搜档网
当前位置:搜档网 › 3平面光波导材料

3平面光波导材料

3平面光波导材料
3平面光波导材料

1.平面光波导材料

PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。

图1. PLC光波导常用材料

表1. PLC光波导常用材料特性

铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,波导结构为脊形。聚合物波导以硅片为称底,以不同掺杂浓度的Polymer 材料为芯层,波导结构为掩埋矩形。玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。

平面光波导(PLC, planar Lightwave circuit)技术

平面光波导(PLC, planar Lightwave circuit)技术 随着FTTH的蓬勃发展,PLC(Planar Lightwave Circuit,平面光路)已经成为光通信行业使用频率最高的词汇之一,而PLC的概念并不限于我们光通信人所熟知的光分路器和AWG,其材料、工艺和应用多种多样,本文略作介绍。 1.平面光波导材料 PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。 图1. PLC光波导常用材料 铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。 InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。 二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。 SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,波导结构为脊形。 聚合物波导以硅片为称底,以不同掺杂浓度的Polymer材料为芯层,波导结构为掩埋矩形。 玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。

表1. PLC光波导常用材料特性 2.平面光波导工艺 以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。 二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步: 1)采用火焰水解法(FHD)或者化学气相淀积工艺(CVD),在硅片上生长一层SiO2,其 中掺杂磷、硼离子,作为波导下包层,如图2(b)所示; 2)采用FHD或者CVD工艺,在下包层上再生长一层SiO2,作为波导芯层,其中掺杂锗离 子,获得需要的折射率差,如图2(c)所示; 3)通过退火硬化工艺,使前面生长的两层SiO2变得致密均匀,如图2(d)所示。 4)进行光刻,将需要的波导图形用光刻胶保护起来,如图2(e)所示; 5)采用反应离子刻蚀(RIE)工艺,将非波导区域刻蚀掉,如图2(f)所示; 6)去掉光刻胶,采用FHD或者CVD工艺,在波导芯层上再覆盖一层SiO2,其中掺杂磷、 硼离子,作为波导上包层,如图2(g)所示; 7)通过退火硬化工艺,使上包层SiO2变得致密均匀,如图2(h)所示。 图2. 二氧化硅光波导的制作工艺 玻璃光波导的制作工艺如图3所示,整个工艺分为五步: 1)在玻璃基片上溅射一层铝,作为离子交换时的掩模层,如图3(b)所示; 2)进行光刻,将需要的波导图形用光刻胶保护起来,如图3(c)所示;

平面集成光波导器件综述

平面集成光波导器件综述 1 引言】 光纤通信网络中使用了多种光器件和光电器件.这些器件中的光学部分通常为三种结构:微光学结构、纤维光学结构和集成光学结构。1969年https://www.sodocs.net/doc/685708128.html,ler首先提出集成光学器件的设想,即在一个细小的基片上实现光发射、光探测、光耦合、光分支、光波分复用、光滤波、光开关等一种和几种功能,达到器件的微型化和实现高功能密度。平面光波导技术和平面微制造技术的成功结合使这一设想变为现实。历经三十年的研究开发,目前已有一些平面集成光波导器件达到了商用化。 【2 制作器件的主要材料】 制备这些光器件和光电器件的主要材料有:InGaAsP/InP、SiO2、Si、LiNbO3和某些聚合物材料。表1 给出这几种材料的基本特性。 InGaAsP/InP是其中唯一的兼有有源和无源功能的材料,因而一直是单片集成光/光电器件研究开发的首选对象。以Si光波导为基础的混合集成收发信机已商品化。Si波导除了有很好的无源光学特性外,还具备载流子控制型的光电调制特点。聚合物材料波导光开关已产品化,聚合物材料波导无源器件也已取得重大进展。SiO2波导可用于制作性能优良的无源器件,由于制备器件所必须的理论设计、技术设备、工艺水平、材料来源等均已成熟或基本成熟,因而已形成以SiO2波导平面光波导线路(PLC)为基础的光集成器件规模生产。同时SiO2波导可以实现与有源器件的混合集成。SiO2 PLC的应用价值越来越受到关注,下面主要就SiO2 PLC器件和制造方法作一些基本介绍。 【3 二氧化硅波导基本工艺】 有几种代表性的二氧化硅波导制备技术,分别是:火焰水解(FHD)+反应离子刻蚀(RIE),化学气相沉积(CVD)+RIE,物理气相沉积(PVD)+RIE。其中FHD采用SiCl4、GeCl4为主要原料,通过氢氧焰提供的高温,与氧反应生成SiO2、GeO2微细粉末层,而后在1300℃左右的高温中退火形成光学薄膜,其中GeO2等作为掺杂物质控制导波的折射率。CVD采用硅烷、锗烷或SiCl4、GeCl4,通过射频源激活与氧在等离子体状态下反应形成光学薄膜。PVD以电子束蒸发或溅射方法沉积SiO2光学薄膜。RIE 对波导膜进行导波线路的刻制。薄膜必须具有高的光学质量,因为光波是平行于薄膜表面传播的,路径通常有几厘米。薄膜尤其要有很好的折射率均匀性,因为控制光传输方向的导波层折射率n+苙与覆盖层(n)的折射率的差(苙)是很小的,苙/n在一定范围是单模条件所要求的,如n=1.46, 苙=0.0037,由此可知, 折射率均匀性要高,否则波导的质量无法保证。 【4 二氧化硅光波导器件】 4.1 SiO2 PLC的基本单元 平面波导器件的线路可以设计得很复杂,但基本上是由以下的基本单元构成的(图1)。直条、分支、弯曲、交叉是最简单和常用的。间隙是指在波导路径上刻出一段10祄左右的空间,插入滤波片等微小元件,以提高器件的指标。耦合是相距几祄的两波导间通过模场的相互作用,使光传输路径或强度发生改变。相移单元是利用SiO2折射率的热敏特性n(T),通过局部加热电极使n改变从而改变光的有效光程也即改变相位,热光开关就是根据这一原理制作的,例如dn/dT=1×10-5时,10mm长的波导升温6.5℃,即产生180度相移(1.55祄)。应力单元是指在一波导的附近刻出沟槽或镀膜,使该波导局部所受应力发 生变化,从而调节器件的性能。

微波技术基础第二章课后答案 杨雪霞知识分享

2-1 波导为什么不能传输TEM 波? 答:一个波导系统若能传输TEM 波型,则在该系统中必须能够存在静电荷静电核或恒定电流,而在单导体所构成的空心金属波导馆内,不可能存在静电荷或恒定电流,因此也不可能传输TEM 波型。 2-2 什么叫波型?有哪几种波型? 答:波型是指每一种能够单独地在规则波导中存在的电磁场的一种分布状态。 根据场的横向分量与纵向分量之间的关系式划分波型,主要有三种: TEM 波(0z E =,0z H =),TE 波(0z E =,0z H ≠),TM 波(0z E ≠,0z H =) 2-3 何谓TEM 波,TE 波和TM 波?其波阻抗和自由空间波阻抗有什么关系? 答:0z E =,0z H =的为TEM 波;0z E =,0z H ≠为TE 波;0z E ≠,0z H =为TM 波。 TE 波阻抗: x TE y E wu Z H ηβ = ==> TM 波阻抗: x TM y E Z H w βηε= == 其中η为TEM 波在无限答煤质中的波阻抗。 2-4 试将关系式y z x H H jw E y z ε??-=??,推导为1()z x y H E j H jw y βε?=+?。 解:由y H 的场分量关系式0j z y H H e β-=(0H 与z 无关)得: y y H j H z β?=-? 利用关系式y z x H H jw E y z ε??-=??可推出: 11()()y z z x y H H H E j H jw y z jw y βεε???= +=+??? 2-5 波导的传输特性是指哪些参量? 答:传输特性是指传输条件、传播常数、传播速度、波导波长、波形阻抗、传输功率以及损耗和衰减等。 2-6 何为波导的截止波长c λ?当工作波长λ大于或小于c λ时,波导内的电磁波的特性有何

光波导

西安邮电大学 专业课程设计报告书 院系名称:电子工程学院 学生姓名:刘寒 学号05103073 专业名称:光信息科学与技术班级:光信息1003 实习时间:2013年4月22日至2013年5月3日

课程设计题目:直波导和弯曲波导的耦合 一.课程设计的任务和要求 1. 学习使用OptiBPM软件 2. 运用BPM仿真直波导和弯曲波导的耦合 二.设计步骤 1.阅读OptiBPM提供的操作指南,了解和学习光波导的参数设置,以及各种波 导的画法。 2.先尝试画一条直波导,观察光在光波导中的能量分布,模拟出古斯汉欣位移 效应,并做出分析,选取不同的折射率观察对光能量有何影响。分析讨论古斯汉欣位移距离的量级。 3.做直波导与弯曲波导的耦合,改变波导的折射率、波导间距离、波导宽度等 参数,观察光波的传播规律。 三.仿真结果分析 1.直波导通入光后,古斯-汉欣位移效应,光波导宽度40um,纤芯折射率:3.3, 包层折射率:3.27.仿真图(图1-1)如下: 图1-1 光在波导中的光强度在波导中,从中心处向两边缘逐渐减小,可是光强的分布范围很明显大于40um的光波导宽度,多余出来的距离就是古斯-汉欣位移。所谓的古斯-汉欣位移,即就是实际的反射点与理想的反射点之间存在一定的距离D,可用公式表示为:

() 212 22 1 22 sin n n cn D -= θλ 式中,c 为常数,n1=3.3,n2=3.27,则C=0.03,λ为光波长。这个现象出现是基于实际光线都具有一定的空间谱宽,也即实际的光线由一光速构成,它们指向同一入射点,但入射角有一定的宽度?? 。接着在其他参数不改变的情况下,改变光波导的纤芯或者包层的折射率,然后再次观察古斯-汉欣位移的变化,如下 图1-2 虽然变化量很小,但依然可以看见,当包层折射率减小到3.15,古斯-汉欣位移减小了。之后再次改变纤芯的折射率到4.0,再次观察其位移的变化,与前两次 的进行比较,如图1-3 图1-3 这三次仿真结果对比,可以看出,无论纤芯的折射率还是包层的折射率的减小都会导致古斯-汉欣位移的减小。而且可以从图中看出古斯-汉欣位移的大小是um

平面光波导分路器

平面光波导平面光波导分路器分路器分路器(PLC SPLITTER)(PLC SPLITTER)(PLC SPLITTER) 产品参数产品参数 2005年6月

1平面 的分类 波导分路器((PLC SPLITTER PLC SPLITTER))的分类 平面光 光波导分路器 1.1SPLITER按端口数分为以下几种: 1X4、1X8、1X16、1X32 1.2端口连接器分类为: 无、SC、FC 1.3 封装形式分类为: 盒式、裸光纤 2定义 定义 2.1 端口及尺寸定义 a. 1X4 SPLITTER b. 1X4 SPLITTER Box Type with 0.9mm or 2mm Cable c. 1X8 SPLITTER

d. 1X8 SPLITTER Box Type with 0.9mm or 2mm Cable e. 1X16 SPLITTER f. 1X16 SPLITTER Box Type with 0.9mm or 2mm Cable g. 1X32 SPLITTER

h. 1X32 SPLITTER Box Type with 0.9mm or 2mm Cable 3技术 技术要求 要求 要求 3.1 产品光学参数要求 3.1.1 测试条件:1310nm和1550nm。 3.1.2 产品光学参数应满足表1、表2的要求 表1 参数允许偏差 (无连接器) Parameters 1 X 4 1 X 8 1 X 16 1 X 32 1 Operating Wavelength (nm) 1260-1650 2 Insertion Loss (dB) Max. 7.2 10.8 14 17.0 3 Uniformity (dB) Max. 0.6 0.8 1.2 1.7 4 Return Loss (dB) Min. 5 5 55 55 55 5 PDL (dB) Max. 0.25 0.3 0.3 0.3 6 Directivity (dB) Min. 55 55 55 55 7 Temperature Stability (-40 to 85 °C) (dB) Max. 0.6 0.6 0.8 1.0 8 Operating Temperature (℃) -40 ~ 85 9 Wavelength Dependence Loss (WDL) (dB) Max. 1.0 1.0 1.0 1.0

11微波技术复习(答案史密斯圆图版)

微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率围从300MHZ到3000GHZ,波长从0.1mm到1m; 微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现 象有哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。 3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解?

6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数,相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波 电流比值的负值,其表达式为0Z = 它仅由自身的分布参数决定而与负载及信号源无关; 2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β 分别称为衰减常数和相移常数,其一般的表达式为γ3)传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即; 4)传输线上电磁波的波长λ与自由空间波长0λ 的关系2πλβ= =。 7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并 分析三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z i n 定义为该点的电压和电流之比, 与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ z ββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110 ()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。 反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当10Z Z =时,1Γ=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配。 驻波比与反射系数的关系:111||1|| ρ+Γ=-Γ,驻波比的取值围是1ρ≤<∞;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。 8. 均匀传输线输入阻抗的特性,与哪些参数有关?

光波导的一些基本概念

平面光波导,英文缩写PLC是英文Planar Lightwave Circuit的缩写,翻译成中文为: 平面光波导(技术)。所谓平面光波导,也就是说光波导位于一个平面内。正如大家所熟悉的单层电路板,所有电路都位于基板的一个平面内一样。因此,PLC是一种技术,它不是泛指某类产品,更不是分路器!我们最常见的PLC分路器是用二氧化硅(SiO2)做的,其实PLC技术所涉及的材料非常广泛,如玻璃/二氧化硅(Quartz/Silica/SiO2)、铌酸锂(LiNbO3)、III-V族半导体化合物(如InP, GaAs等)、绝缘体上的硅 (Silicon-on-Insulator, SOI/SIMOX)、氮氧化硅(SiON)、高分子聚合物(Polymer)等。 基于平面光波导技术解决方案的器件包括:分路器(Splitter)、星形耦合器(Star coupler)、可调光衰减器(Variable Optical Attenuator, VOA)、光开关(Optical switch)、光梳(Interleaver)和阵列波导光栅(Array Waveguide Grating, AWG)等。根据不同应用场合的需求(如响应时间、环境温度等),这些器件可以选择不同的材料体系以及加工工艺制作而成。值得一提的是,这些器件都是光无源器件,并且是独立的。他们之间可以相互组合,或者和其他有源器件相互组合,能构成各种不同功能的高端器件,如:VMUX = VOA + AWG、WSS = Switch + AWG等(图2)。这种组合就是PLC技术的未来发展方向-光子集成(Photonic Integrated Circuit, PIC

1平面光波导技术

光波导是集成光学重要的基础性部件,它能将光波束缚在光波长量级尺寸的介质中,长距离无辐射的传输。平面波导型光器件,又称为光子集成器件。其技术核心是采用集成光学工艺根据功能要求制成各种平面光波导,有的还要在一定的位置上沉积电极,然后光波导再与光纤或光纤阵列耦合,是多类光器件的研究热点. 按材料可分为四种基本类型:铌酸锂镀钛光波导、硅基沉积二氧化硅光波导、InG aAsP/InP光波导和聚合物(Polymer)光波导。 LiNbO3晶体是一种比较成熟的材料,它有极好的压电、电光和波导性质。除了不能做光源和探测器外,适合制作光的各种控制、耦合和传输元件。铌酸锂镀钛光波导开发较早,其主要工艺过程是:首先在铌酸锂基体上用蒸发沉积或溅射沉积的方法镀上钛膜,然后进行光刻,形成所需要的光波导图形,再进行扩散,可以采用外扩散、内扩散、质子交换和离子注入等方法来实现。并沉积上二氧化硅保护层,制成平面光波导。该波导的损耗一般为0.2-0.5dB/cm。调制器和开关的驱动电压一般为10V左右;一般的调制器带宽为几个GHz,采用行波电极的LiNbO3光波导调制器,带宽已达50GHz以上。 硅基沉积二氧化硅光波导是20世纪90年代发展起来的新技术,主要有氮氧化硅和掺锗的硅材料,国外已比较成熟。其制造工艺有:火焰水解法(FHD)、化学气相淀积法(CVD,日本NEC公司开发)、等离子增强CVD法(美国Lucent公司开发)、反应离子蚀刻技术RIE多孔硅氧化法和熔胶-凝胶法(Sol-gel)。该波导的损耗很小,约为0.02dB/cm。 基于磷化铟(InP)的InGaAsP/InP光波导的研究也比较成熟,它可与InP基的有源与无源光器件及InP基微电子回路集成在同一基片上,但其与光纤的耦合损耗较大。

平面光波导分路器封装技术

光分路器 与同轴电缆传输系统一样,光网络系统也需要将光信号进行耦合、分支、分配,这就需要光分路器来实现,光分路器是光纤链路中最重要的无源器件之一,是具有多个输入端和多个输出端的光纤汇接器件,常用M×N来表示一个分路器有M个输入端和N个输出端。在光纤CATV系统中使用的光分路器一般都是1×2、1×3以及由它们组成的1×N光分路器。 1.光分路器的分光原理 光分路器按原理可以分为光纤型和平面波导型两种,光纤熔融拉锥型产品是将两根或多根光纤进行侧面熔接而成;光波导型是微光学元件型产品,采用光刻技术,在介质或半导体基板上形成光波导,实现分支分配功能。这两种型式的分光原理类似,它们通过改变光纤间的消逝场相互耦合(耦合度,耦合长度)以及改变光纤纤半径来实现不同大小分支量,反之也可以将多路光信号合为一路信号叫做合成器。熔锥型光纤耦合器因制作方法简单、价格便宜、容易与外部光纤连接成为一整体,而且可以耐孚机械振动和温度变化等优点,目前成为市场的主流制造技术。 熔融拉锥法就是将两根(或两根以上)除去涂覆层的光纤以一定的方法靠扰,在高温加热下熔融,同时向两侧拉伸,最终在加热区形成双锥体形式的特殊波导结构,通过控制光纤扭转的角度和拉伸的长度,可得到不同的分光比例。最后把拉锥区用固化胶固化在石英基片上插入不锈铜管内,这就是光分路器。这种生产工艺因固化胶的热膨胀系数与石英基片、不锈钢管的不一致,在环境温度变化时热胀冷缩的程度就不一致,此种情况容易导致光分路器损坏,尤其把光分路放在野外的情况更甚,这也是光分路容易损坏得最主要原因。对于更多路数的分路器生产可以用多个二分路器组成。 2.光分路器的常用技术指标 (1)插入损耗。 光分路器的插入损耗是指每一路输出我相对于输入光损失的dB数,其数学表达式为:Ai=-10lg Pouti/Pin ,其中Ai是指第i个输出口的插入损耗;Pouti是第i个输出端口的光功率;Pin是输入端的光功率值。 (2)附加损耗。 附加损耗定义为所有输出端口的光功率总和相对于输入光功率损失的DB数。值得一提的是,对于光纤耦合器,附加损耗是体现器件制造工艺质量的指标,反映的是器件制作过程的固有损耗,这个损耗越小越好,是制作质量优劣的考核指标。而插入损耗则仅表示各个输出端口的输出功率状况,不仅有固有损耗的因素,更考虑了分光比的影响。因此不同的光纤耦合器之间,插入损耗的差异并不能反映器件制作质量的优劣。对于1*N单模标准型光分路器附加损耗如下表所示: 分路数 2 3 4 5 6 7 8 9 10 11 12 16 附加损耗DB 0.2 0.3 0.4 0.45 0.5 0.55 0.6 0.7 0.8 0.9 1.0 1.2 (3)分光比。 分光比定义为光分路器各输出端口的输出功率比值,在系统应用中,分光比的确定是根据实际系统光节点所需的光功率的多少,确定合适的分光比(平均分配的除外),光分路器的分光比与传输光的波长有关,例如一个光分路在传输1.31 微米的光时两个输出端的分光比为50:50;在传输1.5μm的光时,则变为70:30(之所以出现这种情况,是因为光分路器都有一定的带宽,即分光比基本不变时所传输光信号的频带宽度)。所以在订做光分路器时一定要注明波长。 (4)隔离度。 隔离度是指光分路器的某一光路对其他光路中的光信号的隔离能力。在以上各指标中,

光波导理论与技术 大学课件

光波导理论与技术大学课件 06 年复习题 x E y x t Ay cos t1. 已知一平面电磁波的电场表达式为 c , 写出与之相联系的磁场表达式。(提示:利用麦克斯韦尔方程,注意平面波的特点) 2E 1 2E2. 证明平面电磁波公式 E A cost kx 是波动微分方程 0 的解。 x 2 v 2 t 23. 在直角坐标系任意方向上以角频率传播的平面波为 E A exp j t k r ,根据波动方程 2 2E ,导出用角频率、电容率、导磁率0 表示平面波的传 E 0 2 0 播常数 k。 t4. ?璧ド矫娌ㄓ?E A exp j t kz 表示,求用电容率、导磁率0 表 示的该平面波传播速度。(提示:考虑等相位面的传播速度)5. 用文字和公式说明电磁场的边界条件。6. 设时变电磁场为 A xt A x sin ωt ,写出该电磁场的复振 幅表示式,它是时间的函数还是空间的函数,7. 分别写出麦克斯韦尔方程组和波动方程的时域与频域的表达式。8. 说明平面波的特点和产生的条件。9. 写出平面波在下列情况下的传播常数或传播速度表示式: 1 沿任意方向的传播速度; 2 在折射率为 n 的介质中的传播常数; 3 波矢方向与直角坐标系 z 轴一致的传播常数。10. 平面波波动方程的解如下式,说明等式右边两项中正负号和参数 k 的物理意义。 E x z , t E e j t kz E e j t kz11. 说明制成波片材料的结构特点,如何使波片成为 1/4 波片和 1/2 波片12. 如果要将偏光轴偏离 x 轴度的线偏振光转变 成 x 偏振光,应将/2 波片的主轴设定为偏离 x 轴多大角度13. 什么是布儒斯特 起偏角,产生的条件是什么14. 光波在界面反射时,什么情况下会产生半波损失15. 如何利用全反射使线偏振光变成园偏振光,16. 什么是消逝波,产生消逝波的条件是什么,17. 什么是相位梯度,它与光波的传输方向以及介质折射率是什么关系,18. 在非均匀介质中如何表示折射率与光线传播方向的关系,19. 光纤的数值孔径表示 什么,如何确定它的大小20. 在下列情况下,计算光纤数值孔径和允许的最大入射 角(光纤端面外介质折射率n1.00): 1 阶跃折射率塑料光纤,其纤芯折射率 n1

基于AWG的平面光波导技术

基于AWG的平面光波导技术 采用平面光波導(Planar Lightwave Circuit,PLC)技术制作的阵列波导光栅(Arrayed Wave-guide Grating, AWG)是应用于光网络中的支撑技术波分复用(Wave Division Multiplexing, WDM)的重要器件。本文介绍了国内外AWG的应用现状和发展前景。 标签:平面光波导阵列波导光栅波分复用 1 平面光波导(Planar Light Circuit,PLC)技术的市场分析 伴随着光通信的发展,在金融危机影响下的亚太地区正成为全球光通信市场中最活跃的一部分,目前所面临的问题主要有:①运营商投资重心从SONET/SDH 转移到WDM的趋势将会持续高涨;②3G网络正式商用化带动了移动与固网宽带市场新旧技术的转换;③受市场驱动和政策面的影响,光纤到户(Fiber to the Home, FTTH)更加深入市场;④系统设备商们将持续兼并收购,以实现技术优势和资源整合。 基于PLC技术开发的光器件在光网络的组网中占据重要地位。波分复用(Waveguide Division Multiplexing, WDM)系统是当前最常见的光层组网技术,它通过复用/解复用器实现多路信号传输。早期的WDM系统并没有实现真正意义上的光层组网,难以满足业务网络IP化和分组化的要求,这种情况直到可重构光分插复用器(Reconfigurable Optical Add Drop Multiplexer, ROADM)的出现才得以改善。平面光波导ROADM是近年来广泛采用的ROADM子系统之一。PLC的ROADM上下路通道是彩色光,这意味着只有预定义的彩色波长可以在每个端口上下,也可以配合可调滤波器和可调激光器使用。由于PLC的集成特性,使其成为低成本的ROADM解决方案之一。目前的光波导,一般都是以玻璃、LiNbO3、GaAs 单晶等做衬底,再用扩散或外延技术制成的。PLC可以集成多种器件,例如:韩国的Byung Sup Rho等人用PLC研制的WDM双向模块[1],我国的浙江大学也研制出一种利用PLC的高集成化的PMD补偿器[2][3]。 2 AWG的结构及其工艺简介 阵列波导光栅(Arrayed Waveguide Grating, AWG)是第一个将PLC技术商品化的元器件。它是基于干涉原理形成的波分复用器件,通过集成的AWG可以实现波长复用和解复用,这种技术已被用于WDM系统中。目前平面波导型WDM器件有多种实现方案,其做法为在硅晶圆上沉积二氧化硅膜层,再利用光刻工艺(Photolithography)及反应式离子蚀刻法(RIE)制作出AWG。该类器件通路数大、紧凑、易于批量生产,但带内频响尚不够平坦。由于AWG采用与一般半导体相同的制作过程,多通道数与低通道数的制作成本相差不多,但更适合生产,而且整合度较高,因此应用在DWDM上具有相当的潜力。北美市场在2008年初呈现活跃状态,比如:美国加州的PLC设备供应商ANDevices在一月份签订协议,提供价值$13.5百万的产品给FTTH发展商Enablence Technologies Inc[4]。在我国,以PLC

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍 摘要 由光透明介质(如石英玻璃)构成的传输光频电磁波的导行结构。光波导的传输原理是在不同折射率的介质分界面上,电磁波的全反射现象使光波局限在波导及其周围有限区域内传播。 光波导的研究条件与当前科技的飞速发展是密不可分的,随着技术的发展,新的制备方法不断产生,从而形成了各种各样的制备方法,如离子注入法、外延生长法、化学气相沉淀法、溅射法、溶胶凝胶法等。重点介绍离子注入法。 光波导简介如图所示为光波导结构 图表1光波导结构 如图中共有三层平面相层叠的光学介质,其对应折射率n0,n1,n2。其中白色曲折线表示光的传播路径形式。可以看出,这是依靠全反射原理使光线限制在一层薄薄的介质中传播,这就是光波导的基本原理。为了形成全反射,图中要求n1>n0,n2。 一般来讲,被限制的方向微米量级的尺度。 图表2光波导模型 如图2所示,选择适当的角度θ(为了有更好的选择空间,一般可以通过调整三层介质的折射率来取得合适的取值),则可以将光线限制在波导区域传播。 光波导具有的特点光波导可以用于限制光线传播光路,由于本身其尺寸在微米量级,就使得其有很多较好的特点: (1)光密度大大增强 光波导的尺寸量级是微米量级,这样就使得光斑从平方毫米尺度到平方微米尺度光密度增大104—106倍。 (2)光的衍射被限制 从前面可以看出,图示的光波导已经将光波限制在平面区域内,后面会提到稍微变动一下技

术就可以做成条形光波导了,这样就把光波限制在一维条形区域传播,这就限制了光波的衍射,有一维限制(一个方向),二维限制(两个方向)区分(注:此处“一维”与“二维”的说法并不是专业术语,仅仅指光的传播方向的空间自由度,不与此研究专业领域的说法相混同)。 (3)微型元件集成化 微米量级的尺寸集成度高,相应的成本降低 (4)某些特性最优化 非线性倍频阈值降低,波导激光阈值降低 综上所述,光波导本身的尺寸优势使得其有很好的研究前景以及广泛的应用范围。 光波导的分类一般来讲,光波导可以分为以下几个大类别: 图表3平面波导(planar) 图表4光纤(fiber)

微波技术基础第二章课后答案---杨雪霞

微波技术基础第二章课后答案---杨雪霞

2-1 波导为什么不能传输TEM 波? 答:一个波导系统若能传输TEM 波型,则在该系统中必须能够存在静电荷静电核或恒定电流,而在单导体所构成的空心金属波导馆内,不可能存在静电荷或恒定电流,因此也不可能传输TEM 波型。 2-2 什么叫波型?有哪几种波型? 答:波型是指每一种能够单独地在规则波导中存在的电磁场的一种分布状态。 根据场的横向分量与纵向分量之间的关系式划分波型,主要有三种: TEM 波(0 z E =,0 z H =),TE 波(0z E =,0 z H ≠),TM 波 (0 z E ≠,0 z H =) 2-3 何谓TEM 波,TE 波和TM 波?其波阻抗和自由空间波阻抗有什么关系? 答:0 z E =,0 z H =的为TEM 波;0z E =,0 z H ≠为TE 波; z E ≠,0 z H =为TM 波。 TE 波阻抗: 2 1( )x TE y c E wu Z H η β λλ= ==>- TM 波阻抗: 21()x TM y c E Z H w βληελ= ==-< 其中η为TEM 波在无限答煤质中的波阻抗。

2-4 试将关系式 y z x H H jw E y z ε??-=??,推导为 1()z x y H E j H jw y βε?= +?。 解:由y H 的场分量关系式0j z y H H e β-=(0 H 与z 无关) 得: y y H j H z β?=-? 利用关系式 y z x H H jw E y z ε??-=??可推出: 11()()y z z x y H H H E j H jw y z jw y βεε???= +=+??? 2-5 波导的传输特性是指哪些参量? 答:传输特性是指传输条件、传播常数、传播速度、波导波长、波形阻抗、传输功率以及损耗和衰减等。 2-6 何为波导的截止波长c λ?当工作波长λ大于 或小于c λ时,波导内的电磁波的特性有何不同? 答: 当波沿Z 轴不能传播时呈截止状态,处于此状态时的波长叫截止波长,定义为2c c k π λ = ; 当工作波长大于截止波长时,波数c k k <,此时电 磁波不能在波导中传播; 当工作波长小于截止波长时,波数c k k >,此时电 磁波能在波导内传播;

《微波技术与天线》傅文斌-习题答案-第3章

第3章 规则波导和空腔谐振器 3.1什么是规则波导?它对实际的波导有哪些简化? 答 规则波导是对实际波导的简化。简化条件是:(1)波导壁为理想导体表面(∞=σ);从而可以利用理想导体边界条件;(2)波导被均匀填充(ε、μ为常量);从而可利用最简单的波动方程; (3)波导内无自由电荷(0=ρ)和传导电流(0=J );从而可利用最简单的齐次波动方程;(4)波导沿纵向无限长,且截面形状不变。从而可利用纵向场法。 3.2纵向场法的主要步骤是什么?以矩形波导为例说明它对问题的分析过程有哪些简化? 答 纵向场法的主要步骤是:(1)写出纵向场方程和边界条件(边值问题),(2)运用分离变量法求纵向场方程的通解,(3)利用边界条件求纵向场方程的特解,(4)导出横向场与纵向场的关系,从而写出波导的一般解,(5)讨论波导中场的特性。 运用纵向场法只需解1个标量波动方程,从而避免了解5个标量波动方程。 3.3什么是波导内的波型(模式)?它们是怎样分类和表示的?各符号代表什么物理意义? 答 运用纵向场法得到的解称为波导内的波型(模式)。分为横电模和横磁模两大类,表示为TEmn 模和TMmn 模,其中TE 表示横电模,即0=z E ,TM 表示横磁模,即0=z H 。m 表示场沿波导截面宽边分布的半波数;n 表示场沿波导截面窄边分布的半波数。 3.4矩形波导存在哪三种状态?其导行条件是什么? 答 矩形波导存在三种状态,见表3-1-1。导行条件是 222 ??? ??+??? ??

微波课后作业题(部分)

习题课 1.1 设一特性阻抗为50Ω的均匀传输线终端接负载R l =100Ω,求负载反射系数Γl ,在离负载0.2λ、0.25λ及0.5λ处的输入阻抗及反射系数分别为多少? 解:根据终端反射系数与终端阻抗的关系 10l 10100501 100503 Z Z Z Z --Γ= ==++ 根据传输线上任一点的反射系数与输入阻抗的关系 2()j z l z e b - G =G in 0 1() 1() z Z Z z +G =-G 得到离负载0.2λ、0.25λ及0.5λ处的输入阻抗及反射系数分别为 2πj2 0.2λj0.8π λ 1(0.2λ)3 l e e --G =G = Z (0.2λ)29.4323.79Ωin =? 2π j2 0.25λλ 1(0.25λ)3 l e -G =G =- Z (0.25)25Ωin l = 2πj2 0.5λλ 1 (0.5λ)3 l e -G =G = (反射系数具有λ/2周期性) Z (0.5)100Ωin l =(输入阻抗具有λ/2周期性) 1.2 求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数εr= 2.25的介质,求其特性阻抗及300MHz 时的波长。 解:空气同轴线的特性阻抗为 00.7560ln 60ln 65.9Ω0.25 b Z a === 填充相对介电常数εr=2.25的介质后,其特性阻抗为 00.75 43.9Ω0.25 b Z a = == f =300Mhz 时的波长

0.67m l 1.4 有一特性阻抗Z0=50Ω的无耗均匀传输线,导体间的媒质参数εr= 2.25,μr=1,终端接有R l=1Ω的负载。当f=100MHz时,其线长度为λ/4。试求: ①传输线实际长度; ②负载终端反射系数; ③输入端反射系数; ④输入端阻抗。 解:①传输线上的波长为 2m g l= 所以,传输线的实际长度为 =0.5m 4 g l l = ②根据终端反射系数与终端阻抗的关系 10 l 10 15049 15051 Z Z Z Z -- Γ===- ++ ③根据传输线上任一点的反射系数与终端反射系数的关系 2 20.25 2 4949 () 5151 j j z l z e e p l b l - - G=G=-= ④传输线上任一点的反射系数与输入阻抗的关系 in0 49 1 1()51 502500Ω 49 1()1 51 z Z Z z + +G === -G- 1.10 特性阻抗为Z0=150Ω的均匀无耗传输线, 终端接有负载Z l=250+j100Ω,用λ/4阻抗变换器实现阻抗匹配(如图所示),试求λ/4阻抗变换器的特性阻抗Z01及离终端距离。 解:先把阻感性负载,通过一段特性阻抗为Z0的传输线,变为纯阻性负载。由于终端反射系数为 250j100150 0.3430.54 250j100150 l l l Z Z Z Z -+- G===? +++ 离波腹点较近。第一个波腹点离负载的距离为 max 0.540.043 44 l l l l f l p p === 即在距离负载l=0.043λ可以得到一个纯电阻阻抗,电阻值为 max0 R Z r =

光波导原理及器件简介

包层n 2 芯区n 1 图1. 三层平面介质波导 图2. 矩形波导 图3. 圆光波导 图4. 椭圆光波导 光波导原理及器件简介 摘要:20世纪60年代激光器的出现,导致了半导体电子学、导波光学、非线性光学等一系列新学科的涌现。20世纪70年代,由于半导体激光器和光纤技术的重要突破,导致了以光导纤维通信、光信息处理、光纤传感、光信息存储与显示等为代表的光信息科学技术的蓬勃发展,而导波光学理论是光通信技术的基础,同时也是集成光学、光纤传感等学科的基础。本文简述了光波导的原理,并着重介绍光波导开关。 关键词:光波导,波导光学,平面光波导,光波导开光 1.引言 1.1光波导的概念 波导光学是一门研究光波导中光传输特性及其应用的学科。以光的电磁理论和介质光学特性的理论为基础,研究光波导的传光理论、调制技术及光波导器件的制作与应用技术。导波光学系统是由光源、光波导器件、耦合器、光调制器及光探测器等组成的光路系统。 光波导是将光波限制在特定介质内部或其表面附近进行传输的导光通道。简单的说就是约束光波传输的媒介,又称介质光波导。介质光波导的三要素是:“芯/包”结构,凸形折射率分布(n1>n2),低传输损耗。光波导常用材料有:LiNbO3、Si 基(SiO2、SOI )、Ⅲ-Ⅴ族半导体、聚合物等。 1.2光波导的分类 按几何结构分类,光波导可分为:平面(平板)介质波导,矩形(条形)介质波导,圆和非圆介质波导。

按波导折射率在空间的分布分类,光波导可分为:非线性光波导(n=n(x,y,z,E)),线性光波导(n=n(x,y,z))。线性光波导又可分为:纵向均匀(正规)光波导 (n=n(x,y)),纵向均匀(正规)光波导(n=n(x,y))。 2.光波导的原理简介 一种为大家所熟知的介质光波导就是通常具有圆形截面的光导纤维,简称为光纤。然而,集成光学所注重的光波导往往是平面薄膜所构成的平板波导和条形波导,这里,我只讨论平面光波导。 最简单的平板波导由三层材料所构成,中间一层是折射率为 n1的波导薄膜,它沉积在折射率为 n2的基底上,薄膜上面是折射率为 n3的覆盖层,一般都为空气。薄膜的厚度一般在微米数量级,可与光的波长相比较。薄膜和基底的折射率之差一般在10-1和10-3之间。为了构成真正的光波导,要求n1必须大于 n2和 n3,即 n1>n2>=n3。这样,光能限制在薄膜之中传播。 假定导波光是相干单色光,并假定光波导由无损耗,各向同性,非磁性的无源介质构成。 光在平板波导中的传播可以看作是光线在薄膜—基底和薄膜—覆盖层分界面上发生全反射,在薄膜中沿 Z 字形路径传播。光在波导中以锯齿形沿Z 方向传播,光在x 方向受到约束,而在y 方向不受约束。 在平板波导中,n1>n2且 n1>n3,当入射光的入射角θ1超过临界角θ0时: 入射光发生全反射,此时,在反射点产生一定的位相跃变。我们从菲涅耳反射公式: 出发,推导出反射点的位相跃变φTM 、φTE 为:

SOI光波导器件研究进展及应用

SOI光波导器件前沿研究 光电信息学院 赵正松 2011059050025 摘要:SOI(Silicon-on-insulator, 绝缘衬底上的硅)是一种折射率差大、波导传输损耗小的新型材料, SOI 基光电子器件具有与微电子工艺兼容、能够实现OEIC 单片集成等优点,近年来随着SOI 晶片制备技术的成熟,SOI 基波导光波导器件的研究日益受到人们的重视. 介绍了弯曲波导、光耦合器、可调谐光衰减器、光调制器和光开关等常见的SOI 基光波导器件的一些研究进展。 引言:光纤通讯网络中, 波分复用(WDM)是提高传输速率和扩大通讯容量的理想途径: 通过在单根光纤中多个波长的复用,可以充分利用光纤巨大的带宽资源,实现不同数据格式信息的大容量并行传输,同时又可降低对器件的超高速要求。在WDM 网络中,网际间交叉互联(OXC),光信号上下载路(OADM),以及波长变换等关键技术的实现使得WDM 网络具有高度的组网灵活性、经济性和可靠性。 在WDM 光网络中, 网际OXC 和节点OADM 功能是最核心的技术, 光滤波器、光耦合器、光开关、可变光衰减器、波长变换器、复用与解复用器等是最关键的器件[1]. 在基于各种材料的光波导器件中, 硅基光波导器件格外引人注目。硅基光波导材料有SOI (绝缘体上的硅)、SiO2/Si 和SiGe/Si 等多种. 硅基光波导的优势在于: 硅片尺寸大、质量高、价格低; 硅基光波导材料具有较大的折射率差, 便于缩小器件尺寸和实现平面光波回路(PLC)单片集成; 电学性能好,易于控制, 具备光电混合集成的潜力; 机械性能好, 加工方便, 可以光刻腐蚀成各种三维光波导结构; 硅的热导性和热稳定性好, 可以直接用作集成芯片的热沉,器件封装结构简单. 最重要的是硅的加工工艺与传统微电子工艺兼容, 适合低成本制作硅基光电子集成(OEIC)芯片。 本文主要研究的SOI硅基光波导材料全名为Silicon On Insulator,是指硅晶体管结构在绝缘体之上的意思,原理就是在Silicon(硅)晶体管之间,加入绝缘体物质,可使两者之间的寄生电容比原来的少上一倍。优点是可以较易提升时脉,并减少电流漏电成为省电的IC。原本应通过交换器的电子,有些会钻入硅中造成浪费。

相关主题