搜档网
当前位置:搜档网 › 培优专题1三角形和有关概念含答案

培优专题1三角形和有关概念含答案

培优专题1三角形和有关概念含答案
培优专题1三角形和有关概念含答案

1三角形及其有关概念

【知识精读】

1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形中的几条重要线段:

(1)三角形的角平分线(三条角平分线的交点叫做内心)

(2)三角形的中线(三条中线的交点叫重心)

(3)三角形的高(三条高线的交点叫垂心)

3. 三角形的主要性质

(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;

(2)三角形的内角之和等于180°

(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和;

(4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角;

(5)三角形具有稳定性。

4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则

?=?。

S S S S

????

ABE CDE BDE CAE

三角形是最常见的几何图形之一,在工农业生产和日常生活中都有广泛的应用。三角形又是多边形的一种,而且是最简单的多边形,在几何里,常常把多边形分割成若干个三角形,利用三角形的性质去研究多边形。实际上对于一些曲线,也可以利用一系列的三角形去逼近它,从而利用三角形的性质去研究它们。因此,学好本章知识,能为以后的学习打下坚实的基础。

5. 三角形边角关系、性质的应用 【分类解析】

例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020?<

分析:

因为?ABC 为锐角三角形,所以090?<

又∵∠A 为锐角,()∴=?-+∠∠∠A B C 180为锐角 ∴+>?∠∠B C 90

∴>?390∠B ,即∠B >?30 ∴?<

例2. 选择题:已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是( ) A. 锐角三角形

B. 直角三角形

C. 钝角三角形

D. 无法确定

分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个内角的度数,从而可判断三角形的形状。 解:∵三角形的一个外角等于160° ∴另两个外角的和等于200° 设这两个外角的度数为2x ,3x ∴+=23200x x

解得:x =40 2803120x x ==, 与80°相邻的内角为100° ∴这个三角形为钝角三角形 应选C

例3. 如图,已知:在?ABC 中,AB AC ≤

1,求证:∠∠C B <1

分析:欲证∠∠C B <

1

2,

可作∠ABC 的平分线BE 交AC 于E ,只要证∠∠C EBC <即可。为与题设AB AC ≤1

2

联系,又作AF//BE 交CB 的延长线于F 。

显然∠EBC =∠F ,只要证∠∠C F <即可。由AF AB AC <≤2可得证。

证明:作∠ABC 的角平分线BE 交AC 于E ,过点A 作AF//BE 交CB 的延长线于F ΘAF BE F EBC FAB ABE //,∠∠,∠∠∴== 又∵BE 平分∠ABC ,∴∠EBC =∠ABE ∴∠F =∠FAB ,∴AB =BF 又∵AB +FB >AF ,即2AB >AF

又∵AB AC AC AF ≤

∴>1

2

, ∴>∠∠F C ,又∵∠∠F ABC =1

2

∴<∠∠C B 1

2

例4. 已知:三角形的一边是另一边的两倍。求证:它的最小边在它的周长的

16与1

4

之间。 分析:首先应根据已知条件,运用边的不等关系,找出最小边,然后由周长与边的关系加以证明。

证明:如图,设?ABC 的三边为a 、b 、c ,其中a c =2, Θb a c a c >-=,2 ∴>b c

因此,c 是最小边,∴

++1

6

() ∴++<<++16

1

4()()a b c c a b c 故最小边在周长的16与1

4

之间。

中考点拨:

例1. 选择题:如图是一个任意的五角星,它的五个顶角的和是( ) A. 50

B. 100

C. 180

D. 200

分析:由于我们学习了三角形的内角、外角的知识,所以需要我们把问题转化为三角形角的问题。

解:Θ∠∠∠,∠∠∠C E AGF B D AFG +=+=

∴++++=++=?∠∠∠∠∠∠∠∠A B C E D A AGF AFG 180 所以选择C

例2. 选择题:已知三角形的两边分别为5和7,则第三边x 的范围是( ) A. 大于2

B. 小于12

C. 大于2小于12

D. 不能确定

分析:根据三角形三边关系应有7575+>>-x ,即122>>x 所以应选C

例3. 已知:P 为边长为1的等边?ABC 内任一点。 求证:

3

2

2<++

证明:过P 点作EF//BC ,分别交AB 于E ,交AC 于F , 则∠AEP =∠ABC =60°

Θ∠∠∠EAP EAF APE <=?∴>?

6060

在?AEP 中,

ΘΘ∠∠,∠∠,∠APE AEP AE AP AFE ACB AEF >∴>==?=?

6060

∴?AEF 是等边三角形 ∴=AF EF

()()()ΘAE AP BE EP BP PF FC PC AE EB EP PE FC AP BP PC

AB EF FC AP BP PC AB AF AC AP BP PC

PB PA PC AB AC >+>+>???

?

?++++>++++>++++>++∴++<+=2

()∴+>+>+>???

?

?∴++>++=∴>++>

PA PB AB PB PC BC PC PA AC PA PB PC AB BC AC PA PB PC 23232

题型展示:

例1. 已知:如图,在?ABC 中,D 是BC 上任意一点,E 是AD 上任意一点。求证: (1)∠BEC >∠BAC ; (2)AB +AC >BE +EC 。

分析:在(1)中,利用三角形内角和定理的推论即可证出在(2)中,添加一条辅助线,转化到另一个三角形中,利用边的关系定理即可证出。 证明:(1)∵∠BED 是?ABE 的一个外角, ∴>∠∠BED BAE 同理,∠∠DEC CAE >

∴+>+∠∠∠∠BED DEC BAE CAE

即∠∠BEC BAC > (2)延长BE 交AC 于F 点

ΘAB AF BE EF

EF FC EC

AB AF EF FC BE EF EC

+>++>∴+++>++又

即AB AC BE EC +>+

例2. 求证:直角三角形的两个锐角的相邻外角的平分线所夹的角等于45°。

已知:如图,在?ABC 中,∠=?∠∠C EAB ABD 90,、是?ABC 的外角,AF 、BF 分别平分∠EAB 及∠ABD 。 求证:∠AFB =45°

分析:欲证∠AFB =?45,须证∠∠FAB FBA +=?135 ∵AF 、BF 分别平分∠EAB 及∠ABD ∴要转证∠EAB +∠ABD =270°

又∵∠C =90°,三角形一个外角等于和它不相邻的两个内角之和 ∴问题得证

证明:∵∠EAB =∠ABC +∠C ∠ABD =∠CAB +∠C

∠ABC +∠C +∠CAB =180°,∠C =90°

∴+=+++=?+?=?∠∠∠∠∠∠EAB ABD ABC C CAB C 18090270 ∵AF 、BF 分别平分∠EAB 及∠ABD ()∴+=

+=??=?∠∠∠∠FAB FBA EAB ABD 121

2

270135 在?ABF 中,()∠∠∠AFB FAB FBA =?-+=?18045

【实战模拟】

1. 已知:三角形的三边长为3,8,12+x ,求x 的取值范围。

2. 已知:?ABC 中,AB BC =,D 点在BC 的延长线上,使AD BC =,∠=BCA α,

∠=CAD β,求α和β间的关系为?

3. 如图,?ABC 中,∠∠ABC ACB 、的平分线交于P 点,∠=?BPC 134,则∠=BAC ( ) A. 68°

B. 80°

C. 88°

D. 46°

4. 已知:如图,AD 是?ABC 的BC 边上高,AE 平分∠BAC 。 求证:()∠=

∠-∠EAD C B 1

2

5. 求证:三角形的两个外角平分线所成的角等于第三个外角的一半。

【试题答案】

1.

分析:本题是三边关系的应用问题,只需用三边关系确定第三边的取值范围即可。 解:∵三边长分别为3,8,12+x ,由三边关系定理得: 51211<+

∴<<∴<<421025

x x

2.

解:ΘAB BC BCA BAC =∴∠=∠=,α 又ΘAD BC AD AB =∴=,

∴∠=∠D B ,又∵∠=∠+∠BCA D B ∴∠=-∴∠=-D B αβαβ, 根据三角形内角和,得: 2180ααβ+-=? ∴-=?3180αβ 3.

解:Θ∠=?BPC 134 ∴∠+∠=?PBC PCB 46

又∵BP 、CP 为∠B 、∠C 的平分线

()∴=

=∴+=+∴+=??=?

∴=?--=?

∠∠,∠∠∠∠∠∠∠∠∠∠∠PBC ABC PCB ACB PBC PCB ABC ACB ABC ACB BAC ABC ACB 121

2

1

2

2469218088 4.

证明:∠∠∠EAD EAC CAD =- ∵AE 平分∠BAC ,∴=

∠∠EAC BAC 1

2

又∵AD ⊥BC ,∴=?∠ADC 90 ∴=?-∠∠CAD C 90

又Θ∠∠∠BAC B C =?--180

()()∴=

-=?---?-=-∠∠∠∠∠∠∠∠EAD BAC CAD B C C C B 1

21

2180901212

()∴=-∠∠∠EAD C B 1

2

5.

证明:如图,设?ABC 的∠BAC 和∠ABC 的外角平分线交于点D

Θ∠∠∠∠∠∠FAB ABC ACB EBA BAC ACB

=+=+

()()∴+=+=++∠∠∠∠∠∠∠DAB DBA FAB EBA ABC BAC ACB 1

21

2

则()∠∠∠ADB DAB DBA =?-+180

()()()=++-

+-=+∠∠∠∠∠∠∠∠ABC ACB BAC ABC BAC ACB ABC BAC 1

2

1

2

又()Θ121

2

∠∠∠ACG ABC BAC =+

∴=∠∠ADB ACG 1

2

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

解直角三角形培优练习题(含答案)

l1.已知在Rt△ABC中,∠C=90°,∠A=α,AC=3,那么AB的长为()A.3sinαB.3cosαC.D. 2.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=α,那么AD等于()A.asin2αB.acos2αC.asinαcosαD.asinαtanα 3.如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC边上一点,若tan∠DBA=,则tan∠CBD的值为() A.B.C.1 D. (第3题)(第4题)(第8题) 4.△ABC在直角坐标系中的位置如图所示,∠C=90°,点C的坐标为(,﹣),则点B 的坐标是() A.(,0)B.(,0)C.(,0)D.(2,0) 5.等腰三角形的底角为30°,底边长为2,则腰长为() A.4 B.2C.2 D. 6.在Rt△ABC中,∠C=90°,如果∠A=α,AB=c,那么BC等于() A.c?sinαB.c?cosαC.c?tanαD.c?cotα 7.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,如果a2+b2=c2,那么下列结论正确的是() A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b 8.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为() A.90m B.60m C.45m D.30m

9.如图,在地面上的点A处测得树顶B的仰角为α度,若AC=6米,则树高BC为()A.6sinα米B.6tanα米C.米D.米 10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是() A.2 B.C.D. (第9题)(第10题)(第11题)11.如图,△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,垂足为D,则BD:AD的值为()A.B.C.D. 12.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是() A.B.C.D. (第12题)(第13题)(第14题) 13.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上,若sin∠DFE=,则tan∠EBF的值为() A.B.C.D. 14.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧 上的一点,则tan∠APB的值是()

培优专题 等腰三角形

培优专题 等腰三角形 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 例1 如图1-1,△ABC 中,AB=BC ,M 、N 为BC 边上两点,且∠BAM=∠CAN ,MN=AN ,求∠MAC 的度数. 分析 AB=AC ,MN=AN 可知△ABC 和△AMN 均为等腰三角形,充分利用等腰三角形的性质寻找所求角间的关系. 练习1 1.如图,已知△ABC 中,AB=AC ,AD=AE ,∠BAE=30°,则∠DEC 等于( ). A .7.5° B .10° C .12.5° D .15° 2.如图,AA ′、BB ′分别是△ABC 的外角∠EAB 和∠CBD 的平分线,且AA ′=AB=B ′B ,A ′、B 、C 在一直线上,则∠ACB 的度数是多少? 3.如图,等腰三角形ABC 中,AB=BC ,∠A=20°.D 是AB 边上的点,且AD=BC ,?连结CD ,则∠BDC=________. 例2 如图1-5,D 是等边三角形ABC 的AB 边延长线上一点,BD?的垂直平分线HE?交AC 延长线于点E ,那么CE 与AD 相等吗?试说明理由. 分析 要说明似乎没有任何关系的两条线段相等,往往需要做一些工作,如添加辅助线,构造全等三角形等,从而达到解决问题的目的.

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

八年级下册第一章《直角三角形》培优习题

八年级下册第一章《直角三角形》培优习题 一、知识要点填空: 1、直角三角形的性质: (1)直角三角形的两个锐角_________ (2)直角三角形斜边上的中线等于斜边的_________; (3)直角三角形30°角所对的直角边是______的一半; (4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°. 2、直角三角形的判定方法: (1)有一个角是直角的三角形是直角三角形; (2)有两个角______的三角形是直角三角形; (3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、等腰直角三角形是特殊的直角三角形,它的两个底角都是_____,且两条直角边相等。等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。 二、练习题 1、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C, 则则∠1+∠2等于__________. 2、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示 等腰直角三角形,则下列四个图中,能表示它们之间关系的是() A. B. C. D. 3、如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E, EF∥AC,下列结论一定成立的是() A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE 4、如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点, 则AP的长不可能的是() A.3.5 B.4.2 C.5.8 D.7 5、如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线 于F, 若∠F=30°,DE=1,则EF的长是() A.3 B.2 C.3 D.1

全等三角形专题培优[带答案]

全等三角形专题培优 考试总分: 110 分考试时间: 120 分钟 卷I(选择题) 一、选择题(共 10 小题,每小题 2 分,共 20 分) 1.如图为个边长相等的正方形的组合图形,则 A. B. C. D. 2.下列定理中逆定理不存在的是() A.角平分线上的点到这个角的两边距离相等 B.在一个三角形中,如果两边相等,那么它们所对的角也相等 C.同位角相等,两直线平行 D.全等三角形的对应角相等 3.已知:如图,,,,则不正确的结论是() A.与互为余角 B. C. D. 4.如图,是的中位线,延长至使,连接,则的值为() A. B. C. D. 5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B. C. D. 6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有() A.个 B.个 C.个 D.个 7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可 供选择的地址有() A.一处 B.二处 C.三处 D.四处 8.如图,是的角平分线,则等于() A. B. C. D. 9.已知是的中线,且比的周长大,则与的差为() A. B. C. D. 10.若一个三角形的两条边与高重合,那么它的三个内角中() A.都是锐角 B.有一个是直角 C.有一个是钝角 D.不能确定 卷II(非选择题) 二、填空题(共 10 小题,每小题 2 分,共 20 分) 11.问题情境:在中,,,点为边上一点(不与点,重合) ,交直线于点,连接,将线段绕点顺时针方向旋转得

培优专题等腰三角形含答案

9、等腰三角形【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC 延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证 1∠ABC,而由CE=CD,BD=ED。因为△ABC是等边三角形,∠DBE= 2 1∠ACB,所以∠1=∠E,从而问题得证。 又可证∠E= 2 证明:因为三角形ABC是等边三角形,D是AC的中点

8年级数学(上)培优辅导之四(直角三角形)

江山二中八年级数学(上)培优辅导之四(直角三角形) 班级____________姓名____________ 勾股定理(及逆定理): ∠C=90o (c 为斜边)?a 2+b 2=c 2 直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余(角的关系)、勾股定理(边的关系),30°角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用.勾股定理是现阶段线段计算、证明线段平方关系的主要方法,运用勾股定理的逆定理,通过计算也是证明两直线垂直位置关系的一种有效手段.等 腰三角形三边之比为1:1:2;30o 的直角三角形三边比为1:3:2 30 ? 例题求解 【例1】如图,以等腰直角三角形ABC 的斜边AB 为边向内作等边△ABD ,连结DC ,以DC 为边作等边△DCE ,B 、E 在CD 的同侧,若AB=2,则BE=___________. B C D A E 【例2】 2002年8月在北京召开的国际数学家大会会标是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a+b)2 的值为________________. 【例3】 如图,P 为△ABC 边BC 上的一点,且PC =2PB , 已知∠ABC =45°,∠APC =60°,求∠ACB 的度数. C A 【例4】在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB=c ,CD=h . 求证:(1) 2 2 2 111h b a = + ; (2) h c b a +<+ ; (3) 以b a +、h 、h c +为边的 三角 形是直角三角形. B C D A 【例5】 一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形 是否存在若存在,确定它三边的长,若不存在,说明理由. 学历训练 1.如图,AD 是△ABC 的中线,∠ADC=45°,把△ACD 沿AD 对折,点C 落在点C ′的位 置,则BC ′与BC 之间的数量关系是______________. B C D A C ' B C D A P (第1题) (第2题) 2.如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACD 重

人教版八年级数学上册等腰三角形培优专题练习.doc

等腰三角形培优专题 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 练习 1.如图,已知△ A.7.5°ABC中, AB B.10° =AC ,AD = C.12.5 ° AE ,∠ BAE D.18° = 30 °,则 ∠ DEC 等于(). 2.如图,AA′、 BB′分别是△ABC的外角∠C 在一直线上,则∠ACB的度数是多少?EAB 和∠CBD 的平分线,且AA′= AB = B′B,A′、 B 、 3.如图,则∠ BDC 等腰三角形 = ________ ABC . 中,AB =AC ,∠ A =20 °. D 是AB 边上的点,且AD = BC ,连 结 CD , 例 2 如图, D 是等边三角形ABC 的 AB 边延长线上一点, E 是等边三角形ABC 的 AC 边延长线上一点,且EB = ED .那么CE 与 AD 相等吗?试说明理由. E

C A B D

练习 线交1.已知如图,在△ CA 的延长线于点 ABC中,AB=CD,D是 F ,判断AD 与 AF 相等吗? AB 上一点,DE⊥BC , E 为垂足,ED? 的延长 2.如图,△ABC = 15°,则 BD 与 A . BD>BA 是等腰直角三角形,∠ BA 的大小关系是( B . BD

直角三角形的性质培优提高讲解与练习

直角三角形的性质 【知识点1】 直角三角形的性质 (1)、直角三角形的两个锐角互余:可表示如下:∠C=90°?∠A+∠B=90°AB AD AC ?=2 (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。 (3)、直角三角形斜边上的中线等于斜边的一半 (4)、勾股定理:直角三角形两直角边A ,B 的平方和等于斜边C 的平方,即2 22c b a =+ (5)、常用关系式: 等积法可得:AB ?CD=AC ?BC 【知识点2】直角三角形的判定 1、有一个角是直角的三角形是直角三角形。 2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、勾股定理的逆定理:如果三角形的三边长A ,B ,C 有关系222c b a =+,那么这个三角形是直角三角形。 【知识点3】射影定理:(直角三角形中,直角边的平方等于其射影与斜边的乘积,……) 例1.(2010?黄岩区模拟)一副三角板如图摆放,点F 是45°角三角板ABC 的斜边的中点,AC=4.当30°角三角板DEF 的直角顶点绕着点F 旋转时,直角边DF ,EF 分别与AC ,BC 相交于点M ,N .在旋转过程中有以下结论:①MF=NF:②四边形CMFN 有可能为正方形;③MN 长度的最小值为2;④四边形CMFN 的面积保持不变;⑤△CMN 面积的最大值为2.其中正确的个数是( ) 例2.在等边三角形ABC 中,点D 、E 分别在AB 、AC 边上,AD=CE ,CD 与BE 交与F,DG ⊥BE 。 求证:(1)BE=CD;(2)DF=2GF G E F D C B A

例3.已知:四边形ABCD 中,∠ABC= ∠ADC=90度,E 、F 分别是AC 、BD 的中点。 求证:EF ⊥ BD 例4.如图,在矩形ABCD 中, ,AB=1.若AN 平分∠DAB,DM⊥AN 于点M ,CN⊥AN 于点N ,则 DM+CN 的值为( ) A. 1 B. C. D. 【练一练】 一、填空题 1.等腰直角三角形的斜边长为3,则它的面积为 . 2.已知在△ABC 中,∠ACB=90°,CD 是高,∠A=30°,AB=4cm,则BC=_______cm,∠BCD=_______,BD=_______cm ,AD=________cm ; 3.已知三角形三个内角的度数比为1:2:3,且最短边是3厘米,则最长边上的中线等于____________; 4.等边三角形的高为2,则它的面积是 。 5.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线 AD 折迭,使它落在斜边AB 上,且与AE 重合,则CD 等于 。 二、选择题

相似三角形培优专题

相似三角形培优专题1. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D. 求证:(1)△ACD∽△ABC; (2)AC2=AD?AB; (3)CD2=AD?DB. A 证明:(1)∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°=∠ACB, ∵∠A=∠A, ∴△ACD∽△ABC. (2)∵△ACD∽△ABC, ∴AC AD AB AC =, ∴AC2=AD?AB; (3)∵CD⊥AB, ∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°, ∵∠ACB=90° ∴∠A+∠B=90° ∴∠ACD=∠B ∴△ACD∽△BCD, ∴CD AD BD CD =, ∴CD2=AD?DB.

2.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证: (1)△ACP∽△PDB, (2)CD2=AC?BD. 证明:(1)∵△PCD是等边三角形, ∴∠PCD=∠PDC=∠CPD=60°, ∴∠ACP=∠PDB=120°, ∵∠APB=120°, ∴∠APC+∠BPD=60°, ∵∠CAP+∠APC=60° ∴∠BPD=∠CAP, ∴△ACP∽△PDB; (2)由(1)得△ACP∽△PDB, ∴, ∵△PCD是等边三角形, ∴PC=PD=CD, ∴, ∴CD2=AC?BD.

3. 如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC 的边BC=15,高AH=10, (1)求证:△ADG∽△ABC; (2)求这个正方形的边长和面积. 解:(1)∵四边形形DEFG是正方形, ∴DG∥BC ∴△ADG∽△ABC; (2) 如图,高AH交DG于M,设正方形DEFG的边长为x,则DE=MH=x, ∴AM=AH﹣MH=10﹣x, ∵ADG∽△ABC, ∴DG AM BC AH =, ∴ 10 1510 x x - =, ∴x=6, ∴x2=36. 答:正方形DEFG的边长和面积分别为6,36.

培优专题讲解_等腰三角形(含解答)-

等腰三角形专题练习题 等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径. 例1如图1-1,△ABC中,AB=BC,M、N为BC边上两点,且∠BAM=∠CAN,MN=AN,求∠MAC的度数. 练习1 1.如图1-2,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于().A.7.5° B.10° C.12.5° D.18° 1-2 2.如图1-3,AA′、BB′分别是△ABC的外角∠EAB和∠CBD的平分线,且AA′=AB=B′B,A′、B、C在一直线上,则∠ACB的度数是多少? 1-3

3.如图1-4,等腰三角形ABC中,AB=BC,∠A=20°.D是AB边上的点,且AD=BC,?连结CD,则∠BDC=________. 1-4 例2 如图1-5,D是等边三角形ABC的AB边延长线上一点,BD?的垂直平分线HE?交AC 延长线于点E,那么CE与AD相等吗?试说明理由. 练习2 1.已知如图1-6,在△ABC中,AB=CD,D是AB上一点,DE⊥BC,E为垂足,ED?的延长线交CA的延长线于点F,判断AD与AF相等吗? 1-6 1-7 1-8 2.如图1-7,△ABC是等腰直角三角形,∠BAC=90°,点D是△ABC内一点,且∠DAC=∠DCA=15°,则BD与BA的大小关系是() A.BD>BA B.BD

初二数学培优之直角三角形

初二数学培优之直角三角形 阅读与思考 直角三角形是一类特殊三角形,有以下丰富的性质: 角的关系:两锐角互余; 边的关系:斜边的平方等于两直角边的平方和; 边角关系:30o 所对的直角边等于斜边的一半. 这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面. 在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法. 熟悉以下基本图形基本结论: 例题与求解 【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________. (2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________. D C (太原市竞赛试题) 解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手. 【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°

(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础. 【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC =60°,求∠ACB的度数. B C (“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC =60°,构造出含30°的直角三角形是解本例的关键. 【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD. B A C (上海市竞赛试题)解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明. 【例5】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:222 += BD AB BC B (北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中. 【例6】斯特瓦尔特定理:

解直角三角形(培优)

解直角三角形 1.(2015·湖南省衡阳市,第12题3分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔?? 顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( ).?? ? A. B.51 C.D.101 2.(2015?浙江滨州,第12题3分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为( )?? A.逐渐变小? B.逐渐变大 C.时大时小? D.保持不变 3.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为( )? ? (3题) (4题) A.(11﹣2)米B.(11﹣2)米 C.(11﹣2)米?D.(11﹣4)米

4.(2015?山东日照 ,第10题4分)如图,在直角?BAD 中,延长斜边BD 到点C,使DC =BD ,连接A C,若tanB =,则t an?CA D的值( )??? A.? B.? C .??D . 5.湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB 底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD 的高度为1米,则桥塔AB 的高度约为( ) ?? (6题) A.34米?B.?38米?C . 45米?D .?50米 6.如图,斜面AC的坡度(CD 与AD 的比)为1:2,A C=米,坡顶有一旗杆BC ,旗杆 顶端B 点与A 点有一条彩带相连,若AB =10米,则旗杆BC 的高度为( ) ?? A .5米 B.6米 C . 8米 D . 米? 二.填空题? 1. 如图,菱形ABCD 的边长为15,si n?BAC =,则对角线AC 的长为 . ? (1题) (2题) (3题) (5题)

八年级数学下等腰三角形和等边三角形培优练习题

八年级数学下等腰三角形和等边三角形培优练习题 一、填空选择题: 1.如下图1,等边△的边长为3,P 为上一点,且=1,D 为上一点,若∠=60°,则的长为( ) A . 3 2 B .23 C . 12 D . 34 2.如上图2,△中,D 、E 分别是、的中点,平分∠,交于点F ,若=6, 则的长是( )(A )2 (B )3 (C ) 2 5 (D )4 3.如上图3,点A 的坐标是(2,2),若点P 在x 轴上,且△是等腰三角形,则点P 的坐标 不可能... 是( )A .(4,0) B .(1.0) C .(-22,0) D .(2,0) 4.如上图1,==,若∠A =40°,则∠的度数是( ) A .20o B .30o C .35o D .40o 5.如上图2,△中,==6,=8,平分么交于点E ,点D 为的中点,连结,则△的周长是( ) A .7+5 B .10 C .4+25 D .12 6.如上图3,在△中,,∠36°,、分别是△、△的角平分线, 则图中的等腰三角形有 ( ) (A)5个 (B)4个 (C)3个 (D)2个 7.在等腰ABC △中,AB AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7 B .11 C .7或11 D .7或10 8.等腰三角形一腰上的高与另一腰的夹角为30o,腰长为4 ,则其腰上的高为 . 9.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 10.在△中,=,的垂直平分线与所在的直线相交所得到锐角为50°, 则∠B 等于_ 度. A D C P B 60° E D C B A (第6题) B A D C 1 2 3 4 -1 1 2 x y A

三角形培优训练100题集锦(学生用)

三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图ABC ?中,5=AB ,3=AC ,求中线AD 的取值范围。 分析:本题的关键是如何把AB ,AC ,AD 三条线段转化到同一个三角形当中。 解:延长AD 到E ,使DA DE =,连接BE 又∵CD BD =,CDA BDE ∠=∠ ∴()SAS CDA BDE ???,3==AC BE ∵BE AB AE BE AB +- (三角形三边关系定理) 即822 AD ∴41 AD 2、如图,ABC ?中,E 、F 分别在AB 、AC 上,DF DE ⊥,D 是中点,试比较CF BE +与 EF 的大小。 证明:延长FD 到点G ,使DF DG =,连接BG 、EG ∵CD BD =,DG FD =,CDF BDG ∠=∠ ∴CDF BDG ??? E C A B D A

培优专题2 直角三角形(学生版)

培优专题2 直角三角形 一、 知识点回顾   二、典型例题分析 例1(2013?沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE; 的长. (2)若CD=,求AD

例2、(2013?抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是 ; (2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论; (3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP 三者之间的数量关系.

n t h r e g 三、中考题练  一.选择题(共9小题)1.(2013?郴州)如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B ′处,则∠ADB ′等于( ) A .25° B .30° C .35° D .40°2.(2007?芜湖)如图,在△ABC 中AD ⊥BC ,C E ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是( )  A . 1B .2 C .3 D . 43.(2011?衡阳)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .   4.(2010?滨州)如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点,若AE=2,EM+CM 的最小值为 .

培优专题等腰三角形(含答案)

9、等腰三角形 【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问

题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。求证:M 是BE 的中点。 A D 1 B M C E 分析:欲证M 是BE 的中点,已知DM ⊥BC ,所以想到连结BD ,证BD =ED 。因为△ABC 是等边三角形,∠DBE =21∠ABC ,而由CE =CD ,又可证∠E =2 1 ∠ACB ,所以∠1=∠E ,从而问题得证。 证明:因为三角形ABC 是等边三角形,D 是AC 的中点 所以∠1= 2 1 ∠ABC 又因为CE =CD ,所以∠CDE =∠E 所以∠ACB =2∠E 即∠1=∠E 所以BD =BE ,又DM ⊥BC ,垂足为M 所以M 是BE 的中点 (等腰三角形三线合一定理) 例2. 如图,已知:ABC ?中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。 A B C D

全等三角形、等腰三角形与直角三角形综合培优(5)

全等三角形、等腰三角形与直角三角形综合培优(5) 1.如图,四边形ABCD中,AC、BD为对角线,△ABC为等边三角形,∠ADC=30°,AD=2,BD=3,则CD的长为. 2.如图的方格纸上画有AB、CD两条线段,按下列要求作图: (1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形; (2)请你在图(2)中添上一条线段,使图中的3条线段组成轴对称图形,请画出所有情形. 3.如图,△ABC是等边三角形,D为AC边上的一点,且∠1=∠2,BD=CE. 求证:△ADE是等边三角形. 4.如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点,N为AC中点.求证:MN⊥AC.

5.如图,设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC 上.从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1. (1)小棒能无限摆下去吗?答:.(填“能”或“不能”) (2)若已经摆放了3根小棒,则θ1 =______,θ2 =_____,θ3=_____;(用含θ的式子表示) (3)若只能摆放4根小棒,求θ的范围. 6.如图,点O是等边△ABC内一点,∠AOB=105°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60° 得△ADC,连接OD. (1)试判断△COD的形状,并说明理由. (2)△AOD能否成为等边三角形?如能,请求出α的值;如不能,请说明理由. 7.如图,D是等边△ABC内一点,DB=DA,BP=AB,∠DBP=∠DBC.求证:∠P=30°. 8 已知:如图,△ABD和△BEC均为等边三角形,M、N分别为AE和DC?的中点,那么△BMN是等边三角形吗?说明理由.

八年级数学培优专题(一) 直角三角形

数学培优专题(一) 直角三角形 知识要点: 1、直角三角形的性质: (1)直角三角形的两个锐角_________ (2)直角三角形斜边上的中线等于斜边的_________; (3)直角三角形30°角所对的直角边是______的一半; (4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°. 2、直角三角形的判定方法: (1)有一个角是直角的三角形是直角三角形; (2)有两个角______的三角形是直角三角形; (3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、勾股定理公式:_____ _ 勾股定理逆定理:_____ _ 直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余(角的关系)、勾股定理(边的关系)、30°角所对的直角边等于斜边的半(边角关系)、斜边上的中线等于斜边的一半(直角三角形中线性质),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用。 培优练习: 1、如图,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C ,则则∠1+∠2等于__________. 2、已知一直角三角形木板,三边长的平方和为1800,则斜边长为__________ 3、图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延一倍,得到图2所示的“数学风车”,则这个风车的外围周长是__________ 4、在三角形ABC 中,AB=5,AC=9,AD 是边BC 上的中线,则AD 的取值范围_______ 5、如图,等腰直角三角形ABC 直角边长为1,以它的斜边上的高AD 为腰作第一个等腰直角三角形ADE ,再以所作的第一个等腰直角三角形ADE 的斜边上的高AF 为腰作第二个等腰直角三角形AFG ;……以此类推,这样所作的第n 个等腰直角三角形的腰长为_______ 6、等腰△ABC 中,AD ⊥BC 于点D ,且AD=2 1BC ,则△ABC 底角的度数为____________ 7、如图,在△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP