息。 狭义:生物分子信息的获取、存贮、分析和利用。 2、人类基因组计划 人类基因组计划准备用15年时间,投入30亿美元,完成人类全部24条染色体的3×109脱氧核苷酸对(bp)的序列测定,主要任务包括作图(遗传图谱、物理图谱的建立及转录图谱的绘制)、测序和基因识别。其中还包括模式生物(如大肠杆菌、酵母、线虫、小鼠等)基因组的作图和测序,以及信息系统的建立。作图和测序是基本的任务,在此基础上解读和破译生物体生老病死以及和疾病相关的遗传信息。 3、蛋白质的一级结构 蛋白质的一级结构是指多肽链中氨基酸的序列 4、基因 基因--有遗传效应的DNA片断,是控制生物性状的基本遗传单位。 5、中心法则 是指遗传信息从传递给,再从RNA传递给,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。 6 、DNA序列比较 序列比较的根本任务是:(1)发现序列之间的相似性;(2)辨别序列之间的差异 目的: 相似序列相似的结构,相似的功能 判别序列之间的同源性 推测序列之间的进化关系 7、一级数据库 数据库中的数据直接来源于实验获得的原始数据,只经过简单的归类整理和注释 8、基因识别 基因识别,是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因,也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。 9、系统发生学 系统发生学(phylogenetics)——研究物种之间的进化关系。 10、基因芯片 基因芯片(gene chip),又称DNA微阵列(microarray),是由大量cDNA或寡核苷酸探针密集排列所形成的探针阵列,其工作的基本原理是通过杂交检测信息。

最新生物信息学考试复习

——古A.名词解释 1. 生物信息学:广义是指从事对基因组研究相关的生物信息的获取,加工,储存,分配,分析和解释。狭义是指综合应用信息科学,数学理论,方法和技术,管理、分析和利用生物分子数据的科学。 2. 基因芯片:将大量已知或未知序列的DNA片段点在固相载体上,通过物理吸附达到固定化(cDNA芯片),也可以在固相表面直接化学合成,得到寡聚核苷酸芯片。再将待研究的样品与芯片杂交,经过计算机扫描和数据处理,进行定性定量的分析。可以反映大量基因在不同组织或同一组织不同发育时期或不同生理条件下的表达调控情况。 3. NCBI:National Center for Biotechnology Information.是隶属于美国国立医学图书馆(NLM)的综合性数据库,提供生物信息学方面的研究和服务。 4. EMBL:European Molecular Biology Laboratory.EBI为其一部分,是综合性数据库,提供生物信息学方面的研究和服务。 5. 简并引物:PCR引物的某一碱基位置有多种可能的多种引物的混合体。 6. 序列比对:为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。

7. BLAST:Basic Local Alignment Search Tool.是通过比对(alignment)在数据库中寻找和查询序列(query)相似度很高的序列的工具。 8. ORF:Open Reading Frame.由起始密码子开始,到终止密码子结束可以翻译成蛋白质的核酸序列,一个未知的基因,理论上具有6个ORF。 9. 启动子:是RNA聚合酶识别、结合并开始转录所必须的一段DNA序列。原核生物启动子由上游调控元件和核心启动子组成,核心启动子包括-35区(Sextama box)TTGACA,-10区(Pribnow Box)TATAAT,以及+1区。真核生物启动子包括远上游序列和启动子基本元件构成,启动子基本元件包括启动子上游元件(GC岛,CAAT盒),核心启动子(TATA Box,+1区帽子位点)组成。 10. motif:模体,基序,是序列中局部的保守区域,或者是一组序列中共有的一小段序列模式。 11. 分子进化树:通过比较生物大分子序列的差异的数值重建的进化树。 12. 相似性:序列比对过程中用来描述检测序列和目标序列之间相似DNA碱基或氨基酸残基序列所占的比例。 13. 同源性:两个基因或蛋白质序列具有共同祖先的结论。

生物信息学试题整理

UTR的含义是(B ) A.编码区 B. 非编码区 C. motif的含义是(D )。 A.基序 B. 跨叠克隆群 C. algorithm 的含义是(B )。 A.登录号 B. 算法 C. RGR^ (D )。 A.在线人类孟德尔遗传数据 D.水稻基因组计划 下列Fasta格式正确的是(B) 低复杂度区域 D. 幵放阅读框 碱基对 D. 结构域 比对 D. 类推 B. 国家核酸数据库 C. 人类基因组计划 A. seql: agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta B. >seq1 agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta C. seq1:agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta D. >seq1agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta 如果我们试图做蛋白质亚细胞定位分析,应使用(D) A. NDB 数据库 B. PDB 数据库 C. GenBank 数据库 D. SWISS-PROT 数

据库 Bioinformatics 的含义是(A )。 A. 生物信息学 B. 基因组学 C. 蛋白质组学 D. 表观遗传学 Gen Bank中分类码PLN表示是(D )。 A.哺乳类序列 B. 细菌序列 C.噬菌体序列 D. 植物、真菌和藻类序列 ortholog 的含义是(A)0 A.直系同源 B.旁系同源 C.直接进化 D.间接进化 从cDNA文库中获得的短序列是(D )o A. STS B. UTR C. CDS D. EST con tig的含义是(B )o A.基序 B. 跨叠克隆群 C. 碱基对 D. 结构域 TAIR (AtDB)数据库是(C)o A.线虫基因组 B. 果蝇基因组 C. 拟南芥数据库 D. 大肠杆菌基因组ORF的含义是(D )o A.调控区 B. 非编码区 C.低复杂度区域 D. 幵放阅读框

生物信息学概论

2013/5/23
生物信息学概论
2013-5
提纲
1. 发展简史 2. 主要研究领域 3. 软件和工具
1. 发展简史
1946年 1946 年
美国生产出第一台全自动电子数字计算机“埃尼阿克”
1

2013/5/23
1. 发展简史
1955年 1955 年
Frederick Sanger determined the complete amino acid sequence of insulin in 1955 and earned him his first Nobel prize in Chemistry in 1958.
1. 发展简史
1965年 1965 年
The first Atlas of Protein Sequence and Structure contained sequence information on 65 proteins.
Dr. Margaret Oakley Dayhoff (1925-1983) was a pioneer in the use of computers in chemistry and biology, beginning with her PhD thesis project in 1948. Her work was multi-disciplinary, and used her knowledge of chemistry, mathematics, biology and computer science to develop an entirely new field. She is credited today as a founder of the field of Bioinformatics.
1. 发展简史
1965年 1965 年
First use of molecular sequences for evolutionary studies
One of the founding fathers of the field of molecular evolution
Zuckerkandl, E. and Pauling, L. (1965). "Molecules as documents of evolutionary history." Journal of theoretical biology 8(2): 357.
2

生物信息学简介范文

1、简介 生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学是一门利用计算机技术研究生物系统之规律的学科。 目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。 1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的? 生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。诺贝尔奖获得者W. Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。 生物信息学的主要研究方向:基因组学- 蛋白质组学- 系统生物学- 比较基因组学,1989年在美国举办生物化学系统论与生物数学的计算机模型国际会议,生物信息学发展到了计算生物学、计算系统生物学的时代。 姑且不去引用生物信息学冗长的定义,以通俗的语言阐述其核心应用即是:随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。 2、发展简介 生物信息学是建立在分子生物学的基础上的,因此,要了解生物信息学,就必须先对分子生物学的发展有一个简单的了解。研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在,1871年Miescher从死的白细胞核中分离出脱氧核糖核酸(DNA),在Avery和McCarty于1944年证明了DNA是生命器官的遗传物质以前,人们仍然认为染色体蛋白质携带基因,而DNA是一个次要的角色。1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等。与此同时,Wilkins与Franklin用X射线衍射技术测

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

生物信息学期末考试重点

1、生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解 释等各方面的学科,也是随着生命科学和计算机科学的迅猛发展,生命科学和计 算机科学相结合形成的一门新学科。它通过综合利用生物学,计算机科学和信息技 术而揭示大量而复杂的生物数据所赋有的生物学奥秘。 2、数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于 距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后, 数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方 式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数 据存储的大型数据库系统都在各个方面得到了广泛的应用。 3、表达序列标签从一个随机选择的cDNA 克隆进行5’端和3’端单一次测序获得的短 的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp。EST 来源于一定环境下一个组织总 mRNA 所构建的cDNA 文库,因此EST也能说明该组织中各基因的表达水平。 4、开放阅读框是基因序列中的一段无终止序列打断的碱基序列,可编码相应的蛋白。 ORF识别包括检测六个阅读框架并决定哪一个包含以启动子和终止子为界限的 DNA序列而其内部不包含启动子或终止子,符合这些条件的序列有可能对应一个 真正的单一的基因产物。ORF的识别是证明一个新的DNA序列为特定的蛋白质编 码基因的部分或全部的先决条件。 5、蛋白质的一级结构在每种蛋白质中氨基酸按照一定的数目和组成进行排列,并进 一步折叠成特定的空间结构前者我们称为蛋白质的一级结构,也叫初级结构或基 本结构。蛋白质一级结构是理解蛋白质结构、作用机制以及与其同源蛋白质生理 功能的必要基础。 6、基因识别是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别 DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因, 也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。基因识别是基 因组研究的基础。

生物信息学分析

生物信息学分析 生物信息学难吗? 经常有人向我问这个问题,这有什么疑问吗?如果不难学,根本就不用问我这个问题。也无需投入那么多时间精力就能掌握,更无需花费三四千元参加线下的培训班,也不会月薪过万。所以,答案很肯定,道理很简单:生物信息比较难学。 为什么难学? 我总结里几点原因。首先,这是一个交叉学科,要求你既要有生物学的基础,又要有很强的计算机操作技能。这个就有点困难了。因为只是一个生物学就包括多个门类,有很多东西需要去学习,还需要学习计算机知识。很多人一门内容还没学明白,现在还得在加一门,这就属于祸不单行,雪上加霜,屋漏偏逢连夜雨。因此,这种既懂生物学,又懂计算机的复合型人才就比较短缺。而且,生物信息本质上属于数据挖掘,除了生物,计算机,到后面还需要极强的统计学知识才能做好数据分析,所以,还得加上统计学,也就是生物信息学=生物学+计算机科学+统计学三门学科的知识,这也就是为什么生物信息学比较难学。 第二个原因,生物信息本身就包括很多内容,比如DNA的分析,RNA的分析,甲基化的分析,蛋白质的分析等方面,每一

门类又完全不同,从物种方面来分,动物,植物,微生物,医学等有差别很大,很难有一劳永逸,放之四海而皆准的分析方法。 第三个原因就是生物信息是一门快速发展的学习,会出现很多新的测序方法,比如sanger测序,illumina,BGIseq,PacBio,IonTorrent,Nanopore等,每一个平台技术原理完全不同,因此数据特点也完全不同,这就需要针对每一个平台的数据做专门的学习,而且每个平台又在不断的推陈出现,可能今天你刚开发好的方法,产品升级了,都得推倒重来。还有很多新的技术,例如现在比较火的单细胞测序,Hi-C测序,Bionano测序等等内容,以后还出现更多新技术新方法,足够让你活到老,学到老。当然,你先要能活到老,吾生也有涯,而知也无涯。以有涯随无涯,殆已! 高风险才有高收益 当然啦,虽然你已经看到学习生物信息肯定是不容易了,门槛很高,但是呢,门槛高也有很多好处,就是挡住了一部分人,当你学会了,迈过门槛,你的身价就提高了。如果人人都很容易掌握了,那么也就不值钱了。所以,生物信息,前途是光明的,道路是曲折的。

生物信息学中的序列比对算法

生物信息学中的序列比对算法 张永1,王瑞2 (1.南昌航空大学计算机学院,江西南昌330063;2.江西大宇职业技术学院,江西南昌330038) 摘要:生物信息学是以计算机为工具对生物信息进行储存、检索和分析的科学。序列比对是生物信息学中的一个基本问题,设计快速而有效的序列比对算法是生物信息学研究的一个重要内容,通过序列比较可以发现生物序列中的功能、结构和进化的信息,序列比较的基本操作是比对。本文介绍了序列比对算法的发展现状,描述了常用的各类序列比对算法,并分析了它们的优劣。 关键词:生物信息学;双序列比对;多序列比对 中图分类号:TP301文献标识码:A文章编号:1009-3044(2008)03-10181-04 SequenceAlignmentAlgorithmsinBioinformatics ZHANGYong1,WANGRui2 (1.SchoolofComputing,NanchangHangkongUniversity,Nanchang330063,China;2.JiangxiDayuVocationalInstitute,Nanchang330038,China) Abstract:Bioinformaticsisthesubjectofusingcomputertostore,retrieveandanalyzebiologicalinformation.Sequencealignmentisaba-sicprobleminBioinformatics,anditsmainresearchworkistodeveloprapidandeffectivesequencealignmentalgorithms.Wemaydiscov-erfunctional,structuralandevolutionaryinformationinbiologicalsequencesbysequencecomparing.Thispaperintroducesthedevelop-mentactualityofsequencealignmentalgorithms,describesvarietyofsequencealignmentalgorithmandanalysestheadvantagesanddisad-vantagesofthem. Keywords:Bioinformatics;PairwiseSequenceAlignment;MultipleSequenceAlignment 1引言 生物信息学是80年代末随着人类基因组计划的启动而兴起的一门新的交叉学科,最初常被称为基因组信息学。生物信息学是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学和蛋白组学两方面,具体说,是从核酸和蛋白质序列出发,分析序列中表达结构与功能的生物信息。 生物信息学的研究重点主要体现在基因组学和蛋白质学两方面,具体地说就是从核酸和蛋白质序列出发,分析序列中表达结构和功能的生物信息。生物信息学的基本任务是对各种生物分析序列进行分析,也就是研究新的计算机方法,从大量的序列信息中获取基因结构、功能和进化等知识。在从事分子生物学研究的几乎所有实验室中,对所获得的生物序列进行生物信息学分析已经成为下一步实验之前的一个标准操作。而在序列分析中,将未知序列同已知序列进行相似性比较是一种强有力的研究手段,从序列的片段测定,拼接,基因的表达分析,到RNA和蛋白质的结构功能预测,物种亲缘树的构建都需要进行生物分子序列的相似性比较。例如,有关病毒癌基因与细胞癌基因关系的研究,免疫分子相互识别与作用机制的研究,就大量采用了这类比较分析方法。这种相似性比较分析方法就称为系列比对(SequenceAlignment)。目前,国际互联网上提供了众多的序列比对分析软件。然而,不同的分析软件会得到不同的结果,同时所使用的参数在很大程度上影响到分析的结果。有时常常会由于采用了不合适的参数而丢失了弱的但却具有统计学显著性意义的主要信息,导致随后的实验研究走弯路。因此,生物信息学中的序列比对算法的研究具有非常重要的理论与实践意义。 序列比对问题根据同时进行比对的序列数目分为双序列比对和多序列比对。双序列比对有比较成熟的动态规划算法,而多序列比对目前还没有快速而又十分有效的方法。一般来说,评价生物序列比对算法的标准有两个:一为算法的运算速度,二为获得最佳比对结果的敏感性或准确性。人们虽已提出众多的多序列比对算法,但由于问题自身的计算复杂性,它还尚未得到彻底解决,是 收稿日期:2007-11-25 基金资助:南昌航空大学校自选(EC200706086) 作者简介:张永(1977-),男,硕士,辽宁铁岭人,南昌航空大学计算机学院讲师,研究方向:生物信息学、信息处理;王瑞(1977-),男,江西大宇职业技术学院外语系助教。

生物信息学试题复习参考(张弓)

2014-2015学年生物信息学期末考试题 写在前面:这是我考试时候写的答案的大致内容,具体文字我已经不记得了,给大家一个参考,希望对大家复习有帮助。因为我也是扣了很多分,所以答案也有很多错的,大家不要尽信。祝大家考试顺利。 一、实验设计和基础分析 以下qPT-PCR实验方案有哪些错误?请标出错误,并说明原因和写出正确方案。 目的:比较肺癌细胞迁移前后的X基因转录水平表达量 方法:(1)用Trizol法提取细胞总RNA,并用跑胶、OD260/280等方法确认无降解。 (2)用poly-dT引物进行反转录 (3)设计基因特异性PCR引物,用qPCR仪测定X基因和GAPDH基因的Ct值。GAPDH作为内参。 (4)以2^-ΔΔCt方法计算X基因相对于GAPDH的相对含量 (5)比较迁移前后的相对表达量,做三个重复,用t-test进行统计检验,P<0.05为差异显著 1.错误:不能用GAPDH基因作为定量标准;原因:癌症迁移前后GAPDH基因的表达量已经改变了,做定量标准不准确;方案:采用外参(如:其他物种的基因) 2.错误:不能用t-test进行统计检验;原因:t-test进行统计检验的前提是数据呈正态分布,基因表达量不一定呈正太分布;方案:将数据取log10,对数化。 上述两个是我考试时候写的答案,后来经提醒:还发现了一个错误:不能用poly-dT引物进行反转录;原因:。。。。。。;方案:用Oligodt进行逆转录。 二、双序列比对的生物学意义解释 两种细菌的同源蛋白质endonuclease III,长度都为200氨基酸左右,其功能相同,蛋白质序列使用BLAST 可以比对上,同源性高达57%,但其编码DNA序列用BLAST却无法比对上,为了尽可能提高亲缘关系较远的序列的比对效率,比对已经使用BLAST网站上Somewhat similar sequence选项,默认参数(见下图):

2019版国科大生物信息学期末考试复习题

中科院生物信息学期末考试复习题 陈润生老师部分: 1.什么是生物信息学,如何理解其含义?为什么在大规模测序研究中,生物信息学至关重要? 答:生物信息学有三个方面的含义: 1)生物信息学是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和 解释的所有方面,是基因组研究不可分割的部分。 2)生物信息学是把基因组DNA序列信息分析作为源头,破译隐藏在DNA序列中的遗传语 言,特别是非编码区的实质;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测;其本质是识别基因信号。 3)生物信息学的研究目标是揭示“基因组信息结构的复杂性及遗传语言的根本规律”。它 是当今自然科学和技术科学领域中“基因组、“信息结构”和“复杂性”这三个重大科学问题的有机结合。 2.如何利用数据库信息发现新基因,其算法本质是什么? 答:利用数据库资源发现新基因,根据数据源不同,可分2种不同的查找方式: 1)从大规模基因组测序得到的数据出发,经过基因识别发现新基因: (利用统计,神经网络,分维,复杂度,密码学,HMM,多序列比对等方法识别特殊序列,预测新ORF。但因为基因组中编码区少,所以关键是“数据识别”问题。)利用大规模拼接好的基因组,使用不同数据方法,进行标识查找,并将找到的可能的新基因同数据库中已有的基因对比,从而确定是否为新基因。可分为:①基于信号,如剪切位点、序列中的启动子与终止子等。②基于组分,即基因家族、特殊序列间比较,Complexity analysis,Neural Network 2)利用EST数据库发现新基因和新SNPs: (归属于同一基因的EST片断一定有overlapping,通过alignment可组装成一完整的基因,但EST片断太小,不存在数据来源,主要是拼接问题) 数据来源于大量的序列小片段,EST较短,故关键在正确拼接。方法有基因组序列比对、拼接、组装法等。经常采用SiClone策略。其主要步骤有:构建数据库;将序列纯化格式标准化;从种子库中取序列和大库序列比对;延长种子序列,至不能再延长;放入contig库①构建若干数据库:总的纯化的EST数据库,种子数据库,载体数据库,杂质、引物数据库,蛋白数据库,cDNA数据库; ②用所用种子数据库和杂质、引物数据库及载体数据库比对,去除杂质; ③用种子和纯化的EST数据库比对 ④用经过一次比对得到的长的片段和蛋白数据库、cDNA数据库比较,判断是否为已有序列,再利用该大片段与纯化的EST数据库比对,重复以上步骤,直到序列不能再延伸; ⑤判断是否为全长cDNA序列。 (利用EST数据库:原理:当测序获得一条EST序列时,它来自哪一个基因的哪个区域是未知的(随机的),所以属于同一个基因的不同EST序列之间常有交叠的区域。根据这种“交叠”现象,就能找出属于同一个基因的所有EST序列,进而将它们拼接成和完整基因相对应的全长cDNA序列。而到目前为止,公共EST数据库(dbEST)中已经收集到约800万条的人的EST序列。估计这些序列已覆盖了人类全部基因的95%以上,平均起来每个基因有10倍以上的覆盖率。)

中国科学院大学生物信息学期末考试资料,陈润生老师

生物信息学期末考试复习 1.生物学中的7个数学故事 (1) 孟德尔遗传定律(分离和自由组合定律)运用了组、合原理中的加法原理和乘法原理。 (2) Hardy-Weinberg遗传平衡定律通过构造数学关系式来证明。 (3)基因在染色体上的线性排列采用概率分布优化距离的计算距离,使其更接近真实情况。 (4)关联分析通过假设检验看两个特征的关联有无统计显著性。 (5) 序列比对设计合适的算法可以有效降低计算复杂度。 (6)基因组学和其他的组学组学时代产生的大量数据需要依赖数据库技术来寻找生物分子之间的关联。 (7)微阵列芯片大规模芯片数据需要数据挖掘:聚类、关联、预测建模、异常检测。 2. DNA、protein、RNA序列比对及其算法 序列比对:为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。常用的方法有:点阵法,动态规划算法,k-tup 算法等。 (1)dotplot算法:通过点阵作图的方法表示,能很直观地氨基酸序列或核苷酸序列上的插入、删除、重复和反相重复。 算法步骤:将两条序列的碱基(或残基)分别沿x轴和y轴排列,依次比较两条序列的每个碱基(或残基),如果两个碱基(或残基)相同则在矩阵中填充点,这样就形成一个点矩阵。在点矩阵中,将对角线上的点连接起来,这些直线所对应的矩形区域就是这两条序列的相似性片段。 算法特点:该算法相似性片段实际上是相同的片段;而且不能提供相似性片段在统计学意义上的相似性。 (2)动态规划算法:分为全局动态规划算法和局部动态规划算法。保证了指定打分模型的情况下,两条序列能获得尽可能的最高分 算法步骤:①初始化序列矩阵;②将序列输入矩阵,计算分数并绘制箭头;③用箭头回溯找到最优得分路径;④连接最优路径,产生序列比对。 动态规划算法优缺点: 优点:对于一个给定的计分函数集合,能找到最优的比对 缺点:时间复杂度为O(n 2),运行慢,计算所需的内存与序列长度的平方成正比,因此不适用于非常长序列的比对。 序列比对的定义,存在哪几种算法,打分矩阵是什么意思 序列比对:为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列; 算法种类:动态规划算法、Smith-Waterman Alterations算法、FASTA - Hi Level Algorithm 算法、BLAST – Heuristic算法; 打分矩阵:通过点矩阵对序列比对进行积分,根据不同物质情况可分为DNA序列打分矩阵:等价矩阵、转换-颠换矩阵、blast矩阵;蛋白质打分矩阵:等价矩阵、遗传密码矩阵、疏水性矩阵、PAM矩阵、BLOSUM矩阵。 1.动态规划算法,给个表格可以把数字填出:

相关主题