搜档网
当前位置:搜档网 › 解圆锥曲线问题常用方法

解圆锥曲线问题常用方法

解圆锥曲线问题常用方法
解圆锥曲线问题常用方法

解圆锥曲线问题常用方法

部门: xxx

时间: xxx

整理范文,仅供参考,可下载自行编辑

专题:解圆锥曲线问题常用方法<一)

【学习要点】

解圆锥曲线问题常用以下方法:

1、定义法

<1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。

<2)双曲线有两种定义。第一定义中,,当r1>r2时,注意r2

的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将半径与“点到准线距离”互相转化。b5E2RGbCAP

<3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛

物线问题用定义解决更直接简明。

2、韦达定理法

因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的

问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理

及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。p1EanqFDPw

3、解读几何的运算中,常设一些量而并不解解出这些量,利用这些量过

渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆

锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点

A(x1,y1>,B(x2,y2>,弦AB中点为M(x0,y0>,将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,

具体有:DXDiTa9E3d

<1)与直线相交于A、B,设弦AB中点为M(x0,y0>,则

有。

<2)与直线l相交于A、B,设弦AB中点为M(x0,y0>则有

<3)y2=2px

0)与直线l相交于A、B设弦AB中点为M(x0,y0>,则有2y0k=2p,即y0k=p.RTCrpUDGiT

【典型例题】

例1、(1>抛物线C:y2=4x上一点P到点A(3,4>与到准线的距离和最小,则点 P的坐标为______________5PCzVD7HxA

(2>抛物线C: y2=4x上一点Q到点B(4,1>与到焦点F的距离和最小,则点Q的坐标为。

分析:<1)A在抛物线外,如图,连PF,则

,因而易发现,当A、P、F三点共线时,距离和

最小。

<2)B在抛物线内,如图,作QR⊥l交于R,则当B、Q、R三点共线时,距离和最小。

解:<1)<2,)

连PF,当A、P、F三点共线时,最小,此时AF的方程

为即 y=2(x-1>,代入y2=4x得P(2,2>,<注:另一交点为(>,它为直线AF与抛物线的另一交点,舍去)jLBHrnAILg <2)<)

过Q作QR⊥l交于R,当B、Q、R三点共线时,最小,此时Q点的纵坐标为1,代入y2=4x得x=,∴Q(>xHAQX74J0X 点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。

例2、F是椭圆的右焦点,A(1,1>为椭圆内一定点,P为椭圆上一

动点。

<1)的最小值为

<2)的最小值为

分析:PF为椭圆的一个焦半径,常需将另一焦半径或准线作出来考虑问题。

解:<1)4-

设另一焦点为,则(-1,0>连A,P

当P是A的延长线与椭圆的交点时,取得最小值为4-。

<2)3

作出右准线l,作PH⊥l交于H,因a2=4,b2=3,c2=1, a=2,c=1,e=,

当A、P、H三点共线时,其和最小,最小值为

例3、动圆M与圆C1:(x+1>2+y2=36内切,与圆C2:(x-1>2+y2=4外切,求圆心M的轨迹方程。LDAYtRyKfE

分析:作图时,要注意相切时的“图形特征”:两

个圆心与切点这三点共线<如图中的A、M、C共线,B、

D、M共线)。列式的主要途径是动圆的“半径等于半

径”<如图中的)。Zzz6ZB2Ltk

解:如图,,

∴ <*)

∴点M的轨迹为椭圆,2a=8,a=4,c=1,b2=15轨迹方程为

点评:得到方程<*)后,应直接利用椭圆的定义写出方程,而无需再用距

离公式列式求解,即列出,再移项,平方,…相当于将椭圆标准方程推导了一遍,较繁琐!dvzfvkwMI1

例4、△ABC中,B(-5,0>,C(5,0>,且sinC-sinB=sinA,求点A的轨迹方程。

分析:由于sinA、sinB、sinC的关系为一次齐次式,两边乘以2R

解:sinC-sinB=sinA 2RsinC-2RsinB=·2RsinA

即 <*)

∴点A的轨迹为双曲线的右支<去掉顶点)

∵2a=6,2c=10

∴a=3, c=5, b=4

所求轨迹方程为 3)

点评:要注意利用定义直接解题,这里由<*)式直接用定义说明了轨迹<双曲线右支)

例5、定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M 到x轴的最短距离。

分析:<1)可直接利用抛物线设点,如设A(x1,x12>,B(x2,X22>,又设AB中点为M(x0y0>用弦长公式及中点公式得出y0关于x0的函数表达式,再用函数思想求出最短距离。EmxvxOtOco

<2)M 到x 轴的距离是一种“点线距离”,可先考虑M 到准线的距离,想到用定义法。

解法一:设A(x1,x12>,B(x2,x22>,AB 中点M(x0,y0>

由①得(x1-x2>2[1+(x1+x2>2]=9

即[(x1+x2>2-4x1x2]·[1+(x1+x2>2]=9 ④ 由②、③得2x1x2=(2x0>2-2y0=4x02-2y0 代入④得 [(2x0>2-(8x02-4y0>]·[1+(2x0>2]=9 ∴

当4x02+1=3 即 时,此时

法二:如图,

, 即

∴, 当AB 经过焦点F 时取得最小值。

① ② ③

∴M到x轴的最短距离为

点评:解法一是列出方程组,利用整体消元思想消x1,x2,从而形成y0关于x0的函数,这是一种“设而不求”的方法。而解法二充分利用了抛物线的定义,巧妙地将中点M到x轴的距离转化为它到准线的距离,再利用梯形的中位线,转化为A、B到准线的距离和,结合定义与三角形中两边之和大于第三边<当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB是否能经过焦点F,而且点M的坐标也不能直接得出。SixE2yXPq5

例6、已知椭圆过其左焦点且斜率为1的直线与椭圆及

准线从左到右依次变于A、B、C、D、设f(m>=,<1)求f(m>,<2)求f(m>的最值。6ewMyirQFL

分析:此题初看很复杂,对f(m>的结构不知如何运算,因A、B来源于“不同系统”,A在准线上,B在椭圆上,同样C在椭圆上,D在准线上,可见直接求解较繁,将这些线段“投影”到x轴上,立即可得防kavU42VRUs

此时问题已明朗化,只需用韦达定理即可。

解:<1)椭圆中,a2=m,b2=m-1,c2=1,左焦点F1(-1,0>

则BC:y=x+1,代入椭圆方程即(m-1>x2+my2-m(m-1>=0

得(m-1>x2+m(x+1>2-m2+m=0

∴(2m-1>x2+2mx+2m-m2=0

设B(x1,y1>,C(x2,y2>,则x1+x2=-

<2)

∴当m=5时,

当m=2时,

点评:此题因最终需求,而BC斜率已知为1,故可也用“点差法”

设BC中点为M(x0,y0>,通过将B、C坐标代入作差,得,将

y0=x0+1,k=1代入得,∴,可见

y6v3ALoS89

当然,解本题的关键在于对的认识,通过线段在x轴的“投影”发现是解此题的要点。

【同步练习】

1、已知:F1,F2是双曲线的左、右焦点,过F1作直线交双曲线左支于点A、B,若,△ABF2的周长为< )M2ub6vSTnP

A、4a

B、4a+m

C、4a+2m

D、4a-m0YujCfmUCw

2、若点P到点F(4,0>的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是

< )

A、y2=-16x

B、y2=-32x

C、y2=16x

D、y2=32xeUts8ZQVRd

3、已知△ABC的三边AB、BC、AC的长依次成等差数列,且,点

B、C的坐标分别为(-1,0>,(1,0>,则顶点A的轨迹方程是< )sQsAEJkW5T

A、 B、

C、 D、

4、过原点的椭圆的一个焦点为F(1,0>,其长轴长为4,则椭圆中心的轨迹方程是

< )

A、 B、

C、 D、

5、已知双曲线上一点M的横坐标为4,则点M到左焦点的距离是

6、抛物线y=2x2截一组斜率为2的平行直线,所得弦中点的轨迹方程是

7、已知抛物线y2=2x的弦AB所在直线过定点p(-2,0>,则弦AB中点的轨迹方程是

8、过双曲线x2-y2=4的焦点且平行于虚轴的弦长为

9、直线y=kx+1与双曲线x2-y2=1的交点个数只有一个,则k=

10、设点P是椭圆上的动点,F1,F2是椭圆的两个焦点,求sin∠F1PF2的最大值。

11、已知椭圆的中心在原点,焦点在x轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列,若直线l与此椭圆相交于A、B两点,且AB中点M为(-2,1>,,求直线l的方程和椭圆方程。GMsIasNXkA

12、已知直线l和双曲线及其渐近线的交点从左到右依次为A、B、C、D。求证:。

【参考答案】

1、C

∴选C

2、C

点P到F与到x+4=0等距离,P点轨迹为抛物线 p=8开口向右,则方程为y2=16x,选C

3、D

∵,且

∵点A的轨迹为椭圆在y轴右方的部分、又A、B、C三点不共线,即

y≠0,故选D。

4、A

设中心为(x,y>,则另一焦点为(2x-1,2y>,则原点到两焦点距离和为4

得,∴

①又c

∴(x-1>2+y2<4 ②,由①,②得x≠-1,选A

5、

左准线为x=-,M到左准线距离为则M到左焦点的距离为

6、

设弦为AB,A(x1,y1>,B(x2,y2>AB中点为(x,y>,则y1=2x12,y2=2x22,y1-y2=2(x12-x22>TIrRGchYzg

∴∴2=2·2x,

将代入y=2x2得,轨迹方程是(y>>

7、y2=x+2(x>2>

设A(x1,y1>,B(x2,y2>,AB中点M(x,y>,则

∵,∴,即y2=x+2

又弦中点在已知抛物线内P,即y2<2x,即x+2<2x,∴x>2

8、4

,令代入方程得8-y2=4

∴y2=4,y=±2,弦长为4

9、

y=kx+1代入x2-y2=1得x2-(kx+1>2-1=0

∴(1-k2>x2-2kx-2=0

①得4k2+8(1-k2>=0,k=

②1-k2=0得k=±1

10、解:a2=25,b2=9,c2=16

设F1、F2为左、右焦点,则F1(-4,0>F2(4,0>

①2-②得2r1r2(1+cosθ>=4b2

∴1+cosθ=∵r1+r2,∴r1r2的最大值为a2

∴1+c osθ的最小值为,即1+cos

θ

cos

θ,

则当时,sinθ取值得最大值1,

即sin∠F1PF2的最大值为1。

11、设椭圆方程为

由题意:C、2C 、成等差数列,

∴,

∴a2=2(a2-b22DDFFF2+2222222大案要案000>,∴a2=2b2

椭圆方程为,设A(x1,y1>,B(x2,y2>

则①②

①-②得

2222222∴

即∴k=1

直线AB方程为y-1=x+2即y=x+3,代入椭圆方程即x2+2y2-2b2=0得x2+2(x+3>2-2b2=07EqZcWLZNX

∴3x2+12x+18-2b2=0,

①②

④ ⑤

解得b2=12, ∴椭圆方程为,直线l 方程为x-y+3=0

12、证明:设A(x1,y1>,D(x2,y2>,AD 中点为M(x0,y0>直线l 的斜率为k ,则

①-②得③

设,

④-⑤得⑥ 由③、⑥知M 、

均在直线

上,而M 、

又在直线l 上 ,

若l 过原点,则B 、C 重合于原点,命题成立 若l 与x 轴垂直,则由对称性知命题成立 若l 不过原点且与x 轴不垂直,则M 与重合

申明:

所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

① ②

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线方法归纳

圆锥曲线方法归纳 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422 2 12221 =-+-y y x x ?()() ()() 3421212121y y y y x x x x +--=+-?AB k =b a 43- (ⅰ)涉及直线与圆锥曲线相交弦的中点和弦斜率问题时,常用“点差法”“设而不求”整体来求,借助于一元二次方程根的判别式、根与系数的关系、中点坐标公式及参数法求解.但在求得直线方程后,一定要代入原方程进行检验. (ⅱ)用“点差法”求解弦中点问题的解题步骤: 设点——设出弦的两端点坐标 ↓ 代入——代入圆锥曲线方程 ↓ 作差——两式相减,再用平方差公式把上式展开 ↓ 整理——转化为斜率与中点坐标的关系式,然后求解 1. 已知椭圆x 2+2y 2=4,求椭圆上以(1, 1)为中点的弦所在的直线方程?

2. 如果椭圆x 236+y 29=1的弦被点A (4, 2)平分,求这条弦所在的直线方程 3. 已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1 (a >b >0)相交于A , B 两点,且线段AB 的中 点在直线l :x -2y =0上,则此椭圆的离心率为 . 4. 过点M (1, 1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1 (a >b >0)相交于A , B 两点, 若M 是线段AB 的中点,则椭圆C 的离心率等于 . 5. 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A , B 两点,若 线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 . 6. 已知双曲线E 的中心为原点,F (3, 0)是E 的焦点,过F 的直线l 与E 相交于A , B 两点,且AB 的中点为N (-12,-15),则E 的方程为

高中数学圆锥曲线解题技巧方法总结91876

圆锥曲线 1、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。 在椭圆122 22=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0 202y a x b ; 在双曲线22 221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0 202y a x b ;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 2.了解下列结论 (1)双曲线12222=-b y a x 的渐近线方程为02 222=-b y a x ; (2)以x a b y ±=为渐近线(即与双曲线12222=-b y a x 共渐近线)的双曲线方程为λλ(2222=-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为22 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为22b a ,焦准距(焦点到相应准线的距离)为2 b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线22(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则①12||AB x x p =++;②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线22(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 3、解析几何与向量综合时可能出现的向量内容: (1)在ABC ?中,给出()12AD AB AC =+,等于已知AD 是ABC ?中BC 边的中线; (2)在ABC ?中,给出222==,等于已知O 是ABC ?的外心(三角形外接圆的圆心,三角形的外 心是三角形三边垂直平分线的交点); (3)在ABC ?中,给出=++,等于已知O 是ABC ?的重心(三角形的重心是三角形三条中线的交点); (4)在ABC ?中,给出?=?=?,等于已知O 是ABC ?的垂心(三角形的垂心是三角形三条高的交点); (5) 给出以下情形之一:①//;②存在实数,AB AC λλ=使;③若存在实数,,1,OC OA OB αβαβαβ+==+且使,等于已知C B A ,,三点共线. (6) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已知AMB ∠是钝角, 给出0>=?m ,等于已知AMB ∠是锐角, (8 ) 给出=??+λ,等于已知MP 是AMB ∠的平分线/ (9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是菱形;

圆锥曲线知识点全归纳完整精华版

圆锥曲线知识点全归纳 完整精华版 YUKI was compiled on the morning of December 16, 2020

圆锥曲线知识点全归纳(精华版) 圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 一、圆锥曲线的方程和性质: 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。 标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1? 其中a>b>0,c>0,c^2=a^2-b^2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1 其中a>b>0,c>0,c^2=a^2-b^2. 参数方程: X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。 标准方程: 1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1? 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 参数方程: x=asecθy=btanθ(θ为参数) 3)抛物线 标准方程: 1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px其中p>0 2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px其中p>0 3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py其中p>0 4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py其中p>0 参数方程? x=2pt^2?y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0 直角坐标? y=ax^2+bx+c(开口方向为y轴,a<>0)x=ay^2+by+c(开口方向为x轴,a<>0) 圆锥曲线(二次非圆曲线)的统一极坐标方程为?

圆锥曲线方法总结

圆锥曲线考点及方法总结(江苏)1 化斜为直:利用相似三角形将斜线段之比转化为直角边之比,然后再将直角边之比转化为坐标之比这就将几何量转化为代数值 2相关点法求曲线轨迹如求p的轨迹方程若知道A点所在的曲线方程L 只需找出P与A之间的坐标关系然后带入L即可 3设点、设线然后将问题向X1+X2、x1*x2、y1+y2、y1*y2 上转化,然后联立直线与曲线的方程,利用韦达定理,涉及最值或范围问题时注意带塔>0; 4圆锥曲线中的最值问题:通常构造函数转化为求函数最值(导数求解),也可以保留两个变量运用基本不等式求解,当然在设点时用圆锥曲线的参数方程,这样最值问题最终转化为三角函数最值问题 5几何性质:角平分线定理 6公式化法则 7焦半径公式 8极坐标方程(与焦半径有关的题目才能用) 9参数方程(涉及最值与定值问题时可尝试) 10直线的参数方程中的|t|的几何意义是直线上的点到定点的线段长度注意线段的方向性即t的正负(在涉及线段长度的题目中有效) 11注意利用点在曲线上这一基本条件许多

设而不求最终都会用到这一条件 12常见椭圆结论:k1*k2为定值(与椭圆对称点)点差法的到的结论椭圆切点出的切线方程椭圆是对称图形 13弦长公式 14 SOAB= 15代换技巧:如两直线过同一点只有K不一样,则算出k1的数据后用k2代换就能得到另一条线的数据(不只斜率K可以代换,点也可以代换)减少计算量 16当化简到非常复杂的式子时,考虑能否整体代换,将形式复杂的部分用一个变量代替 17利用三点共线列等式 18直线过定点问题 方法一;求出AB直线方程再求定点 方法二:取两个特殊位置的直线,解出交点C,验证交点C是否在直线AB上,只需算k1=k2即可 方法三,若能观察出定点在x轴上,解出AB方程令y=0,解出x为定值即可 19对设而不求方法的具体介绍:大胆设点,利用以下结论 一:点在曲线上 二:点满足一定条件(题目所给) 三:韦达定理 运用好这三点,就可以做到舍而不求

圆锥曲线知识点总结

圆锥曲线知识点总结 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或1 22 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:①以上方程中,a b 的大小0a b >>,其中222b a c =-; ②在22221x y a b +=和22 221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置, 只要看2 x 和2 y 的分母的大小。例如椭圆22 1x y m n + =(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±, y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点

(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和 b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中,2||OB b =, 2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-; ④离心率:椭圆的焦距与长轴的比c e a = 叫椭圆的离心率。∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=。 2.双曲线 (1)双曲线的概念

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数 2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝 对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|, 则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方 程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时1 22 22=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。方程22 Ax By C +=表示椭圆的充要条 件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___ ) (2)双曲线:焦点在x 轴上: 2 2 22b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴 上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时2 2(0)y px p =>,开 口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在 分母大的坐标轴上。 如已知方程1212 2=-+-m y m x 表示焦点在y 轴 上的椭圆,则m 的取值范围是__(答:)2 3 ,1()1,( --∞) (2)双曲线:由x 2,y 2 项系数的正负决定,焦 点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长 为2a ,短轴长为2b ;④准线:两条准线2 a x c =± ; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆 越圆;e 越大,椭圆越扁。 如(1)若椭圆152 2 =+m y x 的离心率510 = e ,则m 的值是__(答:3或 3 25); (2)以椭圆上一点和椭圆两焦点为顶点的三角 形的面积最大值为1时,则椭圆长轴的最小值为__(答: 22) (2)双曲线(以22 22 1x y a b -=(0,0a b >>)为 例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等 时,称为等轴双曲线,其方程可设为 2 2 ,0x y k k -=≠;④准线:两条准线2 a x c =±; ⑤ 离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大; ⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围: 0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几 何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线: 一条准线2 p x =-; ⑤离心率:c e a =,抛物线 ?1e =。 如设R a a ∈≠,0,则抛物线2 4ax y =的焦点坐标为 ________(答:)161 , 0(a ); 5、点00(,)P x y 和椭圆122 22=+b y a x (0a b >>)的 关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>;(2) 点00(,)P x y 在椭圆上?220 220b y a x +=1;(3)点 00(,)P x y 在椭圆内?2200 221x y a b +< 6.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交; 0?>?直线与双曲线相交,但直线与双曲线相交不一定有0?>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0?>是直线与双曲线相交的充分条件,但不是必要条件;0?>?直线与抛物线相交,但直线与抛物线相交不一定有0?>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0?>也仅是直线与抛物线相交的充分条件,但不是必要条件。 (2)相切:0?=?直线与椭圆相切;0?=?直线与双曲线相切;0?=?直线与抛物线相切; (3)相离:0?中, 以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要 条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 11.了解下列结论 (1)双曲线1 2 222 =-b y a x 的渐近线方程为0=±b y a x ; (2)以x a b y ±=为渐近线(即与双曲线 12222=-b y a x 共渐近线)的双曲线方程为λ λ(22 22=-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为2 2 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称 轴的弦)为2 2b a ,焦准距(焦点到相应准线的距离) 为2b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB , 1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12.圆锥曲线中线段的最值问题: 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)

圆锥曲线常用结论

圆锥曲线常用结论 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线常用结论(自己选择) 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是 以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、 P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一 点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点, 连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

圆锥曲线解题方法技巧归纳

圆锥曲线解题方法技巧归纳 例1、已知三角形ABC 的三个顶点均在椭圆80542 2 =+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴 上). (1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为0 90,AD 垂直BC 于D ,试求点D 的轨迹方程. 分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。第二问抓住角A 为0 90可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程; 解:(1)设B (1x ,1y ),C(2x ,2 y ),BC 中点为(00,y x ),F(2,0)则有 116 20,116202 2 222121=+=+y x y x 两式作差有 16) )((20))((21212121=+-+-+y y y y x x x x 04 500=+k y x (1) F(2,0)为三角形重心,所以由 2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得5 6 =k 直线BC 的方程为02856=--y x 2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2) 设直线BC 方程为8054,2 2 =++=y x b kx y 代入,得080510)54(2 2 2 =-+++b bkx x k 2 215410k kb x x +-=+,222154805k b x x +-= 2 2 22122154804,548k k b y y k k y y +-=+=+ 代入(2)式得 054163292 2=+--k b b ,解得)(4舍=b 或94 -=b 直线过定点(0,)94-,设D (x,y ),则1494 -=-?+ x y x y ,即016329922=--+y x y 所以所求点D 的轨迹方程是)4()9 20()916(222 ≠=-+y y x 。 3、设而不求法 例2、如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线 过C 、D 、E 三点,且以A 、B 为焦点当 4 3 32≤≤λ时,求双曲线离心率e 的取值范围。

解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+ 椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 椭圆与双曲线的对偶性质总结 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点.

圆锥曲线常用结论(无需记忆-会推导即可)

椭圆与双曲线--经典结论 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为 直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

圆锥曲线经典性质总结及证明!!!

Gandongle 椭圆双曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

圆锥曲线知识点归纳与解题方法技巧.doc

百度文库- 让每个人平等地提升自我 圆锥曲线解题方法技巧 第一、知识储备: 1.直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。(2)与直线相关的重要内容 ①倾斜角与斜率 k tan , [0, ) k y2 y1 x2 x1 ②点 P(x0 , y0 ) 到直线 Ax By C 0 的距离 Ax0 By0 C d B2 A2 l1 : y k1x b1 夹角为,k2 k1 ③夹角公式:直线则 tan l2 : y k2 x b2 1 k2 k1 ( 3)弦长公式 直线 y kx b 上两点 A( x1 , y1 ), B( x2 , y2 ) 间的距离 ① AB ( x2 x1 )2 ( y2 y1 )2 ② AB 1 k2 x x (1 k 2 )[( x x ) 2 4x x ] 1 2 1 2 1 2 ③ AB 1 1 y1 y2 k 2 ( 4)两条直线的位置关系 (Ⅰ) l1 : y k1x b1 l2 : y k2 x b2 ① l1 l2 k1k2=-1 ② l1 // l2k1 k2且 b1 b2 l1 : A1 x B1 y C1 0 (Ⅱ) l2 : A2 x B2 y C2 ① l1 l2A1 A2 B1B2 0 ② l1 / /l 2 A1B2 - A2 B1 =0且 AC1 2 - A2C1 0或 A1 B1 C1 者( A2 B2C2 0 )

两平行线距离公式 l 1 : y kx b 1 | b 1 b 2 | l 2 : y kx b 2 距离 d k 2 1 l 1 : Ax By C 1 0 |C 1 C 2 | l 2 : Ax By C 2 距离 d B 2 A 2 2、圆锥曲线方程及性质 1. 圆锥曲线的两定义 : 第一定义 中要重视“括号”内的限制条件 :椭圆中,与两个定点 F 1 ,F 2 的距离的 和等于常数 2a ,且此常数 2a 一定要大于 F 1 F 2 ,当常数等于 F 1 F 2 时,轨迹是线段 F 1 F 2 , 当常数小于 F 1F 2 时,无轨迹; 双曲线中 ,与两定点 F 1 , F 2 的距离的差的绝对值等于常 数 2a ,且此常数 2a 一定要小于 | F 1 F 2 | ,定义中的 “绝对值”与 2a < |F 1 F 2 | 不可忽视 。 若 2a = |F 1 F 2 | ,则轨迹是以 F 1 ,F 2 为端点的两条射线,若 2a ﹥ |F 1 F 2 | ,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程 ( x 6)2 y 2 ( x 6)2 y 2 8 表示的曲线是 _____(答:双曲线的左支) 2. 圆锥曲线的标准方程 (标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): ( 1)椭圆 :焦点在 x 轴上时 x 2 y 2 y 轴上时 y 2 x 2 2 2 1 ( a b 0 ),焦点在 2 2 = 1 a b a b ( a b 0 )。方程 2 2 表示椭圆的充要条件是什么?( ≠ ,且 A , B ,C Ax By C ABC 0 同号, A ≠B )。椭圆的方程的形式有几种?(三种形式) 标准方程: x 2 y 2 1(m 0, n 0且 m n) m n 距离式方程: (x c)2 y 2 ( x c) 2 y 2 2a 参数方程: x a cos , y bsin 若 x, y R ,且 3x 2 2 y 2 6 ,则 x y 的最大值是 ____,x 2 y 2 的最小值是 ___(答: 5,2 ) ( )双曲线:焦点在 x 轴上: x 2 y 2 y 2 x 2 =1( a 0, b 0 )。 2 a 2 b 2 =1 ,焦点在 y 轴上: 2 b 2 方程 Ax 2 By 2 a C 表示双曲线的充要条件是什么?( ABC ≠0,且 A , B 异号)。 如设中心在坐标原点 O ,焦点 1 、 F 2 在坐标轴上,离心率 e 2 的双曲线 C 过点 F

圆锥曲线知识要点与结论个人总结

《圆锥曲线》知识要点及重要结论 一、椭圆 1 定义 平面内到两定点21,F F 的距离的和等于常数)2(221F F a a >的点P 的轨迹叫做椭圆.若212F F a =,点P 的轨迹是线段21F F .若2120F F a <<,点P 不存在. 2 标准方程 )0(122 22>>=+b a b y a x ,两焦点为)0,(),0,(21c F c F -. )0(122 22>>=+b a b x a y ,两焦点为),0(),,0(21c F c F -.其中222c b a +=. 3 几何性质 椭圆是轴对称图形,有两条对称轴. 椭圆是中心对称图形,对称中心是椭圆的中心. 椭圆的顶点有四个,长轴长为a 2,短轴长为b 2,椭圆的焦点在长轴上. 若椭圆的标准方程为)0(122 22>>=+b a b y a x ,则b y b a x a ≤≤-≤≤-,; 若椭圆的标准方程为)0(122 22>>=+b a b x a y ,则a y a b x b ≤≤-≤≤-,. 二、双曲线 1 定义 平面内到两定点21,F F 的距离之差的绝对值等于常数)20(221F F a a <<的点的轨迹叫做双曲线. 若212F F a =,点P 的轨迹是两条射线.若212F F a >,点P 不存在. 2 标准方程 )0,0(122 22>>=-b a b y a x ,两焦点为)0,(),0,(21c F c F -. )0,0(122 22>>=-b a b y a x ,两焦点为),0(),,0(21c F c F -.其中222b a c +=. 3 几何性质 双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心. 双曲线的顶点有两个21,A A ,实轴长为a 2,虚轴长为b 2,双曲线的焦点在实轴上. 若双曲线的标准方程为)0,0(122 22>>=-b a b y a x ,则R y a x a x ∈≥-≤,或; 若双曲线的标准方程为)0,0(122 22>>=-b a b x a y ,则R x a y a y ∈≥-≤,或.

相关主题