搜档网
当前位置:搜档网 › 红外发射接收器示例

红外发射接收器示例

红外发射接收器示例
红外发射接收器示例

红外发射接收器示例

————————————————————————————————作者:————————————————————————————————日期:

图2-2 红外发射和接收器件示例

红外一体化接收头内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。注意输出的高低电平和发射端是反相的。

图2-3为红外发射和接收解码的示意图。在发射部分设计一个38kHz的载波,在发射数据(全码)为高电平时输出载波,发射数据(全码)为低电平时输出低电平,二者实现了逻辑与的关系,得到的信号(红外发射)驱动红外发射二极管向空间发射红外线。红外一体化接收头接收到红外信号后,解码出与发射数据(全码)逻辑相反的数据。

图2-3 红外发射和接收解码的示意图

3系统硬件设计

3.2红外遥控单元

本设计中作为发射部分使用的遥控器为M5046AP机芯的电视机遥控器。电视机遥控器应用的是红外收发原理,即遥控器前端侧面的红外发射管发射出红外信号,电路板上红外接收管接收到信号后送到单片机内部,经译码后变成相应的操作指令,以实现定时、遥控风扇的功能。

红外遥控器的内部关键电路和接收管电路如图3-1所示。

图3-1

3.3单片机控制单元

本设计以AT89S51单片机为主控器,单片机控制电路设计如图3-2所示。

单片机的P1.2-P1.4口用于控制风扇的3个档次,设计中用继电器来模拟风扇换挡开关;P1.6和P1.7引脚控制时钟电路;P2口作为液晶显示的8位数据线;P3.0和P3.1口控制风扇工作状态指示灯,分为手动和自动2个状态;P3.2中断0用于接收红外遥控编码信号;P3.4接收温度数据;P3.5-P3.7三个引脚分别控制液晶显示器的控制端。

图3-2为单片机控制电路。

图3-2

3.4时钟单元

3.4.1DS1307简介

种低功耗、BCD码的8引脚实时时钟芯片。

DS13DS1307是I2C总线接口的日历时钟芯片,片内有8个特殊寄存器和56的BSPAM,是一07的主要技术性能如下:具有秒、分、时、日、星期、月、年的计数功能,并具有12小时制和24小时制计数模式,可自动调整每月天数及闰年;具有自动掉电保护和上电复位功能;可输出不同频率的方波信号。DS1307的引脚排列如图3-3所示。

图3-3DS1307引脚图

VCC:+5V电源;

VBAT:+3V电源输入;

X1、X2:32.768kHz的晶振输入端;

SDA:数据线;

SCL:时钟线;

SQW/OUT:方波信号输出端。

3.4.2时钟电路设计

单片机控制时钟电路如图3-4所示。DS1307的X1与X2通过32.768KHz的晶振相连,以提供计时基准。SCL与SDA分别连接至单片机的P1.6和P1.7引脚,完成单片机读取时间值。

图3-4单片机控制时钟电路

3.5测温单元

3.5.1DS18B20简介

DS18B20是美国DALLAS公司生产的一线式数字温度传感器,它具有微型化、低功效、高性能、抗干扰能力强、易配处理器等优点,特别适用于多点测温系统,可直接将温度转化成串行数字信号给单片机处理,且在同一总线上可以挂接多个传感器芯片。它具有3引脚TO-92小体积封装形式,温度测量范围为-55~+155摄氏度,可编程为9~12位A/D转换精度,测温分辨率可达0.0625摄氏度,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远程引用,也可采用寄生电源方式产生,多个DS18B20可以并联到三根或两根线上,CPU只需一根端口线就能与多个DS18B20通信,占用微处理器端口较少,可节省大量的引线和逻辑电路。以上特点使得DS18B20成为此次设计的首选。

引脚定义:

DQ:数字信号输入/输出端;

GND:电源地;

VCC:外接供电电源输入端(寄生供电方式时接地),如图3-5所示。

图3-5DS18B20温度传感器芯片引脚

3.5.2测温电路设计

该部分电路设计如图3-6所示。DS18B20有两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。另一种是寄生电源供电方式,单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。寄生供电适合多点测温。鉴于本设计为单片测温,故采用外部电源供电法。DS18B20是单总线控制,I/O引脚与单片机P3.4引脚相连即可实现与单片机之间的通信。

图3-6温度测量电路

3.6液晶显示单元电路

本设计的显示器选用LCD1602液晶显示器。LCD1602可显示16×2个字符,芯片工作电压为 4.5-5.5V,工作电流为 2.0mA(5.0V),模块的最佳工作电压为5.0V。LCD1602的接口信号说明如表3-1所示。表3-1LCD1602引脚说明

编号符号引脚说明编号符号引脚说明

1 VSS 电源地9 D

2 DataI/O

2 VDD 电源正极10 D

3 DataI/O

3 VL 液晶显示偏压信号11 D

4 DataI/O

4 RS 数据/命令选择端(H/L)12 D

5 DataI/O

5 R/W 读/写选择端(H/L)13 D

6 DataI/O

6 E 使能信号14 D

7 DataI/O

7 D0 DataI/O 15 BLA 背光源正极

8 D1 DataI/O 16 BLK 背光源负极

液晶显示电路如图3-7所示。单片机的P2口为液晶显示器的数据线,P3.5-P3.7引脚分别控制液晶显示器的复位端RST、读/写端R/W、使能端E。调节VR1电位器可以调节液晶显示器的对比度。

图3-7液晶显示电路

3.7风扇档位控制单元

单片机控制风扇档位电路如图3-8所示。3个继电器分别接至单片机的P1.2、P1.3、P1.4引脚,当环境温度需要风扇调为一档时,单片机的P1.2引脚输出高电平,此时三极管Q1导通,则继电器K1导通,风扇调为一档。二档与三档的工作控制原理与一档同理。

图3-8风扇档位控制电路

4系统软件设计

本系统软件设计流程图如图4-1所示。

图4-1系统软件设计流程图

5 硬件制作

5.1元件清单

本设计所用元器件如表5-1所示

元器件名称个数元器件名称个数AT89S51单片机 1 万能红外遥控器 1 红外接收头 1 LCD1602 1 DS18B20 2 DS1307 1 继电器 3 LED灯 2 三极管9013 4 1N4148二极管 1 10K电阻9 32.768MHz晶振 1

5.1K电阻 1 10K滑线变阻器 1 12MHz晶振 1 22P电容 2 10U电解电容 1 1K电阻 1 按键 1 导线若干2K电阻 1 47K电阻 1

3V直流电风扇 2 8排针 2 3排针 4 4排针 1

表5-1

附录

电路原理图

38kHz 红外发射与接收

38kHz 红外发射与接收 红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。红外线一体化接收头是集红外接收、

放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。 红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示。 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单、也可以很复杂。例如用于电视机、VCD、DVD和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活。前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般电子技术人员和电子爱好者的编码。图4中的38kHz振荡器即载波信号比较简单,但专业用的和业余用的也有区别,专业用的振荡器采用了晶振,而后者一般是RC振荡器。例如彩电红外遥控器上的发射端用了455kHz的晶振,是经过整数分频的,分频系数为12,即455kHz÷12= 37.9kHz。当然也有一些工业用的遥控系统,采用36kHz、40kHz或56kHz等的载波信号。 因红外遥控器的控制距离约10米远,要达到这个指标,其发射的载波频率(38kHz)要求十分稳定,而非专业用的RC(38kHz)载波频率稳定性差,往往偏离38kHz甚至很远,这就大大缩短了遥控器的控制距离。因晶振频率十分稳定,所以专业厂家的遥控器全部采用晶振的38kHz作遥控器的载波发送信号。 图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收、解调输出、再作处理。

什么是红外发射器和红外接接收器

什么是红外线发射器和红外线接收器 红外(IR)发射器和接收器是目前在许多不同的设备,尽管他们中最常见的消费类电子产品。这种技术的工作原理是,一个组件在一个特定的模式,另一个组件可以拿起并翻译成指令闪烁的红外光。这些发射器和接收器被发现在遥控器和各种不同类型的设备,如电视和DVD 播放机。外围设备,包括这种技术还可以让电脑来控制其他各种消费类电子产品。由于红外遥控器被限制在视线操作线,部分产品可被用于扩展一个硬连线的线或射频(RF)传输的信号。 最常见的消费电子遥控器使用红外光。它们通常会产生使用红外发光二极管(LED),和接收器单元的主要成分,通常是一个光电二极管。无形的光,被拾起,然后由接收模块的指令变成一个远程控制的闪烁模式。构造发射器和接收器所必需部件通常是廉价的,但这些系统限制线的视线操作。 为了延长超视距一个典型的红外遥控器控制的范围内,它是可以与另一个组件的红外发射器和接收器相结合。硬连线的扩展单元使用通过物理线路连接的一个发射器和接收器。此线可绕过或穿过墙壁,位于在一个房间,在另一个接收器与发射器。当一个信号被从遥控器发送到接收器,它跨过线路,然后再重新打开到红外光的发射器在其另一端。 无线电频率IR扩展执行相同的功能,无需任何物理电线。这些系统包括两个部分,其中一个包含一个红外接收器和RF发射器。成对的单元包含一个RF接收器和红外发射器。一个红外遥控IR接收器上使用时,该设备转换的信号,并通过RF广播。的成对的单元,然后接收该信号,对其进行解码和发送红外信号。 红外发射器和接收器装置也可用于某些计算机。这些外围设备通常被设计为通过通用串行总线(USB)连接,可用于控制各种类型的消费类电子产品。软件可以让设备学习到直接从其他远程控制命令。 学习更多红外知识,百度:“煮透社”。

38khz红外发射与接收解析

38khz红外发射与接收 38khz红外发射与接收 红外线遥控器在家用人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红,橙,黄,绿,青,蓝,紫,如图1所示. 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线.红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的. 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境. 人们见到的红外遥控系统分为发射和接收两部分.发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示. 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同.一般有透明,黑色和深蓝色等三种.判断红外发光二极管的好坏与判断普通二极管一样的方法.单只红外发光二极管的发射功率约100mW.红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定. 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度.红外接收二极管一般有圆形和方形两种.由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路.然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示.红外线一体化接收头是集红外接收,放大,滤波和比较器输出等的模块,性能稳定,可靠.所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高. 图3是常用两种红外接收头的外形,均有三只引脚,即红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示. 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单,也可以很复杂.例如用于电视机,VCD,DVD 和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活.前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收,解调输出,再作处理.

红外发射接收器示例

红外发射接收器示例

————————————————————————————————作者:————————————————————————————————日期:

图2-2 红外发射和接收器件示例 红外一体化接收头内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。注意输出的高低电平和发射端是反相的。 图2-3为红外发射和接收解码的示意图。在发射部分设计一个38kHz的载波,在发射数据(全码)为高电平时输出载波,发射数据(全码)为低电平时输出低电平,二者实现了逻辑与的关系,得到的信号(红外发射)驱动红外发射二极管向空间发射红外线。红外一体化接收头接收到红外信号后,解码出与发射数据(全码)逻辑相反的数据。 图2-3 红外发射和接收解码的示意图 3系统硬件设计 3.2红外遥控单元

本设计中作为发射部分使用的遥控器为M5046AP机芯的电视机遥控器。电视机遥控器应用的是红外收发原理,即遥控器前端侧面的红外发射管发射出红外信号,电路板上红外接收管接收到信号后送到单片机内部,经译码后变成相应的操作指令,以实现定时、遥控风扇的功能。 红外遥控器的内部关键电路和接收管电路如图3-1所示。 图3-1 3.3单片机控制单元 本设计以AT89S51单片机为主控器,单片机控制电路设计如图3-2所示。 单片机的P1.2-P1.4口用于控制风扇的3个档次,设计中用继电器来模拟风扇换挡开关;P1.6和P1.7引脚控制时钟电路;P2口作为液晶显示的8位数据线;P3.0和P3.1口控制风扇工作状态指示灯,分为手动和自动2个状态;P3.2中断0用于接收红外遥控编码信号;P3.4接收温度数据;P3.5-P3.7三个引脚分别控制液晶显示器的控制端。

红外遥控发射和接收系统课程设计

红外遥控发射和接收系统设计 摘要 本设计是以红外技术为基础,可以实现无线遥控,摆脱了信息传递需要导线的限制,而且红外实现方式灵活,得到了广泛的应用。特别是随着芯片技术的发展,红外集成芯片价格的降低,更加扩展了红外的应用范围。现在在我们的日常生活中都能感受到红外的应用,以及它给我们带来的便利。本设计充分利用能够很容易买到的普通电视机遥控器,通过编码发射红外线,然后由通用红外接收芯片sw0038实现对红外的接收,但是因为考虑到题目的要求仅仅是实现对一个开关的简单开管控制,所以舍弃了依靠单片机来对遥控器发出的红外进行解码实现多种控制的方案。本方案简洁可行,充分利用现有的资源进行开发,取得比较好的效果,并且具有良好的移植性,可以通过简单的修改就应用到其他领域。 关键字:红外遥控红外解码双稳态 Abstract This design is take the infrared technology as a foundation, realizing the wireless remote control, getting rid of the the limit of wire information transmission. Beacause infrared technology is easy to be realized,it is widely used in many fields. Specially ,with the chip technology development, infrared integrated chip price reducing, even more expanded the infrared application scope . Now in our daily life ,we can feel the application of the infrared, and the convenience it has brought us.In this design,I take ordinary television remote control device to realize coding and Infrared Emission,then it is received by the general infrared receive chip sw0038 .what the topic requests is merely the realization of a simple switch control,so I give up the program on the MCU. The program is simple and feasible, making full use of the existing resources for development, and achieve fairly good results.It has a good portability,so only after a little change,it can be transplanted to other fields. Key word: infrared remote control infrared decode bistability

红外线发射与接收电路图

红外线发射与接收电路图 由455KHZ的晶振CRY,反相器74HC04及电阻、电容构成的振荡器产生455KHZ的方波信号。经脉冲分频器74LS92,六分频成为75.83KHZ的脉冲信号。再经过D触发器构成的2分频/整形电路变成38KHZ的方波信号。由单片机的异步串行口TX输出的串行数据信号,送到与非门74HC00的输入端。与非门的另一输入端接38KHZ的载波信号。与非门的输出信号用来控制三极管的开通或关断,从而控制红外发射管发送信息。这样就达到了用串行口TX输出的串行数据信号直接调制载波,进行红外数据传输的目的。发射电路的调制采用的是时分制幅度键控调制方式。因单片机在复位后,TXD脚为高电平,为满足同步的要求,采用低电平同步脉冲,经与非门(U3)后变成高电平同步脉冲。所以单片机TXD 发送的编码应是反码。 据说,发送数据"0"的载波脉冲个数不少于14个,这样发送速率不高于1200b 设计中采用一种高效能的红外接收器——德律风根TFMS5380。德律风根所开发的微型接收器TFMS5380是近期市场上最高效能的红外接收器。同一组件内已装上了接收二级管和前置放大器。TFMS5380特点:(1)单一的接收器和前置放大器的组合。(2)超敏感度和传送距离。(3)内置PCM频率过滤器。(4)无外置组件需要。(5)特强光及电场干扰屏蔽。(6) TTL及CMOS兼容,适用于微处理器操作控制。(7)可选频率由30KHZ至56KHZ。(8)低功耗。(9)ISO9000认可。TFMS5380适用于数据传送、电视机、录像机、组合音响及

卫星接收器等。TFMS5380的内部框图及构成的接收电路。如图3所示。 红外二极管就和普通的发光二极管原理一样,就是在半导体PN结区域电子和空穴复合发光。发光的波长和半导体的禁带宽度有关。 光敏红外二极管和普通的光敏二极管也是一样的。在PN结附近由于光照产生的激子被结电场拉开成为电子-空穴对,分别流向不同的电极。一般光敏管反向偏置,有光时反向电阻会变化。 一般红外管用来通信,比如电视机的遥控器。或者测距,比如自动冲水马桶

红外发射、接收头(红外基础知识).

目前市售红外一体化接收头有两种:电平型和脉冲型,绝大部分的都是脉冲型的,电平型的很少。 电平型的,接收连续的38K信号,可以输出连续的低电平,时间可以无限长。其内部放大及脉冲整形是直接耦合的,所以能够 接收及输出连续的信号。 脉冲型的,只能接收间歇的38K信号,如果接收连续的38K信号,则几百ms后会一直保持高电平,除非距离非常近(二三十厘米以内。其内部放大及脉冲整形是电容耦合的,所以不能能够接收及输出连续的信号。一般遥控用脉冲型的,只有特殊场合,比如串口调制输出,由于串口可能连续输出数据0,所以要用电平型的。一般遥控器用455K经12分频后输出37917HZ,简称38K,10米接收带宽为38+-2K,3米为 35~42K。在没有环境反射的空旷空间,距离10米以上方向性会比较强。在室内, 如果墙是白色的,则在15米的空间基本没有方向性。 接收头要有滤光片,将白光滤除。在以下环境条件下会影响接收,甚至很严重: 1、强光直射接收头,导致光敏管饱和。白光中红外成分也很强。 2、有强的红外热源。 3、有频闪的光源,比如日光灯。 4、强的电磁干扰,比如日光灯启动、马达启动等。 38K信号最好用1/3占空比,这个是最常用的,据测试1/10占空比灵敏度更好。实际调制时间要少于50%。最好有间歇。 电平型的接收头只要接收到38K红外线就输出持续低电平,用起来非常爽,以前的老式接收头多半是这种类型,但其有个致命 弱点:抗干扰性太差,传输距离短(小于1m。

而脉冲型一体化红外线接收头必须接受一定频率38K的载波的基带信号才有正常输出,如发送500HZ的38K载波,脉冲型一体化红外线接收头输出500HZ方波,而如果发送连续的38K载波就会出项有瞬间低电平其后为高电平的现象。这种脉冲型一体化红外线接收头克服了传统电平型接收头的不足:传输距离相对更远,稳定性大大增加,抗干扰性更强。因此已经完全取代了老式的电平型接受头,在电子市场如不说明店主给你的绝对是脉冲性的。 手机拍照时可以查看红外发射管是否处于发射状态 红暴问题 有些厂家把能不能制造出无红暴红外灯当做一个技术问题来宣传,好像有红暴就是低技术,无红暴就是高技术。其实,有无红暴只是一个选择问题,并不是技术问题,波长超过700nm的光线叫做红外线,900nm以上的红外线基本无红暴,波长越短,红暴越强,红外线感应度也越高。现在市场上有两种主流红外灯,一种是有轻微红暴的,波长在850nm左右,一种是无红暴的,波长在940nm左右。同一款摄像机,在850nm波长的感应度,比在940nm波长的感应度好到10倍。所以850nm这种有轻微红暴的红外灯拥有更高的效率,应当做为红外夜视监控的首选项。 这说的有道理吗? 红暴是对红外灯工作状态的一个描述。工作灯在工作时,如果有红暴就会在管芯出现红色小点。如果没有红暴的话,工作和不 工作人眼看不出来。没有红点 850nm和940nm都有红爆,只不过940要比较弱一点 常见的红外发射管有940nm波长和850nm波长两种,940nm波长的红外发射管主要使用于调制编码及信号传输,而850nm 波长的主要用于安防等红外光源上,接收管则有850nm~950nm通用的型号。850的管和940的管区别在于他们的功率大

红外发射与接收电路

红外发射与接收电路实验 报告 (应电0612 学号01) 一、实验目的 制作一个简易红外发射与接收电路。要求自行装配、接线调试,并能检查和发现问题(使用万用板布线),掌握其基本原理与工作情况,并根据原理、现象和测量数据进行分析问题所在,加以解决。 二、实训材料清单及工具仪器: 万用表、示波器、电铬铁、镊子、拔线钳、螺丝刀等常用工具。 元件名称元件标号封装号 1N4001 D7 D3 1N4001 D9 D3 1N4001 D8 D3 1N4007 D3 D3 1N4007 D4 D3 1N4007 D2 D3 1N4007 D1 D3 2K R1 AXIAL-0.3 4.7K R8 AXIAL-0.3 5.1v D6 D3 10K R2 AXIAL-0.3 10K R11 AXIAL-0.3 10K R9 W3296 10uF/25V C2 EC1.5 20K R3 AXIAL-0.3 20K R5 AXIAL-0.3 27K R4 AXIAL-0.3 104 C6 CM150 104 C4 CM150 104 C3 CM150 510 R6 AXIAL-0.3 510 R10 AXIAL-0.3 510R R7 AXIAL-0.3 561 C5 CM150 4700uF/25V C1 EC4-6 9013 Q3 90XX 9013 Q2 90XX 9013 Q1 90XX

LED D5 LED NE555 IC2 DIP-8 NE555 IC1 DIP-8 RED LED LED RELAY3 ZJCA SRD 三、实验要求 使用万用板布线,红外发射的频率为38KHz,载波为250Hz。接收管经过射极放后驱动继电器。要求通电后继电器吸合,阻断红外发射信号继电器断开,信号通后继电器又吸合。通过继电器实现红外信号控制其他器件。 四、实验原理图 红外发射电路 红外接收电路 五、电路PCB板

信号发射器和接收器原理

信号发射器和接收器原理 一种住家用的信号传输系统,包括有安插于墙壁上的电源插座中的发射器、接收器,籍以配合电源供给电路获得电源和通过一般住家原有的电源布线作为传输媒介,其特征在于:上述发射器是由传感器、定时器、方波振荡器、与门、解码器、调制器、中周变压器所组成,其中传感器可以对预设情况敏感,其中定时器在接收到传感器的信号后,会在预设时间内持续触发方波振荡器,使之产生低频方波信号,其中与门在同时接收到定时器和方波振荡器的高电位信号时,就会输出高电位信号给编码器,该编码器输入端连设有指拨开关,其可将与门和指拨开关的数据转换为编码信号;该调制器则通过振荡器输出规律的脉冲信号作为载波,以便将编码信号进行调制;中周变压器可将调制后的高频信号传入电源插座,并可隔离从电源插座输入的电源低频信号,以免发射信号受干扰;上述接收器是由中周变压器、前置处理器、自家接收电路和负载所组成,其中中周变压器可隔离电源插座所输入的电源低频信号,只让高频信号输入;其中前置处理器包括有耦合器、滤波器、放大器、检波器及整形器,可将输入信号滤波、放大、检波并整形还原;该前置处理器的输出端连接有自家接收电路,用以分别接收自家用的发射器信号;其中自家接收电路是在解码器输出端连设指拨开关,以与编码器处的指拨开关相对应,可将处理后的输入信号解码,且解码器输出端连设有指示灯,在接收到发射器的发射信号时明亮,解码器输出端连接有许多指示灯,以便接收到发射信号时使相对应的指拨开关明亮,而每个指示灯分别与单脉冲电路并联,持续导通指示灯,而且,单脉冲电路的输出端连接短暂保持电路,以在一个短时间内持续导通指示灯;又,自家接收电路的短暂保持电路输出端连设有延时器,以便延迟一段时间后才驱动下一级所并联的音乐铃或继电器负载

模电课程设计--简易红外发射接收装置

《低频电子线路》课程设计 题目:设计红外控制5 学院:物理与电子技术学院 专业:电子信息工程 班级: 班级学号: 姓名: 指导教师: 完成日期:年月日 红外控制 摘要:

红外控制的设计总体思路,包括NE555的介绍还有它所产生的震荡电路,以及红外接收,红外发射装置的辨别与使用。以及实验过程中所要注意的事项一一列举在报告之中。 关键字: NE555 震荡电路 红外的接收与发射 信号输出 1设计内容及要求: 设计一个红外控制装置,要求用NE555震荡电路产生大约38KHz 到40KHz 信号电压,通过红外发射信号,并由红外接收放大信号,最后从LED 的亮灭体现控制。并且完成从设计电路图,电脑绘制PCB 图,转印,腐蚀,打孔,焊接到最后调试的全过程。掌握基本的电子设计基础,培养动手能力。 2设计信号流程方向: 2.1原理图: 2.2 PCB 图:

2.3NE555震荡频率及周期的计算: 震荡周期:T=0.7*(R1+2R2)C 震荡频率:f=1.43/(R1+2R2)C 2.4工作原理: 由图可见,振荡频率由C1、R2、C2与R3决定,当按下发射开关SB时,电路立即起振,串联在电极回路里的红外发光二极管LED就发出一束受振荡频率调制的红外光脉冲,使接收器产生动作当其3脚的输入信号电压大于门限电压且频率落入固有频率f0的捕捉宽带内时,8脚即可逻辑低电平,第2脚对地接电容C2为相位比较器输出的低通滤波器,那么5脚就输出一个固有频率f=40kHZ为中心的调制信号。当外界信号的频率在其固有频率f的捕捉宽带内时,T1的发射极将会导通,此时发射管和接收管将会工作,T2发射极导通工作,信号将会通过电容送回到3脚,然后电路将会实现。当信号不在要求频率范围内时,电路将不会工作。要使音乐片正常工作,就要给G端一个下降沿,即当3脚为低电平时,二极管才会亮。电路不工作时,3脚始终保持高电平。因此电路不工作时,二极管不会亮 3元件的识别: 3.1电阻的识别: 电阻的大小直接用万用表测出阻值即可。 3.2电容的识别: 一般电容在原理图大小都是用乘方数表示,前2位为容量,第三位为乘方数,乘方

实验一 射频前端发射和接收器

实验一射频前端发射和接收器 一、实验目的: 1、了解射频前端发射器和接收器的基本结构与主要设计参数。 2、利用实验模组的实际测量了解射频前端发射器和接收器的基本特性。 二、预习内容: 1、预习放大器、滤波器、混频器、功率放大器的原理的理论知识。 2、预习放大器、滤波器、混频器、功率放大器的设计的原理的理论知识。 3、熟悉带通滤波器、变频器、信号发生器、低噪声放大器、中频放大器的 理论知识。 4、熟悉带通滤波器、变频器、信号发生器、低噪声放大器、中频放大器的 设计的理论知识。 三、实验设备: 四、理论分析: 基本结构与设计参数说明: 在无线通讯中,射频发射器担任着重要的角色。无论是话音还是数据信号要利用电磁波传送到远端,必须使用射频前端发射器。如图1-1(a)所示,它大抵可分成九个部分。 1.中频放大器(IF Amplifier) 2.中频滤波器(IF Bnadpass Filter) 3.上变频频混频器(Up-Mixer; Up Converter) 4.射频滤波器(RFBandpass Filter) 5.射频驱动放大器(RF Driver Amplifier) 6.射频功率放大器(RF Power Amplifier) 7.载波振荡器(Carrier Oscillator; Local Oscillator) 8.载波滤波器(LO BPF) 9.发射天线(Antenna) 其中放大器的基本原理与设计方法可参考主题六,而滤波器的基本原理与设

计方法已可参考主题五的说明。至于振荡器的部分,可于主题八与与主题九获得一些参考。 天线部分则可由主题十得到概念。 所以,在此单元中将就上变频器部分的基本原理做一说明。并介绍发射器的几个重要设计参数。 图1-1(a)基本射频前端发射器结构图 图1-1(b)单变频结构射频前端接收器 如图1-1(b)可见,射频前端接收器可分为天线(Antenna)、射频低噪声放大器(RF Low Noise Amplifier , LNA)、下变频器(Down-Mixer , Down Converter)、中频滤波器(Intermidate Frequency Bandpass Filter , IF BPF)、本地振荡器 (Local Oscillator , LO)。其工作原理是将发射端所发射的射频信号由天线接收后,经LNA 将功率放大,再送入下变频器与LO 混频后由中频滤波器将设计所要的部分(Baseband Processing Unit 、BPU)解调(Demodulation)出所需要的信号(Message Signals). 这类只经一个混频器上变频(或下变频)的电路构造称为单变频结构(Single Conversion configuration)。而在实际应用中也有双变频结构(Dual Conversion Configuration),甚至多变频结构(Multi-conversion Configuration),使用的时机视系统指标而定。因为BPU 的处理频率有所限制(一般在500MHz 以下),所以需要利用变频器(Mixer)及频道振荡器(Channel Oscillator)将射频信号由射频前端接收器下变频为中频段(Intermidate Frequency Band 、IF)信号后再送入BPU ,或是将BPU 送出的IF 信号用射频前端发射器上变频至射频段(Radio Frequency Band 、RF)信号经放大后再发射。 本单元以单变频结构来说明一个射频前端接收器的各设计参数. Signal From Unit BPU

哈工程电子电路综合实验-红外发射接收系统

电子电路综合设计实验报告 设计实验选题七(接收部分) ---基于单片机的红外遥控收发系统的设计实现 姓名:周迪 学号:2010042105 2013年4月17日~~2013年4月24日

摘要 红外线是现代社会中已经极为常见,在遥测、遥控等领域中,往往使用微机与单片机组成多机通信系统来完成测控任务。其中,常用的方法是使用微机的RS-232C串行接口进行串行数据通信。由于受环境的影响以及RS-232C串行接口电气性能的限制,加上连接线长、接线麻烦等缺点,其通信的空间范围总是受到限制,并使人们感到不便。因此,人们想到了无线传输。常用的无线传输方式有无线短波传输和红外线传输,但这两种方式都有一定的局限性,如短波方式易受外界电磁场的干扰,线外线传输方式不能隔墙传输等等,本文将介绍采用最新的无线长波收发模块638以及三态编解码芯片MC145026/ MC145027来设计无线数据通信装置的方法。该装置具有抗干扰性能好、穿透性强、传输距离远等特点。由于串行接口传输速度慢,信号处理电路复杂,外接模块困难。因此,本装置选用并行接口通信,从而使得电路简单易做、可靠性高。 本设计是以STC89C51单片机为控制核心,本装置主要由数据编解码和发射接收两大模块组成,设计系统组成图如下: 发射部分电路模块:STC889C51单片机作为主控核心,采用三态编解码芯片MC145026作为编码芯片,CD4011逻辑器件作为反相用途,采用单段的数码管显示发射的数字,采用八位按键输入,采用MAX232作为电平转换电路作为单片机与PC机之间的程序下载用途。 接收部分电路模块:STC889C51单片机作为主控核心,与MC145026配对使用的三态编解码芯片MC145027作为解码芯片。74LS02逻辑器件作为反相用途,采用单段的数码管显示发射的数字,八位的发光二极管显示顺序,638作为红外的接收头,采用MAX232作为电平转换电路作为单片机与PC机之间的程序下载用途。 实现方法:本实验采用单片机控制,发射部分的数据经过调制编码后送入电光变换电路经过红外发射管转换为红外光脉冲发射出去,为了增加抗干扰能力将编码的信号调制在较高的频率载波上发射。在接受部分接收头将接收到的光信号装换为电信号,经过解调将发射数据解调出来,输入单片机进行控制。 实现功能:无线数据的发射与接收 特点及水平:实现无线数据传输,在三米近距离的范围内可以收到发射数据 关键词:单片机;可靠性;MC145026;MC145027;无线数据传输。

课程设计-红外发射接收器

本科实验报告 实验名称: 红外遥控发射/接收器的设计

一、设计任务和主要技术指标 设计一个八路红外遥控器电路,主要技术指标为: 1.码元速率:400bit/S 2.调制方式:幅度键控,载频40kHz。 二、设计方案选择 利用MC145026/MC145027、NE555和CX10206A等芯片设计制作一个八路红外遥控器。 总体设计框图如下: 红外传输 三、电路原理与设计 1、MC145026编码器 MC145026由时钟振荡器、分频器、地址编码/数据编码输入电路以及数据选择与缓冲器等几部分组成。时钟振荡器和分频器向编码电路提供基准时钟。地址编码/数据编码输入电路,将不同的地址和控制数据码编为相应的信号。编码方式是以不同的脉冲宽度组合,表征不同的地址码和控制数据。数据选择与缓冲电路将编码电路的并行码变为串行码输出。 MC145026共有9条地址线A1~A9,最多有512个不同地址;其中4条与地址复用的数据线D6~D9,使用4位编码输入,16种编码状态。编码以串行方式由Dout脚(引脚15)输出。如果MC145026与译码器MC145027配对使用,则只能采用“5位地址线及4位数据线”的固定编码传送模式。

该器件的地址线和数据线采用并行编码复用输入,码状态为1、0和开路三种状态,通常仅使用前两种编码状态,每个编码的码元宽度对应编码器部的8个时钟周期,主要靠脉冲占空比大小区分编码状态,三 种状态编码波形如图1所示。 MC145026部振荡频率的典型运用围一般选择为:4kHz ~9kHz 。外接阻容元件R S 、R TC 、C TC 的参数值决定了部时钟频率,原则上要求部振荡频率围为:1kHz≤f osc ≤400kHz 。其中应满足R S =2 ~5R TC ,一般情 况当R S ≥20kΩ、R TC ≥10kΩ、400pF <C TC <15μF 时,通常遵循以下原则确定部振荡频率:' 3.21 TC TC osc C R f =,式中,pF C C TC TC 20' +=。 MC145026编码器电路原理图和参数设计如下: 1位编码间隔 编码器 内部时钟CK 编码“1”波形 编码“0”波形 编码“开路”波形 图1 编码器工作波形 D out 脚串行输出 D out 脚串行输出 D out 脚串行输出

单片机红外发射(原理与设计程序)

用AT89S51单片机制作红外电视遥控器 一般红外电视遥控器的输出都是用编码后串行数据对38~40kHz的方波进行脉冲幅度调制而产生的。 当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征: 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms 的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms 的组合表示二进制的“1”。 上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制,然后再通过红外发射二极管产生红外线向空间发射。一般电视遥控器的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的红外遥控设备,防止不同机种遥控码互相干扰。后16位为8位的操作码和8位的操作反码,用于核对数据是否接收准确。 根据红外编码的格式,发送数据前需要先发送9ms的起始码和4.5ms的结果码。 遥控串行数据编码波形如下图所示: 接收方一般使用TL0038一体化红外线接收器进行接收解码,当TL0038接收到38kHz红外信号时,输出端输出低电平,否则为高电平。所以红外遥控器发送红外信号时,参考上面遥控串行数据编码波形图,在低电平处发送38kHz红外信号,高电平处则不发送红外信号。 单片机红外电视遥控器电路图如下:

C51程序代码: #include static bit OP; //红外发射管的亮灭 static unsigned int count; //延时计数器static unsigned int endcount; //终止延时计数static unsigned char flag; //红外发送标志char iraddr1; //十六位地址的第一个字节 char iraddr2; //十六位地址的第二个字节 void SendIRdata(char p_irdata); void delay(); void main(void) { count = 0;

红外发射与接收测试报告

红外发射与接收测试报告 LLZ 一、红外线原理 红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。 它的工作原理:

其实就是一个NB的红外光敏电阻 在红外照射下处于超低阻值状态分到的电压超级小 当红外光断开以后处于高阻状态有接近6K那么大,完全避光可能还不止,在电路中分到的电压就很大了,一般分到4V以上不成问题。 红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3 所示。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。 红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 二、实验电路图 三、实验数据 首先少少解释一下各个器件的作用. VCC GND 忽略

红外发射和接收器件示例

图2-2 红外发射和接收器件示例 红外一体化接收头内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。注意输出的高低电平和发射端是反相的。 图2-3为红外发射和接收解码的示意图。在发射部分设计一个38kHz的载波,在发射数据(全码)为高电平时输出载波,发射数据(全码)为低电平时输出低电平,二者实现了逻辑与的关系,得到的信号(红外发射)驱动红外发射二极管向空间发射红外线。红外一体化接收头接收到红外信号后,解码出与发射数据(全码)逻辑相反的数据。 图2-3 红外发射和接收解码的示意图 3系统硬件设计 3.2红外遥控单元

本设计中作为发射部分使用的遥控器为M5046AP机芯的电视机遥控器。电视机遥控器应用的是红外收发原理,即遥控器前端侧面的红外发射管发射出红外信号,电路板上红外接收管接收到信号后送到单片机内部,经译码后变成相应的操作指令,以实现定时、遥控风扇的功能。 红外遥控器的内部关键电路和接收管电路如图3-1所示。 图3-1 3.3单片机控制单元 本设计以AT89S51单片机为主控器,单片机控制电路设计如图3-2所示。 单片机的P1.2-P1.4口用于控制风扇的3个档次,设计中用继电器来模拟风扇换挡开关;P1.6和P1.7引脚控制时钟电路;P2口作为液晶显示的8位数据线;P3.0和P3.1口控制风扇工作状态指示灯,分为手动和自动2个状态;P3.2中断0用于接收红外遥控编码信号;P3.4接收温度数据;P3.5-P3.7三个引脚分别控制液晶显示器的控制端。

实验六 红外调幅调频发射接收系统

实验六红外调频/调幅发射接收系统 一、实验目的 1、了解红外编、解码的原理; 2、熟悉调频/调幅接收的原理、方法和频谱; 3、熟悉调频发射机的工作原理。 二、实验内容 1、使用红外系统进行编解码,并在数码管上显示结果; 2、调试调频/调幅接收机电路,接收收音机信号 3、产生88MHz~108MHz的调频信号,实现发射机与接收机的正常通信 三、实验设备 1、20M双踪示波器一台 2、鞭状天线一根 3、带话筒耳机一套 四、实验原理 (一)红外编、解码电路原理 1、红外编码电路 红外编码调制采用编码芯片SC2262IR,典型应用电路如图6-1所示。 图6-1 SC2262IR典型应用电路

该芯片第1~8脚,第10~13脚为地址管脚,共12位。其中,第7、8、10、11、12和13脚还可作为数据管脚使用。 芯片17脚输出的编码信号由地址码、数据码和同步码组成一个完整的码字。每个码字的周期由芯片15脚和16脚所接电阻的大小确定。地址管脚状态不同,芯片17脚输出的码型也不同。即该芯片完成以地址码(数据码)为调制信号的脉宽调制,调制后的信号从芯片17脚所接的红外二极管输出。 2、红外解码原理 本实验采用一体化红外接收器。当红外接收器没有接收到信号时,输出高电平。但由于空间中的许多干扰信号,导致实验时,即使红外发射电路没有发射信号,红外接收器也有杂波输出。一般红外接收器的输出信号波形如图6-2所示。 同步码 A8A10A11 A3A9 A2A7 A0A1A4A5 A6 图6-2 红外接收器输出信号波形 图中,A0~A11分别对应于发射芯片第1~8脚和第10~13脚的状态。这里,记图52-2中A0~A7和A10所对应的波形为11,A8和A11所对应的波形为00,A9所对应的波形为10。则当发射芯片地址管脚接低电平时,解码部分对应输出11;当发射芯片地址管脚接高电平时,解码部分对应输出00;当发射芯片地址管脚悬空时,解码部分对应输出10。 本实验电路,发射芯片第1~8脚(A0~A7)接地,第11脚(A9)悬空,第12脚(A10)接地,第10脚(A8)和第13脚(A11)分别由按键S1(+)和S2(-)控制,当按键按下时,管脚接高电平,按键不按动时,管脚接低电平。 将解码输出信号给单片机识别处理,可实现通信系统中的相关控制。本实验,单片机一旦识别到A8为00且A11为11,则输出相关控制字给BH1415(调频发射芯片),该芯片识别单片机输出的控制字,将发射载波频率按0.1MHz步进增大。单片机一旦识别到A8为11且A11为00,则输出相关控制字给BH1415(调频发射芯片),该芯片识别单片机输出的控制字,将发射载波频率按0.1MHz步进减小。模块上数码管LED6~LED9(单位为MHz)显示调频发射芯片的发射频率,开机默认为88MHz。 (二)调频/调幅接收系统原理 调频/调幅解调电路由索尼公司生产的CXA1691BM和少量外围元件组成。CXA1691BM既可以接收中波调幅信号,也可接收调频信号。它包含了中放、混频、限幅、鉴频、检波等电路,内部框图如图6-3所示。当开关S1向下拨时,CXA1691BM工作在调幅接收的状态,接收载频范围为535kHz~1605KHz。当开关S1向上拨时,CXA1691BM 工作在调频接收的状态,接收载频范围为88MHz~108MHz。

相关主题