搜档网
当前位置:搜档网 › 提高孔加工的精度的方法

提高孔加工的精度的方法

提高孔加工的精度的方法
提高孔加工的精度的方法

提高孔加工的精度的方法

对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。钻削加工时,操作者可以利用理论联系实际的方法分析出孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法

在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。?

一、钳工孔加工实习课题训练中容易出现的问题:?

1、钻孔时孔径超出尺寸要求,一般是孔径过大;?

2、孔的表面粗糙度超出规定的技术要求;?

3、孔的垂直度超出位置公差要求;?

4、孔距(包括边心距和孔距)超出尺寸公差的要求;?

二、孔加工中出现问题的主要原因分析:?

1、钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力;?

2、对钻削的切削速度选择不当;?

3、钻削时工件未与钻头保持垂直;?

4、未对孔距尺寸公差进行跟踪控制;?

三、提高孔加工精度的方法:?

在孔加工的课题训练中,对于前三个问题,需要加强练习。比如主切削刃的不对称问题,在刃磨时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。对于不同的孔径,要选择相应的切削速度。在钻孔过程中,自始至终都要避免钻头的径向受力。钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。这些都需要在实习的过程中让学生慢慢体会和认真掌握的。?

最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。传统的孔的位置精度的检查是靠划出“检查圆”和“检查框”的方法。“检查圆”它是在钻孔划线完毕后,用划规以样冲眼为中心,划出比需要加工孔的直径大的“检查圆”,作为钻孔时检查位置是否准确的参照基准。由于划规在旋转中其确定圆心的脚尖与样冲眼的接触中会产生滑动,使划规划的“检查圆”容易产生误差。“检查框”是利用高度游标卡尺在孔的十字中心线上划出等距的方格,是在钻孔的初期样冲眼灭失时,用来替代样冲眼检查孔位置是否正确的依据,“检查框”确定的找正基准可以保证钻孔的中心与样冲眼定位的中心重合,保证划线精度,也避免了划“检查圆”的误差。这两种保证孔位置精度的做法在教学中很难被学生掌握。在多年的钳工实习教学实践中,对于孔距的控制我采用的是“跟踪控制法”。所谓“跟踪控制”,就是从划线开始,到加工结束,每一道加工工序都要通过认真的检查来保证孔距的精度要求在加工者的控制之中。做到前道加工工序是后一道加工工序的精度控制前提,后一道加工序是前一道加工工序的精度控制保证。一环扣一环,从

而实现对孔距精度的控制。?

首先是划线,划线是孔加工的第一道工序,划线的质量是确保孔加工孔距精度的重要前提。俗话说“工欲善其事,必先利其器”。在孔加工确定孔中心位置的划线中,一般是采用高度游标卡尺,要划线前一是要检查高度尺的示值误差是否在规定的精度误差范围内,以保证所划线条的尺寸准确,检查高度游标卡尺的划线刃口是否锋利,以确保所划线条清晰均匀;二是要检查划线平板的精度,确保划线平板工作表面清洁、无毛刺,以免影响划线精度。调整好尺寸后,可以在工件上轻轻划出一道可见的痕迹,然后用游标卡尺测量一下这个痕迹,看是否有误差。如果有误差,就要相应调整高度游标卡尺,直到痕迹符合精度要求。接下来就可以按照图纸要求划出清晰均匀的孔的中心线了。?

其次是打出准确的样冲眼,样冲眼的作用是为钻头定心。样冲必须磨得圆而尖并保持足够的硬度,根据多年的教学经验,样冲的顶角为40-50度最为适宜。在打样冲眼时,要使样冲与工件垂直,轻轻敲击出痕迹,然后观察所敲击的样冲眼是否位于孔的十字中心线的正中。检查符合要求后,再加大敲击力度,使将样冲眼加大,这时应该注意,样冲眼不宜过大,否则容易出现视觉上的误差,以能达到引孔时准确地定心的目的即可。?

第三是用2mm钻头在样冲眼上引出定位孔,这是验证上道工序是否符合要求的关键。具体做法是:用2mm钻头在打出的样冲眼上引出孔径,操作时要保证钻头与工件的垂直,转速调整到1200转左右,转速越高,定心越稳。控制好力度,认真观察,让钻头的顶角部分刚刚进入工件,能看到2mm钻头在工件上显出直径即起钻,如果钻的过深在有误差的时候就会加大下一步的修正难度。由于钻头的结构决定了横刃的存在,横刃的长度越长,其定位的稳定性就越差,如果直

接用标定尺寸的钻头直接钻出浅窝,就容易造成定位不准而发生偏移。使用2mm 的钻头,其横刃长度相对于样冲眼的直径来说几乎可以忽略不计,其定心作用非常稳定,基本可以做到与样冲眼在位置上的重合。而只引出2mm钻头直径的目的一是为了进一步测量,二是为标定钻头的加工定心。?

第四是用卡尺测量定位孔的边心距和孔心距。其方法是用卡尺的外测量爪来测量孔壁与基准面的距离,测量的长度加上孔的半径就是边心距。如果是测量孔距,则分别用游标卡尺的内外测量爪来测量出两个定位孔的最大边距和最小边距的精确尺寸,然后用最大边距和最小边距之和除以2,就可以得到所测两孔的真实孔心距了。一般情况下,只要严格按照这样的操作程序,一般都能够保证孔的加工精度。通过测量,如果定位孔的边心距或孔心距超出尺寸公差的要求范围,这个时候就要确定其偏差方向和偏差量,再用3mm的钻头进行修正。具体方法是,调整好钻床的转速,处于是校正的目的,所以钻床转速不易过快,以每分种600转左右为宜。要特别注意进给量,钻头要慢慢靠近工件2mm的浅孔,就要接触到浅孔时,根据偏差量,将工件向偏移的相反方向慢慢推移,有切削出现时停止进给并保持工件稳定,靠钻头顶部发生的径向位移所产生的弹性来切削工件消除偏移量,此时要注意观察,当锪出能看到3mm钻头的直径时,迅速起钻。这个步骤有一定难度,只要多练习,就能够熟练掌握。?

第五是在确定孔的位置符合要求后,再加深定位孔的深度。深度以稍大于标定尺寸钻头切削部分轴向长度即可。这样用标定的钻头钻削的时候,可以消除横刃对定心的影响。当钻孔的深度达到钻头切削部分轴向长度的时候,钻头的顶角就可以起到稳定的定心作用了。?

第六是根据标定钻头直径调整好转速,通过定位孔直接进行孔的加工,一

个符合尺寸和位置要求的孔和孔系就加工完成了。?

一、

在机械加工中,有时会面对一些位置精度及同轴度要求极高的零件。如图1、2、3,这类零件的加工精度受机床自身精度、装夹定位误差、被加工材料及加工刀具等多种因素的影响而难以满足设计要求。一般来讲,位置精度要求小于φ,同轴度要求小于φ的零件,均属于形位精度要求极高的零件。在加工时若不能及时排除上述各种因素的影响,加工质量则无法保证。

图1

图2

图3

二、高精度位置孔的加工方法

1、影响高精度位置孔加工的因素

材料的性能及内部应力的消除情况,基准面的加工精度,如圆度、粗糙度、圆柱度,数控机床的定位精度和重复定位精度,主轴的刚性及旋转圆度,刀具的锋利程度、工件材料刚性、机床几何精度、零件装夹方法、切削速度、润滑冷却方式等有关。

2、具备有大型三坐标机测量方法的厂家,采用如下方法,如图4。

图4

例如某个公司,采用如图将零件装夹在龙门五面加工中心上面,工件找正方法是采用将千分表把2个φ196孔打正,将千分表从4处φ196孔穿进去,以相同直径大小打表检测基准φ660h7的4处外圆弧面,X、Y方向分中

设定程序坐标原点。

首先将φ195孔加工到φ194h6,送三坐标机检测,数据如下:位置度为、、、;半径为、、、;弦长为、、、。

分析半径和弦长与理论值偏小,将加工程序多加大,第二次将φ196孔加工到φ195h6,送三坐标机检测,数据如下:位置度为、、、;半径为、、、;弦长为、、、。

分析半径和弦长与理论值还是偏小,将加工程序再多加大,第三次φ196孔精加工到位,送三坐标机检测,数据如下:位置度为、、、;半径为、、、;弦长为、、、。

通过三次加工,基本达到零件设计要求。这个例子说明加工中心不是万能的,要达到这么高的精度,需要反复试切,逐步逼近达到高精度要求。

3、对于没有大型三坐标机测量方法的,采用如图5方法。

图5

按照下面计算公式,计算半径和弦长:

22222121)2()2()2()2(d D d D r R -+-+=;24252324)2

()2()2()2(d D d D s L -+-+= 通过测量和分析计算半径和弦长与理论值的偏差,加工中心或者数显镗床显示的孔中心数显的坐标值,调整程序,将这些“游离”的位置点“拽”到正确的位置,保证位置度要求。如图6。

图6

没有大型三坐标测量机的厂家,采用数显镗床加工,半精加工后测量一次,用内分厘尺测量各个孔大小,外分厘尺测量半径、弦长数据。将行星孔中心与基准孔中心数显的坐标值、孔大小、半径、弦长所有数据进行分析,然后调借位置尺寸。最后精镗孔到位。将孔大小尺寸、半径、弦长数据、行星孔中心与基准孔中心数显的坐标值,由技术人员通过软件图形分析位置度,形成书面资料,不断地与客户三坐标机测量的数据进行验证,进行对比测量。形成有规律性的数据联系。

图7

4、对于图7零件,采用进口的高精度德国DMG加工中心,购买高性能HSK 63-A刀柄,高刚性刀杆,微调镗刀头,锋利的刀片,加大改进零件铸造外形,

设计适宜的夹具,将基准孔φ110H7与5个φ8H8位置孔、φ78H7一次装夹同时加工出来,保证了位置度要求φ,同轴度。这种方法优点是彻底排除了基准孔的找正误差,零件的加工精度主要受设备自身精度的影响。

三、高同轴度孔的加工方法

1、影响高同轴度孔加工的因素

基准面的加工精度,数控机床的定位精度和重复定位精度,主轴的刚性及旋转圆度,刀柄的动平衡、镗刀杆的刚性、长刀杆的挠度,刀具的锋利程度、工件的材料性质、机床加工条件、零件装夹的夹具精度、切削速度、润滑冷却方式、精加工前的夹紧力大小等。

图8

2、对于图8行星主轴的加工,加工时找正基准外圆φ258h6的上母线和侧母线后,用百分表或千分表打基准外圆φ258h6,设定坐标原点,先粗镗内孔φ167、φ117,半精镗到φ、φ,按照图8要求,用百分表和卧式加工中心数显示的数值,测量AB、CD、EF、GH四段距离是否相等,即等壁厚测量法,如果不相等,要重新调整坐标原点,然后精镗到φ168H7、φ118H7,保证同轴度φ、圆度、圆柱度。

图9

图10

3、对于图9箱体的加工,由于零件偏长,用长刀杆以φ52H7孔和φ42H7孔定位铰φ40H7孔,担心挠度大,不容易保证同轴度φ0.025A。设计制造一个心轴,见图10,台阶尺寸分别为φ38K6、φ52K6、φ42K6、φ40K6、φ、φ38K6。

采用高精度卧式加工中心加工,首先粗加工孔φ52,精加工孔φ42H7后,卧式加工中心X、Y轴不移动,采用手动换刀,精加工φ52H7,保证φ52H7对φ42H7的同轴度φ。

卧式加工中心旋转180°,采用机床回转中心坐标值,粗加工孔φ40H7为φ39,将心轴穿过零件,用百分表或千分表打正心轴外圆2-φ38K6的上

母线和侧母线后,用百分表或千分表打心轴外圆φ38K6中心,校对重新设定坐标原点,退出心轴,半精镗到φ,将心轴穿过零件,心轴φ部位均匀涂上红丹,试验φ能否穿过φ孔,根据手感觉,微调整坐标原点,孔精镗到φ40H7,保证φ40H7对φ42H7的同轴度φ。

四、结论

本文以若干实例,简要阐述了高精度位置孔和高同轴度孔的加工方法。我们不要简单地认为,只要设备具有足够的高精度,就能加工出满足设计要求的产品。由于影响加工高精度的因素多并且有许多不确定因素,不仅仅是靠高精度设备就能够保证的,零件最小公差的~是选择高精度设备的各项精度的依据,不容易具备这么高精度的设备,而且高精度设备的位移检测装置受环境温度的影响,机床各个运动副的摩损,机床的刚性,机床的热变形,主轴内部的间隙与磨损,主轴旋转圆度等,都影响到实际加工的精度。

通过上面的分析,在实际的生产过程中,应充分挖掘、利用设备、量具、量仪、刀具、辅具的特点和优点,达到最佳组合的目的。需要根据不同的条件,灵活运用各种技巧与方法,采用切试法,逐步逼近达到高精度要求。

(完整版)机械加工精度

第七章机械加工精度 本章主要介绍以下内容: 1.机械加工精度的基本概念 2.影响机械加工精度的因素 3.加工误差的统计分析 4.提高加工精度的途径 课时分配:1、4,各0.5学时,2、 3,各1.5学时 重点:影响机械加工精度的因素 难点:加工误差的统计分析 随着机器速度、负载的增高以及自动化生产的需要,对机器性能的要求也不断提高,因此保证机器零件具有更高的加工精度也越显得重要。我们在实际生产中经常遇到和需要解决的工艺问题,多数也是加工精度问题。 研究机械加工精度的目的是研究加工系统中各种误差的物理实质,掌握其变化的基本规律,分析工艺系统中各种误差与加工精度之间的关系,寻求提高加工精度的途径,以保征零件的机械加工质量,机械加工精度是本课程的核心内容之一。 本章讨论的内容有机械加工精度的基本概念、影响加工精度的因素、加工误差的综合分析及提高加工精度的途径四个方面。 7.1机械加工精度概述 一、加工精度与加工误差(见P194) 1、加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度。符合程度越高,加工精度越高。一般机械加工精度是在零件工作图上给定的,其包括:1)零件的尺寸精度:加工后零件的实际尺寸与零件理想尺寸相符的程度。 2)零件的形状精度:加工后零件的实际形状与零件理想形状相符的程度。 3)零件的位置精度:加工后零件的实际位置与零件理想位置相符的程度。 2、获得加工精度的方法: 1)试切法:即试切--测量--再试切--直至测量结果达到图纸给定要求的方法。 2)定尺寸刀具法:用刀具的相应尺寸来保证加工表面的尺寸。 3)调整法:按零件规定的尺寸预先调整好刀具与工件的相对位置来保证加工表面尺寸的方法。 3、加工误差:实际加工不可能做得与理想零件完全一致,总会有大小不同的偏差,零件加工后的实际几何参数对理想几何参数的偏离程度,称为加工误差。加工误差的大小表示了加工精度的高低。生产实际中用控制加工误差的方法来保证加工精度。 4、误差的敏感方向:加工误差对加工精度影响最大的方向,为误差的敏感方向。例如:车削外圆柱面,加工误差敏感方向为外圆的直径方向。(见P195图7.2)

高精度细长孔的数控加工研究

高精度细长孔的数控加工研究摘要:目前世界上利用外排屑(如枪钻)深孔钻削技术,可钻削的孔径小到f2mm。而内排屑深孔钻削的孔径很少有小于f16mm的,且多数仍采用传统的BTA钻削系统。由于枪钻结构为不对称形状,质心偏离中轴,这给制造、重磨都带来一定的困难,也使造价增高。另外,其结构刚度和扭转强度低(同直径的圆形钻杆扭转刚度是枪钻的2.3倍),使其使用的钻削速度降低,进给量小。采用单管内排屑喷吸钻(SED)钻削系统,钻削小深孔直径可小到f3.7mm。我工艺所采用SED技术,进行了孔径(mm)f16、f12、f10、f8、f7.62、f5.7、f3.7的小深孔钻削加工,钻削过程平稳,排屑流畅,孔的尺寸形状精度和孔壁表面粗糙度均能满意,在上述孔径范围内,完全可以替代枪钻对小深孔进行钻削加工。由于其刚度好,可加大进给量和钻削速度,使生产效率、钻孔质量和经济效益均有所提高,显示了一定的技术优势。 关键词:高精度细长孔数控加工 一、孔的定义与分类 根据国家标准GB1800—1979的规定:孔主要指圆柱形的内表面。由此可知,广义的孔泛指包容面。孔通常可按如下方法分类: (1)按形状来分。有圆柱孔、圆锥孔、鼓形孔、多边形孔、花键孔和其它异形孔以及特形孔(如弯曲孔)等。其中,以圆柱孔使用最为广泛。 (2)按形态来分。有通孔及盲孔(不通孔);深孔(指孔的深度L与孔径D之比超过5的孔,L/D简称深径比或长径比;L/D=5~20属一般深孔,L/D﹥20~30属中等深孔,L/D ﹥30~100称为特殊深孔)及浅孔。 (3)按孔径的大小来分。有大孔(D﹥100mm)、普通孔(D=10~100mm)、小孔(D=1~10mm)和微孔(D<1mm的孔)。 (4)按加工机理来分。有机械加工、特种加工(见表1)、机电复合加工等。尽管特种加工方法较多,但目前由于设备比较昂贵和加工效率不高等原因,所以无论是现在还是可预见的未来,传统的机械加工仍将是孔加工的主要手段。 表1 孔加工的方法

(机械制造行业)第二章机械加工精度

第二章机械加工精度 第一节概述 一、加工精度的概念 高产、优质、低消耗,产品技术性能好、使用寿命长,这是机械制造企业的基本要求。而质量总是则是最根本的问题。 机械加工质量指标包括两方面的参数:一方面是宏观几何参数,指机械加工精度;另一方面是微观几何参数和表面物理-机械性能等方面的参数,指机械加工表面质量。 所谓机械加工精度,是指零件在加工后的几何参数(尺寸大小、几何形状、表面间的相互位置)的实际值与理论值相符合的程度。符合程度高,加工精度也高;反之则加工精度低。机械加工精度包括尺寸精度、形状精度、位置精度三项内容,三者有联系,也有区别。 由于机械加工中的种种原因,不可能把零件做得绝对精确,总会产生偏差。这种偏差即加工误差。实际生产中加工精度的高低用加工误差的大小表示。加工误差小,则加工精度高;反之则低。保证零件的加工精度就是设法将加工误差控制在允许的偏差范围内;提高零件的加工精度就是设法降低零件的加工误差。 随着对产品性能要求的不断提高和现代加工技术的发展,对零件的加工精度要求也在不断的提高。一般来说,零件的加工精度越高则加工成本越高,生产率则相对越低。因此,设计人员应根据零件的使用要求,合理地确定零件的加工精度,工艺人员则应根据设计要求、生产条件等采取适当的加工工艺方法,以保证零件的加工误差不超过零件图上规定的公差范围,并在保证加工精度的前提下,尽量提高生产率和降低成本。 二获得零件加工精度的方法 1.获得尺寸精度的方法 在机械加工中获得尺寸精度的方法有试切法、调整法、定尺寸刀具法、自动控制法和主动测量法等五种。 ⑴试切法通过试切─测量─调整─再试切,反复进行到被加工尺寸达到要求的精度为止的加工方法。试切法不需要复杂的装备,加工精度取决于工人的技术水平和量具的精度,常用于单件小批生产。 ⑵调整法按零件规定的尺寸预先调整机床、夹具、刀具和工件的相互位置,并在加工

超强超硬材料上细长孔的特种加工

振动磁极头用弹簧片与铁心连接,振动磁极头与铁心之间留有一定间隙。振动磁极头连同弹簧片,电磁铁组成一个“质量2弹簧的振动系统”,叫极化电磁振动机构。研究表明,这种形式的振动机构,由于没有电磁吸力带来的导轨摩擦力损耗,因而传动效率高。 但由于铁心与磁极头之间有间隙,就会有一定磁通(磁势)损失 。 图3 Ⅱ型电磁动力机构 图4 极化电磁振动机构 2 电磁力计算 211 电磁动力机构作用力的计算 在这种振动机构中,交变电流产生的磁通与直 流电流产生的极化磁通之间的相互作用,产生外力,其大小用式(1)计算: F Σ=βl nB I A sin ωt (1)式中:I A —交变电流幅值,A ;l —线圈上穿过磁 通的线圈长度,m ;n —线圈的匝数。 β—与尺寸大小有关的系数;B —穿过线圈的磁感应强度,T 。 由式(1)可知,如果由加工条件所确定的极化磁通一定,则交变电流I A sin ωt 就是调节振动运动的主要参数。 212 极化电磁振动机构作用力的计算 在极化电磁机构中,工作气隙内同时存在2个独立的磁通:一个是由直流电磁铁的电磁线圈提供的极化磁通Φj ;另一个是由交流电磁铁线圈提供的交流磁通Φm ,其大小和方向取决于交流线圈中电流的大小和方向。当交流线圈通电后产生的交流磁通Φm ,若在一侧气隙内和极化磁通Φj 的方向相反,则合成磁通为Φm -Φj ,则在另一侧气隙内的合成磁通为Φm +Φj 。作用于磁极头上的电磁力为两侧电磁力的合力可由式(2)计算: F m =(Φ2m +Φ2 j )/S μ0(2)式中:S —交流电磁铁轭铁面积,m 2;μ0—真空 磁导率,μ0=1125×10-6 H/m ;Φm —交流磁通,Wb ;Φj —极化磁通,Wb 。 由式(2)可见,当要求的电磁力一定时,增大极化磁通就可相应地减少交流磁通,也就可以相应地减少交流电磁铁线圈的磁势或功率。一般地极化磁 通是由加工要求确定的,为一定值,且这部分磁通是漏磁通或散磁通,数量较小,约占直流磁通(主磁通)的5%~15%。因此,交流电磁铁参数是控制机构振动的主要参数。 3 结语 电磁力振动型机构可以实现较高的振动频率,能为实现强力研磨提供可能。但为了提高磁力研磨机的综合性能,仍需寻找结构简单、能耗低、传动效率高的振动机构。上述的几种传动形式(当然还有其它传动形式)各有其优点和不足,仍需在生产实践中不断改进与完善,设计和研制出更高效率的振动机构。 超强超硬材料上细长孔的特种加工 中航雷达与电子设备研究院(215001) 赵东宏随着航空航天工业的迅猛发展,超强超硬材料 以其优越的性能得到越来越普遍地使用,加工难度也越来越大。其中,超强超硬材料上细长孔(孔径Φ1~710mm ,孔长150~500mm )的加工是经常碰到的一个难题,即使采用价格昂贵的专用孔加工刀具进行钻孔,其使用寿命也不理想。这是因为细长孔的加工处于半封闭状态下,切削条件恶劣,加工难度加大。 目前细长孔的机加工方式,主要采用枪钻和改良型专用钻头,但难以在超硬材料上进行加工(HRC60以上,包括硬质合金)。加工超强材料时,枪钻磨损很大,效率很低,易折断,加工成本高,更难以进行批量加工。改良型专用钻头因为很长,刚性极差,加工出的细长孔往往出现偏斜。且一旦钻头磨损,很容易出现强度极高的毛刺,若在盲孔内出现毛刺,去除将非常困难,会严重影响产品的使用。因此对于超硬材料产品上的超长孔(如孔径Φ2mm ,孔长300mm 以上),常在产品设计上采用分段钻孔后,中间用过渡环焊接来解决(某国外样品就是这样做的)。由于焊接应力会在随后的使用过程中释放出来,引起工件形状,特别是直线度的变化,这对产品使用品质的影响是致命的(如航空发动机内的温度传感器),使安全隐患增大,可靠性降低。 如何经济高效地加工超强超硬材料上的细长孔是一个非常现实的问题。在模具行业,大量采用电加工等方法在淬火钢等高硬度钢上加工细长孔,如模具行业的高速穿孔机,是为线切割打预孔用的,对孔的精度要求不高。试验结果表明,普通高速穿孔机尽管效率较高,但加工直径Φ6mm ,深100mm 的孔 ? 58?《新技术新工艺》?实用技术与工艺装备 2006年 第2期

高精度加工

第十二届车身研讨会论文 汽车覆盖件模具高精度加工 的数控编程技术 天津汽车模具有限公司 刘晓英赵文杰 2000年6月

汽车覆盖件模具高精度加工的数控编程技术 天津汽车模具有限公司刘晓英赵文杰 摘要:在模具型面的数控加工过程中,由于所产生的各项误差,影响了模具的质量和周期。本文 通过分析数控加工时所产生的误差,从数控加工工艺﹑数控编程刀具﹑优化走刀方向及设定加工 边界等方面探讨提高模具型面加工精度的方法。 引言: 随着我国汽车工业的迅速发展,汽车改型换代的周期日趋缩短,对汽车模具的制造精度和生产周期的要求越来越高。从某种意义上讲,汽车覆盖件模具的制造质量和周期,大大影响汽车改型换代的质量和周期,左右着汽车在市场上的竞争力。要想生产出高质量具有竞争力的汽车车身产品,必须首先制造出高质量的汽车模具,而高质量的汽车模具在很大程度上取决于模具的数控加工精度。因此如何应用CAM技术提高模具的加工精度受到模具同行们的广泛关注。 天津汽车模具有限公司于1987年开始应用CAM技术,先后完成了天津夏利轿车换型改造的行李箱内外板﹑前机盖内外板,天津华利汽车换型改造的前围板内外板,一汽捷达轿车翼子板,上海大众桑塔纳轿车,四川丰田旅行车,江西五十铃全顺汽车,北汽福田汽车等国内众多汽车厂家的各类大型模具的制造任务,不仅为企业创造了可观的经济效益,更主要的是我们在实现模具高精度加工的数控编程技术方面取得了许多宝贵的经验,为模具CAM技术的更好应用及更进一步的开发工作奠定了基础。本文将对汽车模具在数控加工时所产生的误差进行分析,并从数控加工工艺﹑数控编程刀具﹑优化走刀方向及设定加工边界等方面谈谈实现模具的高精度数控加工的一些方法,与大家交流探讨。 2.问题的提出 汽车覆盖件模具的设计制造周期主要取决模具的钳工研模及调整时间,发达国家如日本、美国及德国的模具加工中,数控加工及抛光所需的时间占整个模具研制时间的65%。在日本,模具的加工时间占30%,抛光时间占35%。美国和德国模具加工时间为50%,抛光时间为15%。从上述统计数字可以看出,模具的研制时间的缩短,制造质量的提高,主要取决于数控加工质量的提高和抛光时间的缩短。通常模具凸凹模加工完成后,其凸凹模型面的法向距离理论上应为汽车产品件的板料厚度,但是由于加工过程中产生的各种误差,通常达不到理论值,确切地说达到板料厚度的95%时既为合格。超过此范围的部分由钳工修配及抛光来去除。因此为缩短模具的钳工研制时间,降低制造成本,提高加工质量,必须提高模具的数控加工质量,进行高精度的数控加工。如何通过控制数控加工精度以缩短抛光时间,是各模具企业面临的实际问题。 3 数控加工所产生的误差分析 1 加工误差的定义

提高数控磨床加工精度的方法

提高数控磨床加工精度的方法 数控磨床动态优化设计是提高机床加工精度的关键,外在的调整只是辅助而已。 精确的原始数控磨床的有限元模型包括联合表面的动态模型,它是基于具体的动态测试和理论分析的比较结果而建立的。应用敏感性分析方法来优化部件的加强筋的布局和参数。应用模态频率分离技术使主要部件的频率相互分离,并优化主要部件的结构。 动态优化设计的结果表明新数控磨床的一阶固有频率比原来提高了17%,而磨床头架和工件之间的相对振动位移相应减少了10%。磨削振纹消除了,加工精度大大提高了。动态优化设计是提高机床加工精度的关键问题。 目前的机床制造企业在开发新的机床时倾向于采用经验,类比和静态设计等方法。简单的力学计算是优化部件的强度,刚度和振动稳定性的主要方法。几乎没有引进先进的动态设计技术和动态优化软件。 所以很难实现轻重量设计、获得高精度。由于振动稳定性和主轴系统的热变形等各种影响因素,高速机床更难提高加工精度。这篇文章用了计算机模拟和分析的方式研究机床设计的动态优化方法。 首先建立有限元模型,用动态测试结果修改理论有限元模型,以提高模型精度。 第二,用灵敏度分析方法优化部件加强筋的布局和参数。 第三,应用模态频率分离技术使主要部件的频率相互分离,并优化主要部件的结构。最后,达到整个数控磨床机床的动态优化目标。 富信成-哈特曼公司创立于2000年,专业从事磨床机械的研发与制造。由于引进日本和台湾精湛制造技术,生产效率高,使得本公司成为磨床机械界后起之秀。目前本公司生产的高精度无心磨床,CNC外圆磨床,高精度外圆磨床,数控外径研磨机,数控无心磨床,高精密平面磨床,高精密数控内圆磨床,高精密数控复合磨床等产品,品质已居同行最佳之林,致力打造中国磨床机械制造业第一品牌。哈特曼身为基础工业,兢兢业业为业界以最理想的价格提供最精良的机械加工设备,以其能提升整体业界品质,让中国的机械设备,模具零件,机械加工业得以超越发展。

高精度深长孔加工方法

学院: 机械工程学院: 专业班级: 学号: 名姓 1 / 16 高精度深长孔的精密加工 一、历史背景年代初世纪4030年代初和枪钻与内排屑深孔钻两种加工孔的刀具分别 出现于20 的欧洲兵工厂,这并非历史的偶然。其主要历史背景是:年)首次使战争扩大到世界 规模。帝国主义列强为瓜1918一次世界大战(1914?分殖民地而需要大量现代化的枪炮(特别 是枪械和小口径火炮的需求量极大)。而继续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不 能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。于是高精度深长孔的制造就 成为了一个摆在制造者面前的一个首要问题,并且一直延续到了现今。

第一次世界大战中的火炮 二、传统加工工艺及存在的问题,精度≥10在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)的典型深孔零件,过去我们采用的传统工艺路0.8要求高,内孔粗糙度一般为Ra0.4~)标准六刃铰刀→研磨(→双刃镗扩孔刀扩孔)(线一般是:钻孔加长标准麻花钻→()铰孔此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花钻钻孔时,切削刃越靠近中心,前脚就越大。若钻头刚性差,则震动更大,表面形状误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。2 / 16 传统深孔的加工流程 三、工艺路线与刀具的改进本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工单()→铰孔钻(BTA)→扩孔(BTA扩艺及刀具进行了改进,改进后的工艺路线是:钻孔研磨)→刃铰刀1、钻孔与扩孔刀具及工艺的改进单管内排屑深孔钻的由来枪钻的发明,使小深孔加工中单管内排屑深孔钻产生于枪钻之后。其历史背景是:自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。如能改为内排屑,则可以保持钻头和枪杆为中空圆柱体,使钻头快速拆装和提高刀具刚性问题同时

高精度深长孔加工方法

学院:机械工程学院专业班级: 学号: 姓名:

高精度深长孔的精密加工 一、历史背景 枪钻与内排屑深孔钻两种加工孔的刀具分别出现于20世纪30年代初和40年代初的欧洲兵工厂,这并非历史的偶然。其主要历史背景是: 一次世界大战(1914?1918年)首次使战争扩大到世界规模。帝国主义列强为瓜分殖民地而需要大量现代化的枪炮(特别是枪械和小口径火炮的需求量极大)。而继 续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。于是高精度深长孔的制造就成为了一个摆在制造者 面前的一个首要问题,并且一直延续到了现今。 第一次世界大战中的火炮 二、传统加工工艺及存在的问题 在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)≥10,精度 要求高,内孔粗糙度一般为Ra0.4~0.8的典型深孔零件,过去我们采用的传统工艺路线一般是:钻孔(加长标准麻花钻)→扩孔(双刃镗扩孔刀)→铰孔(标准六刃铰刀)→研磨 此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花 钻钻孔时,切削刃越靠近中心,前脚就越大。若钻头刚性差,则震动更大,表面形状 误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率 和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来 的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。

传统深孔的加工流程 三、工艺路线与刀具的改进 本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工艺及刀具进行了改进,改进后的工艺路线是:钻孔(BTA钻)→扩孔(BTA扩)→铰孔(单刃铰刀)→研磨 1、钻孔与扩孔刀具及工艺的改进 单管内排屑深孔钻的由来 单管内排屑深孔钻产生于枪钻之后。其历史背景是:枪钻的发明,使小深孔加工中自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。如能改为内排屑,则可以保持钻头和枪杆为中空圆柱体,使钻头快速拆装和提高刀具刚性问题同时得到解决。 20世纪内排屑深孔钻的发展,可概括出以下6项里程碑式的成果: ①单出屑口单管内排肩深孔钻基本结构的形成。 ②用硬质合金取代工具钢和高速钢做切削刃及导向条,使加工效率大幅度提髙。 ③由单出屑口单切削刃发展成双出屑口的错齿结构。 ④错齿焊接式结构进一步发展为硬质合金刀片机夹结构,最后发展为机夹可转位涂层刀片结构并实现了专业化制造。 ⑤双管喷吸钻和DF系统喷吸钻的问世。

各种加工方法的加工精度

各种加工方法的加工精 度 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

各种加工方法的加工精度 一:车削 车削中工件旋转,形成主切削运动。刀具沿平行旋转轴线运动时,就形成内、外园柱面。刀具沿与轴线相交的斜线运动,就形成锥面。仿形车床或数控车床上,可以控制刀具沿着一条曲线进给,则形成一特定的旋转曲面。采用成型车刀,横向进给时,也可加工出旋转曲面来。车削还可以加工螺纹面、端平面及偏心轴等。 车削加工精度一般为IT8—IT7,表面粗糙度为—μm。精车时,可达IT6—IT5,粗糙度可达—μm。车削的生产率较高,切削过程比较平稳,刀具较简单。 二:铣削 主切削运动是刀具的旋转。卧铣时,平面的形成是由铣刀的外园面上的刃形成的。立铣时,平面是由铣刀的端面刃形成的。提高铣刀的转速可以获得较高的切削速度,因此生产率较高。但由于铣刀刀齿的切入、切出,形成冲击,切削过程容易产生振动,因而限制了表面质量的提高。这种冲击,也加剧了刀具的磨损和破损,往往导致硬质合金刀片的碎裂。在切离工件的一般时间内,可以得到一定冷却,因此散热条件较好。按照铣削时主运动速度方向与工件进给方向的相同或相反,又分为顺铣和逆铣。 顺铣 铣削力的水平分力与工件的进给方向相同,工件台进给丝杠与固定螺母之间一般有间隙存在,因此切削力容易引起工件和工作台一起向前窜动,使进给量

突然增大,引起打刀。在铣削铸件或锻件等表面有硬度的工件时,顺铣刀齿首先接触工件硬皮,加剧了铣刀的磨损。 逆铣 可以避免顺铣时发生的窜动现象。逆铣时,切削厚度从零开始逐渐增大,因而刀刃开始经历了一段在切削硬化的已加工表面上挤压滑行的阶段,加速了刀具的磨损。同时,逆铣时,铣削力将工件上抬,易引起振动,这是逆铣的不利之处。 铣削的加工精度一般可达IT8—IT7,表面粗糙度为—μm。 普通铣削一般只能加工平面,用成形铣刀也可以加工出固定的曲面。数控铣床可以用软件通过数控系统控制几个轴按一定关系联动,铣出复杂曲面来,这时一般采用球头铣刀。数控铣床对加工叶轮机械的叶片、模具的模芯和型腔等形状复杂的工件,具有特别重要的意义。 三:刨削刨削时,刀具的往复直线运动为切削主运动。因此,刨削速度不可能太高,生产率较低。 刨削比铣削平稳,其加工精度一般可达IT8—IT7,表面粗糙度为—μm,精刨平面度可达1000,表面粗糙度为—μm。 四:磨削 磨削以砂轮或其它磨具对工件进行加工,其主运动是砂轮的旋转。砂轮的磨削过程实际上是磨粒对工件表面的切削、刻削和滑擦三种作用的综合效应。磨削中,磨粒本身也由尖锐逐渐磨钝,使切削作用变差,切削力变大。当切削力超过粘合剂强度时,圆钝的磨粒脱落,露出一层新的磨粒,形成砂轮的“自锐

工件的装夹与获得加工精度的方法

工件的装夹与获得加工精度的方法 一、工件装夹的概念 工件在开始加工前,首先必须使工件在机床上或夹具中占有某一正确的位置,这个过程称为定位。为了使定位好的工件不致于在切削力的作用下发生位移,使其在加工过程始终保持正确的位置,还需将工件压紧夹牢,这个过程称为夹紧。定位和夹紧的整个过程合起来称为装夹。 工件的装夹不仅影响加工质量,而且对生产率、加工成本及操作安全都有直接影响。 二、工件装夹的方式 1.直接找正装夹 此法是用百分表、划线盘或目测直接在机床上找正工件位置的装夹方法。 2.划线找正装夹 此法是先在毛坯上按照零件图划出中心线、对称线和各待加工表面的加工线,然后将工件装上机床,按照划好的线找正工件在机床上的装夹位置。 这种装夹方法生产率低,精度低,且对工人技术水平要求高,一般用于单件小批生产中加工复杂而笨重的零件,或毛坯尺寸公差大而无法直接用夹具装夹的场合。 3.用夹具装夹 夹具是按照被加工工序要求专门设计的,夹具上的定位元件能使工件相对于机床与刀具迅速占有正确位置,不需找正就能保证工件的装夹定位精度,用夹具装夹生产率高,定位精度高,但需要设计、制造专用夹具,广泛用于成批及大量生产。 三、获得加工精度的方法 机械加工是为了使工件获得一定的尺寸精度、形状精度、位置精度及表面质量要求。机械加工中获得这些精度的主要方法有: 1.获得尺寸精度的方法

(1)试切法该法是通过试切—测量—调整—再试切,反复进行,直至达到要求的加工尺寸。 试切法生产效率低,加工精度取决于工人的技术水平,但有可能获得较高精度,且不需复杂的装置。主要用于单件小批生产。 (2)调整法调整法是先按要求的尺寸调整好刀具相对于工件的位置,并在一批零件的加工过程中始终保持这个位置不变,以获得规定的加工尺寸。 调整法比试切法加工精度的保持性好,且具有较高的生产率,对操作工人要求不高,但对调整工要求较高,在成批及大量生产中广泛应用。 (3)定尺寸刀具法该法是用具有一定尺寸精度的刀具来保证工件的加工尺寸的。如钻头、扩孔钻、铰刀、拉刀、槽铣刀等。这种方法具有较高的生产率,加工精度主要取决于刀具的精度及刀具与工件的位置精度。为了消除刀具与工件位置精度对加工精度的影响,可采用将刀具与机床主轴浮动联接的方法来解决。 (4)自动控制法这种方法是将测量装置、进给装置和控制系统组成一个自动加工系统。加工过程中由自动测量装置测量工件的加工尺寸,并与所要求的尺寸进行比较后发出信号,信号通过转换、放大后控制机床或刀具作相应调整,直到达到规定的加工尺寸要求,加工自动停止。早期的自动控制法多采用机械—液压控制系统,近年来,由于数控技术的发展,数控机床得到广泛的应用。在数控机床上,加工尺寸的获得,由预先编好的程序自动控制,使工件获得规定的加工精度更为方便。特别是计算机数字控制(CNC),更为发展计算机辅助制造(CAM)奠定了基础。 2.获得形状精度的方法 (1)轨迹法这种加工方法是利用刀尖运动的轨迹来形成被加工表面的形状的。普通的车削、铣削、刨削和磨削等均属于刀尖轨迹法。用这种方法得到的形状精度主要取决于成形运动的精度。 (2)成形法成形法是利用成形刀具的几何形状来代替机床的某些成形运动而获得加工表面形状的。如成形车削、铣削、磨削等。成形法所获得的形状精度主要取决于刀刃的形状。

提高孔加工的精度的方法

提高孔加工的精度的方法 对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。钻削加工时,操作者可以利用理论联系实际的方法分析岀孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法 在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。? 钳工孔加工实习课题训练中容易岀现的问题:? 钻孔时孔径超岀尺寸要求,一般是孔径过大;? 孔的表面粗糙度超岀规定的技术要求;? 孔的垂直度超出位置公差要求;? 孔距(包括边心距和孔距)超出尺寸公差的要求;? 孔加工中岀现问题的主要原因分析:? 钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力; 对钻削的切削速度选择不当;? 钻削时工件未与钻头保持垂直;? 未对孔距尺寸公差进行跟踪控制; 三、提高孔加工精度的方法: 在孔加工的课题训练中,对于前三个问题,需要加强练习。比如主切削刃的不对称问题,在刃磨 时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。对于不同 的孔径,要选择相应的切削速度。在钻孔过程中,自始至终都要避免钻头的径向受力。钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。这些都需要在实习的过程中让学生慢慢体会和认真掌握的。? 最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。传统的孔的位置 精度的检查是靠划出检查圆”和检查框”的方法。检查圆”它是在钻孔划线完毕后,用划规以样冲眼为中心,划出比需要加工孔的直径大的检查圆”作为钻孔时检查位置是否准确的参照基准。由于划规在旋转中其确定圆心的脚尖与样冲眼的接触中会产生滑动,使划规划的检查圆”容易产生误差。检查框”是利用高度游标卡 尺在孔的十字中心线上划岀等距的方格,是在钻孔的初期样冲眼灭失时,用来替代样冲眼检查孔位置是否正确的依据,检查框”确定的找正基准可以保证钻孔的中心与样冲眼定位的中心重合,保证划线精度,也避免 了划检查圆”的误差。这两种保证孔位置精度的做法在教学中很难被学生掌握。在多年的钳工实习教学实践 中,对于孔距的控制我采用的是跟踪控制法”所谓跟踪控制”就是从划线开始,到加工结束,每一道加工 工序都要通过认真的检查来保证孔距的精度要求在加工者的控制之中。做到前道加工工序是后一道加工工序的精度控制前提,后一道加工序是前一道加工工序的精度控制保证。一环扣一环,从而实现对孔距精度的控制。? 首先是划线,戈熾是孔加工的第一道工序,戈熾的质量是确保孔加工孔距精度的重要前提。俗话说工欲善其事,必先利其器”在孔加工确定孔中心位置的划线中,一般是采用高度游标卡尺,要划线前一是要检查高度尺的示值误差是否在规定的精度误差范围内,以保证所划线条的尺寸准确,检查高度游标卡尺的划线刃口是否锋利,以确保所划线条清晰均匀;二是要检查划线平板的精度,确保划线平板工作表面清洁、无毛刺,以免影响划线精度。调整好尺寸后,可以在工件上轻轻划出一道可见的痕迹,然后用游标卡尺测量 一下这个痕迹,看是否有误差。如果有误差,就要相应调整高度游标卡尺,直到痕迹符合精度要求。接下来就可以按照图纸要求划岀清晰均匀的孔的中心线了。? 其次是打岀准确的样冲眼,样冲眼的作用是为钻头定心。样冲必须磨得圆而尖并保持足够的硬度,根据多年的教学经验,样冲的顶角为40-50度最为适宜。在打样冲眼时,要使样冲与工件垂直,轻轻敲击出 痕迹,然后观察所敲击的样冲眼是否位于孔的十字中心线的正中。检查符合要求后,再加大敲击力度,使将样冲眼加大,这时应该注

机械加工中获得零件加工精度的方法

机械加工中获得零件加工精度的方法 【摘要】本文对机械加工过程中如何获得零件加工的精度进行了讨论,并分析了多种影响零件加工质量的因素,希望可以减少生产过程中不必要的麻烦,并且对如何使工件的加工质量达到要求,同时还能保证生产效率进行了介绍。 【关键词】机械加工;零件加工;精度随着科学技术的飞速发展和市场竞争日益激烈,现代企业在高目标和低成本的追求过程中,对零件制造的基本要求就是要做到多、快、好、省。其中“好”的含义包括不断提高零件的质量,提高其使用效能与使用寿命,最大限度地消灭废品,降低次品率,提高零件的合格率。因为零件的质量直接影响着机器的性能、寿命、效率、可靠性等指标,是保证机器质量的基础,而零件的制造质量,是依靠其毛坯的制造方法、机械加工、热处理以及表面处理等工艺来保证的。因此,在零件制造的各个环节都要始终把保证质量放在首位。 1.对加工精度和加工误差的分析 加工精度是指零件加工后的实际几何参数与图纸规定的理想几何参数符合的程度,这种相符合的程度越高,加工精度也越高。在加工中,由于各种因素的影响,实际上不可能将零件的每一个几何参数加工的与理想几何参数完全相符,总会产生一些偏离,这种偏离,就是加工误差。实际上,只要零件的加上误差不超出零件图上按零件的设计要求所规定的公差,就可以说保证了零件的加工精度要求。由此可见,“加工精度”和“加工误差”这两个概念是从两个侧面来评定零件几何参数这个同一事物的。加工精度的低和高是通过加工误差的大和小来表示的。所以,保证和提高加工精度的问题,实际上就是限制和减小加工误差的问题。 2.如何获得加工精度 由于在加工过程中有很多因素影响加工精度,所以同一种加工方法在不同的工作条件下所能达到的精度是不同的。如果盲目追求加工精度,就会降低生产效率,增加加工成本。所以,我们在保证加工质量的前提下,应尽量达到提高效率,降低生产成本的目的。加工精度可以分为尺寸精度、形状精度和位置精度,因此,加工精度的高、低是以尺寸公差、形状公差和位置公差来衡量的。 2.1零件尺寸的精度方法 零件尺寸的加工方法首先包括试切法,就是先试切出很小部分加工表面,测量试切所得的尺寸,按照加工要求适当调刀具切削刃相对工件的位置,再试切,再测量,如此经过两三次试切和测量,当被加工尺寸达到要求后,再切削整个待加工表面。其次是调整法,就是预先用样件或标准件调整好机床、夹具、刀具和工件的准确相对位置,用以保证工件的尺寸精度,并在一批零件加工过程中尺寸保持不变,这就是调整法。还有定尺寸法,即用刀具的相应尺寸来保证工件被加工部位尺寸的方法,它是利用标准尺寸的刀具加工,加工面的尺寸由刀具尺寸决

超精密加工的主要方法

研究生课程考核试卷 科目:先进制造技术教师:周忆 姓名:张林刚学号:20110713312 专业:机械设计及理论 上课时间:2011年12 月至2012 年 1 月 阅卷评语: 阅卷教师(签名)

超精密加工的主要方法 -机设一班张林刚20110713312 超精密加工技术是20世纪60年代发展和完善起来的,现已成为当代高技术产品的关键制造技术。近20年来,超精密加工不仅进入到国民经济的各个领域,而且正从单件小批生产方式走向规模生产,可以预见,随着新产品的不断涌现,超精密加工的应用范围将进一步扩大。而我国超精密加工技术起步较晚,技术水平与发达国家相比也有一定差距,因此,寻求超精密加工新的方法并探讨其影响因素就成为目前迫在眉睫的问题。 一、超精密加工技术简介 目前,超精密加工是指精度在0.1~0.01μm,表面粗糙度Ra 值在0.03~0.05μm 的加工技术,如金刚石刀具超精密切削、超精密磨料加工、超精密特种加工和复合加工等。它适用于精密元件、计量标准元件、大规模和超大规模集成电路的制造。而且,超精密加工的精度正处在亚纳米级工艺,日趋向纳米级工艺发展。 二、超精密加工方法 根据加工方法的机理和特点,超精密加工方法可以分为去除加工、结合加工和变形加工三大类,如表1 所示。 下面对三类超精密加工方法分别加以分析。 (一)去除加工 去除加工又称为分离加工,是从工件上去除一部分材料,传统的机械加工方法,如车削、铣削、磨削、研磨和抛光,以及特种加工中的电火花加工、电解加工等,均属这种加工方法。 (二)结合加工 结合加工利用物化方法,将不同材料结合在一起。按结合的机理不同,它又分为附着、注入和连接加工三种。1.附着加工又称为沉积加工,是在工件表面上覆盖一层物质,是一种弱结合,其中典型的加工方法是镀;2.注入加工又称为渗入加工,是在工件表面上注入某些元素,使之与基体材料产生物理化学反应,是具有共价键、离子键、金属键的强结合,用以改变工件表层材料的力学机械性质,如渗碳、渗氮等;3.连接加工将两种相同或不同材料通过物化方法连接在一起。

提高孔加工的精度的方法终审稿)

提高孔加工的精度的方 法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

提高孔加工的精度的方法 对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。钻削加工时,操作者可以利用理论联系实际的方法分析出孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法 在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。 一、钳工孔加工实习课题训练中容易出现的问题: 1、钻孔时孔径超出尺寸要求,一般是孔径过大; 2、孔的表面粗糙度超出规定的技术要求; 3、孔的垂直度超出位置公差要求; 4、孔距(包括边心距和孔距)超出尺寸公差的要求; 二、孔加工中出现问题的主要原因分析: 1、钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力; 2、对钻削的切削速度选择不当; 3、钻削时工件未与钻头保持垂直; 4、未对孔距尺寸公差进行跟踪控制;

三、提高孔加工精度的方法: 在孔加工的课题训练中,对于前三个问题,需要加强练习。比如主切削刃的不对称问题,在刃磨时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。对于不同的孔径,要选择相应的切削速度。在钻孔过程中,自始至终都要避免钻头的径向受力。钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。这些都需要在实习的过程中让学生慢慢体会和认真掌握的。 最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。传统的孔的位置精度的检查是靠划出“检查圆”和“检查框”的方法。“检查圆”它是在钻孔划线完毕后,用划规以样冲眼为中心,划出比需要加工孔的直径大的“检查圆”,作为钻孔时检查位置是否准确的参照基准。由于划规在旋转中其确定圆心的脚尖与样冲眼的接触中会产生滑动,使划规划的“检查圆”容易产生误差。“检查框”是利用高度游标卡尺在孔的十字中心线上划出等距的方格,是在钻孔的初期样冲眼灭失时,用来替代样冲眼检查孔位置是否正确的依据,“检查框”确定的找正基准可以保证钻孔的中心与样冲眼定位的中心重合,保证划线精度,也避免了划“检查圆”的误差。这两种保证孔位置精度的做法在教学中很难被学生掌握。在多年的钳工实习教学实践中,对于孔距的控制我采用的是“跟踪控制法”。所谓“跟踪控制”,就是从划线开始,到加工结束,每一道加工工序都要通过认真的检查来保证孔距的精度要求在加工者的控制之中。做到前道加工工序是后一道加工工序的精度控制前提,后一道加工序是前一道加工工序的精度控制保证。一环扣一环,从而实现对孔距精度的控制。 首先是划线,划线是孔加工的第一道工序,划线的质量是确保孔加工孔距精度的重要前提。俗话说“工欲善其事,必先利其器”。在孔加工确定孔中心位置的划线中,一般是采用高度游标卡尺,要划线前一是要检查高度尺的示值误差是否在规定的精度误差范

机械加工精度参考答案

机械加工精度参考答案 一、判断题(正确的在题后括号内划“√”,错误的划“×”。) 1.精密丝杠可采用冷校直方法克服其弯曲变形。(×) 2.误差复映是由于工艺系统受力变形所引起的。(√) 3.误差复映指的是机床的几何误差反映到被加工工件上的现象。(×) 4.减小误差复映的有效方法是提高工艺系统的刚度。(√) 5.加工原理误差是由于机床几何误差所引起的。(×) 6.由于刀具磨损所引起的加工误差属于随机误差。(×) 7.机械加工中允许有原理误差。(√) 8.在加工一批工件时,若多次调整机床,其调整误差仍为随机性误差。(√) 9.在加工一批工件时因机床磨损速度很慢,机床制造误差在一定时间内可视为常值,所以其调整误差为常值系统性误差。(√) 10.复映误差属于变值系统性误差。(×) 11.定位误差属于常值系统性误差。(×) 12.刀具和机床磨损造成的误差属于随机性误差。(×) 13.工件受热变形造成的误差属于随机性误差。(×) 二、单项选择题(在每小题的四个备选答案中选出一个正确的答案,并将正确答案的标号填在题干的括号内。) 1.工件在车床三爪卡盘上一次装夹车削外圆及端面,加工后检验发现端面与外圆不垂直,其可能原因是(C)。 A.车床主轴径向跳动 B.车床主轴回转轴线与纵导轨不平行 C.车床横导轨与主轴回转轴线不垂直 D.三爪卡盘装夹面与车削主轴回转轴线不同轴 2.薄壁套筒零件安装在车床三爪卡盘上,以外圆定位车内孔,加工后发现孔有较大圆度误差,其主要原因是( A )。 A.工件夹紧变形B.工件热变形 C.刀具受力变形D.刀具热变形 3.车削细长轴时,由于工件刚度不足造成在工件轴向截面上的形状是(C )。 A.矩形B.梯形C.鼓形D.鞍形 4.下列影响加工误差的因素中,造成随机误差的因素是( D )。 A.原理误差B.机床几何误差C.机床热变形D.安装误差 5.零件加工尺寸符合正态分布时,其均方根偏差越大,表明尺寸(A)。 A.分散范围越大B.分散范围越小 C.分布中心与公差带中心偏差越大D.分布中心与公差带中心偏差越小 6.在车床两顶尖上装夹车削光轴,加工后检验发现中间直径偏小,两端直径偏大,其最可能的原因是( A )。 A.两顶尖处刚度不足B.刀具刚度不足 C.工件刚度不足D.刀尖高度位置不准确 7.车削加工中大部分切削热传给了(D )。 A.机床B.工件C.刀具D.切屑 8.工艺系统刚度( B )其实体刚度。 A.大于B.小于C.等于D.大于或等于

高精度细长孔的数控加工研究

高精度细长孔的数控加工研究摘要:目前世界上利用外排屑(如枪钻)深孔钻削技术,可钻削的孔径小到f2mm。而内排屑深孔钻削的孔径很少有小于f16mm的,且多数仍采用传统的BTA钻削系统。由于枪钻结构为不对称形状,质心偏离中轴,这给制造、重磨都带来一定的困难,也使造价增高。另外,其结构刚度和扭转强度低(同直径的圆形钻杆扭转刚度是枪钻的2.3倍),使其使用的钻削速度降低,进给量小。采用单管内排屑喷吸钻(SED)钻削系统,钻削小深孔直径可小到f3.7mm。我工艺所采用SED技术,进行了孔径(mm)f16、f12、f10、f8、f7.62、f5.7、f3.7的小深孔钻削加工,钻削过程平稳,排屑流畅,孔的尺寸形状精度和孔壁表面粗糙度均能满意,在上述孔径范围内,完全可以替代枪钻对小深孔进行钻削加工。由于其刚度好,可加大进给量和钻削速度,使生产效率、钻孔质量和经济效益均有所提高,显示了一定的技术优势。 关键词:高精度细长孔数控加工 一、孔的定义与分类 根据国家标准GB1800—1979的规定:孔主要指圆柱形的内表面。由此可知,广义的孔泛指包容面。孔通常可按如下方法分类: (1)按形状来分。有圆柱孔、圆锥孔、鼓形孔、多边形孔、花键孔和其它异形孔以及特形孔(如弯曲孔)等。其中,以圆柱孔使用最为广泛。 (2)按形态来分。有通孔及盲孔(不通孔);深孔(指孔的深度L与孔径D之比超过5的孔,L/D简称深径比或长径比;L/D=5~20属一般深孔,L/D﹥20~30属中等深孔,L/D ﹥30~100称为特殊深孔)及浅孔。 (3)按孔径的大小来分。有大孔(D﹥100mm)、普通孔(D=10~100mm)、小孔(D=1~10mm)和微孔(D<1mm的孔)。 (4)按加工机理来分。有机械加工、特种加工(见表1)、机电复合加工等。尽管特种加工方法较多,但目前由于设备比较昂贵和加工效率不高等原因,所以无论是现在还是可预见的未来,传统的机械加工仍将是孔加工的主要手段。 表1 孔加工的方法

高精度深长孔的精密加工方法

高精度深长孔的精密加工法 一、历史背景 枪钻与内排屑深孔钻两种加工孔的刀具分别出现于20世纪30年代初和40年代初的欧洲兵工厂,这并非历史的偶然。其主要历史背景是: 一次世界大战(1914?1918年)首次使战争扩大到世界规模。帝国主义列强为瓜分殖民地而需要大量现代化的枪炮(特别是枪械和小口径火炮的需求量极大)。而继 续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。于是高精度深长孔的制造就成为了一个摆在制造者 面前的一个首要问题,并且一直延续到了现今。 第一次世界大战中的火炮 二、传统加工工艺及存在的问题 在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)≥10,精度 要求高,内孔粗糙度一般为Ra0.4~0.8的典型深孔零件,过去我们采用的传统工艺路线一般是:钻孔(加长标准麻花钻)→扩孔(双刃镗扩孔刀)→铰孔(标准六刃铰刀)→研磨

此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花钻钻孔时,切削刃越靠近中心,前脚就越大。若钻头刚性差,则震动更大,表面形状误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。 传统深孔的加工流程 三、工艺路线与刀具的改进 本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工艺及刀具进行了改进,改进后的工艺路线是:钻孔(BTA钻)→扩孔(BTA扩)→铰孔(单刃铰刀)→研磨 1、钻孔与扩孔刀具及工艺的改进 单管内排屑深孔钻的由来 单管内排屑深孔钻产生于枪钻之后。其历史背景是:枪钻的发明,使小深孔加工中自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。如能改为内排屑,则可以保持钻头和枪杆为中空圆柱体,使钻头快速拆装和提高刀具刚性问题同时得到解决。 20世纪内排屑深孔钻的发展,可概括出以下6项里程碑式的成果: ①单出屑口单管内排肩深孔钻基本结构的形成。 ②用硬质合金取代工具钢和高速钢做切削刃及导向条,使加工效率大幅度提髙。

相关主题