搜档网
当前位置:搜档网 › 电流互感器二次回路检测方法简析

电流互感器二次回路检测方法简析

电流互感器二次回路检测方法简析摘要:文章论述了电流互感器二次回路的正确、安全运行对电力系统的稳定可靠运行的重要意义。二次回路故障检测主要有绝缘检查法、直流检测法、交流法检测、一次通流法等方法。电流二次回路的各项检测方式在面对不同阶段类型保护及自动化装置的电流二次回路所体现出来的特点,可进行有机组合,从而对电流二次回路起到良好的检测效果。

关健词:电流二次回路;检测方法;继电保护;有机组合

一、检测方法简要介绍

电流互感器二次回路故障主要存在以下几点:

首先,对地绝缘损坏或两点接地:此种情况下,互感器二次回路通过大地产生分流现象,一次系统潮流电流将不能准确通过二次回路反映出来,二次回路中装置设备将无法正确反映一次系统运行状态,有可能引起二次装置产生误测、拒动、误动等现象,影响电力系统的安全稳定运行。

其次,回路断线:此种情况下,二次装置将采集不到断线相电流量,回路公共端会产生不平衡电流,将会引起装置误动;同时,还会使断点处产生高感抗电压,影响人与设备的安全。

此方法能有效确保回路接线的正确性,但实际操作上工作流程比较繁琐,此外也无法检测出回路绝缘性能,无论从操作过程还是检测效率上来看都不经济,仅在二次接线施工中核对芯线或现场缺乏其他检测设备时使用。

电桥回路电阻测试法可简洁的判断出二次回路的贯通性是否良好;还能较为明显的分辨出互感器二次绕组的组别特性,是一种行之有效的回路检测方法。

3.互感器极性检测试验法。以一次母线作为基准,将干电池的正极搭接电流互感器一次桩头的极性端,负极搭接电流互感器一次桩头的非极性端。将电流互感器

二次回路终端的装置与回路在端子排上断开,在断开点串入一个指针式直流微安表,微安表正极与二次电流回路极性端相连,微安表负极与二次电流回路非极性端相连。

依据电流互感器A、B、C相别在一次侧用干电池正极与互感器一次的极性端分别进行通断拉合试验,在二次侧按相别观察微安表指针偏转状况。根据所观察的指针偏转状况可明确判断出被检测电流回路的一、二次极性关系和贯通性是否良好。

(三)交流检测法

交流检测法的理论基础为互感器二次线圈在交流回路中呈现高抗值(L1),而二次回路电阻则呈现低阻值(R1)。从方式上可分为电流法、电压法与伏安特性法。

1.电流法。根据升流地点的不同,可分为始端法、终端法两种。(1)始端法。1)将互感器二次接线柱头电缆芯线解除,电流源输出线一端接所测回路原极性端(K1)所联芯线,另一端接公共端(K2)所联芯线。调节电流至一稳定值(通常为二次额定工作值5A/1A),监视回路中串联电流表与并联电压表数值指示,检查相应二次回

路装置工作状态及数值显示。如果在一个低值电压下电流量能顺利上升至稳定值且二次装置工作状态正常,那么证明回路贯通性良好,接线正确;反之,则表明所查回路存有缺陷,需及时处理。按此方式依次检查互感器三相电流回路,确定其接线正确性和回路贯通性。2)电流源输出线两端跨接于互感器二次接线柱头相间(AB、BC、CA)极性端(K1)所联芯线,将电流上升至稳定值,用钳形表在终端监视所测回路中电流量(如自动化装置与保护装置自身带有测量功能,可直接观察其中的实际读数),从而确定回路极性接线正确性。例如,检测AB相:电流源输出线两端跨接AB极性端(K1)所联芯线,电流上升至稳定值,用钳形表在终端监视相应回路电流量,由电流回路构成原理可迅速得出结论,如果AB相极性接线正确,钳形表在终端只能从被测两相极性端进线中测出电流量,而C相进线与公共端N线回路应无电流量。依次检测BC、CA相间,从而保证互感器二次回路三相极性接线一致无误。

注:互感器二次线圈在交流回路中呈现高抗值L1?垌R1,且在检测过程中线圈始终与被检回路处于并联状态,因此其分流作用很

小,对检测结果影响不大。在保证二次线圈完好的前提下,有时也可以不解除互感器二次接线柱头电缆芯线,直接进行检测工作。(2)终端法。在互感器二次回路终端断开回路联接端子,二次回路接地点可靠解除,电流源输出线一端接极性端进线侧,另一端可靠接地,在互感器二次回路始端依次将被检回路极性端(K1)与公共端(K2)接地,使整个被检回路通过大地构成环路,然后按一定要求调升电流,并在回路中串入电流表,并入电压表,用以监视回路电压量、电流量变化情况。当接地点在极性端(K1)侧时,互感器二次线圈未包含在被检回路中,因为二次回路交流电阻值(R1)很低(一般为几欧姆),整个被检环路呈现低阻抗状态,所以回路电流将在较低回路电压值下上升至稳定值;当接地点在公共端(K2)侧时,互感器二次线圈包含在被检回路中,因为互感器二次线圈交流电抗值很高(L1?垌R1),整个被检环路将呈现高阻抗状态,所以回路电流将会在较高回路电压值下升至稳定值。接地点不同,电压幅值的变化非常明显。如检测结果与上述现象一致,则表明被检回路贯通性良好,相别、极性正确。依次检测A、B、C三相,确保整个回路正确性。由上可知,两种电流检测方式虽然目的一致,但是在具体实施的过程中有着区别,各有优点和不足。始端法从互感器二次回路起始点对回路通入额定工作电流,既检查了回路接线的正确性,又顺带一次性检查了此回路所接仪表、继电器等二次装置额定工作状态,工作效率相对较高。但始端法工作地点通常在一次电气设备间隔中(一般在户外,离控制室较远),检测试验平台搭装不方便,容易受到天气因素影响。终端法工作地点主要在控制室内,检测试验平台搭装方便,不受天气因素影响;但由于受检测点局限,互感器二次回路终端装置检查不到,需要另行通电进行检查。

2.电压法。电压法理论基础与电流法一致,但是在装置上要求最为简便,所需工作人员最少。

3.伏安特性法。在电流二次回路户外始端端子箱将回路联接端子断开,保证互感器侧二次回路与保护及自动化装置侧二次回路可靠分离;互感器侧二次回路接地点可靠解除。将伏安特性试验装置在现场布置妥当,接通试验电源,针对需要检测间隔的电流互感器,依次进行各绕组的伏安特性测试。通过测试出来的电流、电压数据可以很直观的判别出各二次绕组的组别特性,结合对应间隔原理图标注的各个电流二次回路所定义的绕组,可准确核对出计量、测量、保护用电流互感器二次绕组组别接线是否正确。

(四)一次通流法

1.短路接地法。此方法应用的前提,是被检测回路所对应一次系统必须包含依靠磁联系进行一次之间能量传递的设备——变压器,而在单纯依靠电联系传递能量的系统中是不适用的,会使检测用电源发生直接短路故障,引发安全事故。取一380V稳定电源直接加入变压器一次系统一侧的三相导电回路中,在变压器其他侧将其一次系统三相短路接地;在380V稳定电源——变压器——接地线——大地之间形成回路,此时将会在一次系统产生一较大值短路电流(但远小于一次系统工作电流),在这一回路包含范围内的所有电流互感器一次侧都会流过这一电流,其二次侧也会按本身工作变比感应出一小电流值,用高精度相位表和钳形表可以迅速、方便的检测出二次回路中三相电流值的大小、方向、角度,从而印证出所需检测回路的正确性。

2.一次直升法。将大容量升流装置两端输出线直接接在所需检测电流互感器一次柱头两侧,调节升流装置升入大电流(通常为一次额定工作电流),用钳形表观察其二次回路电流量反应,依靠电流互感器二次回路的基本理论特性判断出回路是否正确。短路接地法与一次直升法相比,各自优缺点都很明显。

短路接地法灵活、高效,还可依据需要模拟出不同情况的一次潮流运行状态,并通过二次侧电流的反应检验出二次回路与一次系统在实际运行中的关系,实用性

最强,多适用于检测大规模新建系统;但此法一次系统电流幅值上升有限,无法检测出电流互感器在一次额定工作电流下其二次回路的工作状态。一次直升法正好相反,此法可通过一次系统升入大电流检测一次额定工作电流下二次回路的工作状态,但无法实现各种带变压器组的一次系统的潮流运行状态模拟,不具备检测主变差动电流回路正确性的功能。

二、检测方法实际应用简要分析

下面,将就目前电力系统继电保护的发展现状结合具体工程应用对以上检测方法进行一定程度的适用性简要分析。

(一)各检测方法汇总表

(二)电力系统继电保护的发展现状介绍

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了4个历史阶段的发展,现在正朝着第5阶段的方向发展。

1.第一阶段。建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

3.第三阶段。从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末,集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初,集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。

4.第四阶段。我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。

(三)检测方法应用简要分析

前面介绍的电流二次回路的各项检测方式在面对不同阶段类型保护及自动化装置的电流二次回路所体现出来的特点,可进行有机组合,从而对电流二次回路起到良好的检测效果,在充分保证电流回路检测准确的同时又可提高现场工作效率。

1.第一阶段的电磁式继电器。传统的电磁式保护,其原理构成需一组电磁式继电器联结组成。因此,在其电流二次回路中继电器的互相联结点较多,但继电器工作无须工作电源,就回路特点,在工程施工及检测时应以下面几种方式配合为宜:(1)绝缘检查;(2)互感器极性检测试验法;(3)交流电流法;(4)伏安特性法;(5)一次直升法。

2.第二阶段晶体管保护装置。晶体管保护在功能集成方面比传统的电磁式保护有很大提高,电流二次回路联结点明显减少,但装置需通入工作电源才能正常体现其工作性能,就回路特点,在工程施工及检测时应以下面几种方式配合为宜:(1)绝缘检查;(2)欧姆表电阻对线法;(3)电桥回路电阻测试法;(4)互感器极性检测试验法;(5)伏安特性法;(6)一次直升法。

[4]葛耀中.数字计算机在继电保护中的应用[J].继电器,1978,(3)

电流互感器二次回路负载测量

产品关键字: 二次负荷测试仪、电流互感器二次回路负载测试仪 功能简述: 电压互感器电压与负荷特性目前对互感器误差测试时,通常按互感器铭牌上的规定用电流负荷箱和电压负荷箱对互感器进行测试,但互感器运行过程中实际二次负荷是多少?是不是就是互感器铭牌上规定值?互感器在实际二次负荷下的误差是多少? 为了解决上述问题,实际测试互感器二次负荷就显得特别重要。同时在测试实际二次负荷过程中如何取样电流信号也是比较重要的问题。在测试现场二次负荷时停电断开电流回路既不方便也不安全。我公司产品采用钳型电流互感器(钳表)对线路电流进行采样,方便用户使用。 另外有些公司产品采用取PT电压作为仪器工作电源,这种方式不是很安全,在这种方式下,相当于给PT/CT增加了负荷,同时仪器变压器的瞬间激磁电流很可能引起系统保护动作,影响供电安全。我公司仪器采用大容量锂电池作为仪器工作电源,既可以保障系统安全又可以给仪器提供比较纯净的电源,避免现场电源干扰,保证测量精度。 仪器特点: 1.可以实现三相三线,三相四线、单相全自动测量; 2.使用工程塑料机箱,结识耐用,有效保障测试人员及系统安全; 3.仪器具有量程自动切换功能,保证测试精度; 4.采用电子式原理线路结合DSP技术是使测试稳定性好,抗干扰能力强; 5.测量完毕,自动计算和负荷相关的各项参数,便于客户分析和试验。 6.采用大屏幕汉字液晶显示,所有操作均由汉字菜单提示; 数据具备掉电存贮及浏览功能,能与计算机联机传送数据。 7.采用大容量7.2V11Ah锂电池供电,对测试回路不产生任何影响,避免系统出现保护的情况。同时在现场无供电电源的情况下使用。 8.次负荷测试,采用钳型电流表采样电流,不需要断开二次回路。可以实现不停电在线测量。自动切换量程:测量过程中可以根据测试对象数值的不同切换到不同的位置,使测量精度和显示位数得到保证。 9.工作时间可以长达24小时(最长),可在充电状态下测量。

电流互感器二次回路检测方法简析

电流互感器二次回路检测方法简析 摘要:文章论述了电流互感器二次回路的正确、安全运行对电力系统的稳定可靠运行的重要意义。二次回路故障检测主要有绝缘检查法、直流检测法、交流法检测、一次通流法等方法。电流二次回路的各项检测方式在面对不同阶段类型保护及自动化装置的电流二次回路所体现出来的特点,可进行有机组合,从而对电流二次回路起到良好的检测效果。 关健词:电流二次回路;检测方法;继电保护;有机组合 一、检测方法简要介绍 电流互感器二次回路故障主要存在以下几点: 首先,对地绝缘损坏或两点接地:此种情况下,互感器二次回路通过大地产生分流现象,一次系统潮流电流将不能准确通过二次回路反映出来,二次回路中装置设备将无法正确反映一次系统运行状态,有可能引起二次装置产生误测、拒动、误动等现象,影响电力系统的安全稳定运行。 其次,回路断线:此种情况下,二次装置将采集不到断线相电流量,回路公共端会产生不平衡电流,将会引起装置误动;同时,还会使断点处产生高感抗电压,影响人与设备的安全。 此方法能有效确保回路接线的正确性,但实际操作上工作流程比较繁琐,此外也无法检测出回路绝缘性能,无论从操作过程还是检测效率上来看都不经济,仅在二次接线施工中核对芯线或现场缺乏其他检测设备时使用。 电桥回路电阻测试法可简洁的判断出二次回路的贯通性是否良好;还能较为明显的分辨出互感器二次绕组的组别特性,是一种行之有效的回路检测方法。 3.互感器极性检测试验法。以一次母线作为基准,将干电池的正极搭接电流互感器一次桩头的极性端,负极搭接电流互感器一次桩头的非极性端。将电流互感器二次回路终端的装置与回路在端子排上断开,在断开点串入一个指针式直流微安表,微安表正极与二次电流回路极性端相连,微安表负极与二次电流回路非极性端相连。 依据电流互感器A、B、C相别在一次侧用干电池正极与互感器一次的极性端分别进行通断拉合试验,在二次侧按相别观察微安表指针偏转状况。根据所观察的指针偏转状况可明确判断出被检测电流回路的一、二次极性关系和贯通性是否良好。 (三)交流检测法 交流检测法的理论基础为互感器二次线圈在交流回路中呈现高抗值(L1),而二次回路电阻则呈现低阻值(R1)。从方式上可分为电流法、电压法与伏安特性法。 1.电流法。根据升流地点的不同,可分为始端法、终端法两种。(1)始端法。1)将互感器二次接线柱头电缆芯线解除,电流源输出线一端接所测回路原极性端(K1)所联芯线,另一端接公共端(K2)所联芯线。调节电流至一稳定值(通常为二次额定工作值5A/1A),监视回路中串联电流表与并联电压表数值指示,检查相应二次回路装置工作状态及数值显示。如果在一个低值电压下电流量能顺利上升至稳定值且二次装置工作状态正常,那么证明回路贯通性良好,接线正确;反之,则表明所查回路存有缺陷,需及时处理。按此方式依次检查互感器三相电流回路,确定其接线正确性和回路贯通性。2)电流源输出线两端跨接于互感器二次接线柱头相间(AB、BC、CA)极性端(K1)所联芯线,将电流上升至稳定值,用钳形表在终端监视所测回路中电流量(如自动化装置与保护装置自身带有测量功能,可直接观察其中的实际读数),从而确定回路极性接线正确性。例如,检测AB相:电流源输出线两端跨接AB极性端(K1)所联芯线,电流上升至稳定值,用钳形表在终端监视相应回路电流量,由电流回路构成原理可迅速得出结论,如果AB相极性接线正确,钳形表在终端只能从被测两相极性端进线中测出电流量,而C相进线与公共端N线回路应无电流量。依次检测BC、CA相间,从而保证互感器二次回路三相极性接线一致无误。注:互感器二次线圈在交流回路中呈现高抗值L1?垌R1,且在检测过程中线圈始终与被检回路处于并联状态,因此其分流作用很

电流互感器二次开路的原因与查找处理

电流互感器开路为什么不允许? 电流互感器正常工作时,二次回路近于短路状态。这时二次电流所产生的二次绕组磁动势F2对一次绕组磁动势F1有去磁作用,因此合成磁势F0=F1-F2不大,合成磁通φ0也不大,二次绕组内感应电动势E2的数值最多不超过几十伏。因此,为了减少电流互感器的尺寸和造价,互感器铁心的截面是根据电流互感器在正常工作状态下合磁磁通φ0很小而设计的。 使用中的电流互感器如果发生二次回路开路,二次绕组磁动势F2等于零,一次绕组磁动势F1仍保持不变,且全部用于激磁,合成磁势F0=F1,这时的F0较正常时的合成磁势(F1-F2)增大了许多倍,使得铁心中的磁通急剧地增加而达到饱和状态。由于铁心饱和致使磁通波形变为平顶波,因为感应电动势正比于磁通的变化率dφ/dt,所以这时二次绕组内将感应出很高的感应电动势e2。二次绕组开路时二次绕组的感应电动势e2是尖顶的非正弦波,其峰值可达数千伏之高,这对工作人员和二次设备以及二次电缆的绝缘都是极危险的。另一影响是,因铁心内磁通的剧增,引起铁心损耗增大,造成严重发热也会使电流互感器烧毁。第三个影响是因铁心剩磁过大,使电流互感器的误差增加 带电的电流互感器二次绕组严禁开路运行。 简单的讲,这是因为一次的匝数很少。二次的匝数相对一次是很多的,当二次绕组开路会产生很高过电压,对人身和设备造成威胁,所以电流互感器是严禁开路的,这在《电业安全工作规程》第221条有严格的规定。 不过现在有人发明了"电流互感器开路保护器"。该保护器主要由连接于二次绕组两端的压敏电阻构成,当电流互感器二次绕组短路或接有负载时,由于二次绕组两端的电压很低,压敏电阻呈现极高的阻值,没有电流流过保护器,不影响互感器的正常运行。当二次绕组开路产生过电压时,压敏电阻呈低阻值状态,相当于把二次绕组短路,这样就抑制了过电压的产生,达到保护设备和人身安全的目的。 在运行中的电流互感器是将处于高电位的大电流变成低电位的小电流。也就是说:二次绕组的匝数比一次要多几倍,甚至几千倍(视电流变比而定)。如果二次开路,一次侧仍然被强制通过系统电流,二次侧就会感应出几倍甚至几千倍于一次绕组两端的电压,这个电压可能高达几千伏以上。 在运行中电流互感器二次侧开路后,一次侧电流仍然不变,二次侧电流等于零,则二次电流产生的去磁磁通也消失了。这时,一次电流全部变成励磁电流,使互感器铁芯饱和,磁通也很高,将产生以下后果: (1)由于磁通饱和,其二次侧将产生数千伏高压,且波形改变,对人身和设备造成危害。 (2)由于铁芯磁通饱和,使铁芯损耗增加,产生高热,会损坏绝缘。 (3)将在铁芯中产生剩磁,使互感器比差和角差增大,失去准确性。 因此,电流互感器在使用中必须与二次负荷确切联结,不接负荷时则应可靠短接,短接的导线必须有足够的截面,以免当一次过电流时产生的较大的二次电流将导线熔断,造成二次开路而出现高电压。 其他答案 电流互感器正常工作时,二次回路近于短路状态。这时二次电流所产生的二次绕组磁动势F2对 一次绕组磁动势F1有去磁作用,因此合成磁势F0=F1-F2不大,合成磁通φ0也不大,二次绕 组内感应电动势E2的数值最多不超过几十伏。因此,为了减少电流互感器的尺寸和造价,互感 器铁心的截面是根据电流互感器在正常工作状态下合磁磁通φ0很小而设计的。 使用中的电流互感器如果发生二次回路开路,二次绕组磁动势F2等于零,一次绕组磁动势F1仍

电流互感器检测方法

电流互感器检测方法 电流互感器是一种用于测量电网中电流值的传感器设备。它主要由铁心、一次电流线圈、二次电流线圈和磁路完结部分等组成。电流互感器的工作原理是利用感应电流的方式将高电流量变换为小电流量,以便进行测量和保护。 电流互感器的检测方法主要包括以下几个方面: 1.外观检测:首先需要对电流互感器的外观进行检测,包括检查铁心表面是否存在划痕或损伤,检查线圈是否完好无损,检查外层绝缘材料是否完好,以及检查连接线路是否良好等。 2.参数检测:其次需要对电流互感器的参数进行检测,包括线圈匝数、转向比、一次线圈和二次线圈的电阻等参数的测量。可使用万用表对线圈的电阻进行测量,以确定线圈的完好性。还可以使用电压比率测试仪对变电器的转向比进行测量。 3.绝缘检测:然后需进行电流互感器的绝缘检测。使用绝缘电阻测试仪对电流互感器进行绝缘电阻测试,以检查绝缘材料是否良好。若发现绝缘电阻值较低,则表明绝缘可能存在问题,需要进行绝缘材料的维修或更换。 4.磁性检测:电流互感器主要通过磁感应来实现电流变换,因此还需要进行磁性检测。可以使用磁铁来检测电流互感器的铁心和线圈是否具有足够的磁性。在遇到磁性不足的问题时,可以采取磁化处理或更换磁性材料。

5.载流能力检测:最后需要对电流互感器的载流能力进行检测。可使用特定的负载电阻对电流互感器进行负载测试,以确定其能否正常工作。负载测试时需要严格控制电流互感器的热稳定性和载负能力,确保其能在长时间高负载下正常运行。 在电流互感器的检测过程中,还需要注意以下一些问题: 1.确保测试仪器的准确性和精度,以保证检测结果的可靠性。 2.进行时应注意安全事项,确保操作人员的人身安全。 3.定期对电流互感器进行检测和维护,及时发现和解决存在的问题,确保电流互感器的正常运行。 总结起来,电流互感器的检测方法主要包括外观检测、参数检测、绝缘检测、磁性检测和载流能力检测等方面。通过对电流互感器进行综合性的检测和维护,可以确保其正常工作和使用寿命,为电力系统的稳定运行提供可靠的支持。

继电保护二次回路试验方法

继电保护二次回路试验方法 一、产品概述 继电保护二次回路是继电保护系统的重要组成部分,就整个继电保护系统而言,二次回路虽只是一个较小的方面,但它的故障不仅直接影响继电保护设备动作的正确性,而且关系到系统的安全稳定运行。因此,继电保护二次回路的试验工作作为继电保护设备投用过程中的一个重要环节,必须得到足够重视。 二、二次回路通电试验前应具备的条件 1、.设备安装完毕,电缆敷设、接线完毕。 2、测量仪表、继电器、保护自动装置等检验、整定完毕。 3、控制开关、信号灯、直流空气断路器、交流空气断路器、电阻器等经检查型号无误、完好无缺。 4、互感器已经试验,并合格。对于互感器的连接,要特别注意其极性。 5、断路器等开关设备安装、调整、试验完毕,就地电动操作情况正常, 有关辅助触点已调整合适。 6、伺服电机已在就地试转过,其方向与要求一致。 7、在不带电情况下,经检查回路连接正确,原理图、展开图、安装图核对无误;并与实际设备、实际接线相符,接线螺丝接触可靠。 8、盘、台前后的控制开关、信号灯、直流空气断路器、交流空气断路器等各元件的标签、标志齐全且清晰正确。 9、接到端子排和设备上的电缆芯和绝缘导线应有标志并避免跳、合回路靠近正电源。弱电和强电回路严禁合用一根电缆,并应采取抗干扰措施。 10、的直流电源应有专用的熔断器。 三、二次回路通电试验前应注意事项 1、格执行DL408—1991《电业安全工作规程》及有关保安规程中的有关规定,并编制好经技术负责人审核后签署的试验方案和填写好继电保护安全措施票。了解工作地点一、二次设备的运行情况,本工作与运行设备有无直接联系和与其他班组相互配合的工作。 2、工作人员应分工明确并熟悉图纸与检验规程等的有关资料。工作负责人应认真核对运行人员所做的安全措施是否符合实际要求。

电流互感器检验项目和试验方法分析

电流互感器检验项目和试验方法分析 电流互感器是按照电磁感应原理,通常用闭合的铁心和绕组构成。它是一种变压器,电力系统供测量仪器、仪表和继电保护等电器采样使用的必不可少的設备。串接在测量仪表和保护回路中,电流互感器在工作时,始终是闭合的,当电网电压和电流高于一定量值时,电能表和其他测量仪表及继电保护装置必须经过互感器接入电网,才能实现正常测量和保护电力设备的安全。本文针对电流互感器检验项目和试验方法进行分析。 标签:电流互感器;检验项目;试验方法分析 一、电流互感器的定义 电流互感器又叫“仪用电流互感器”。它有一种意义是实验室使用的多电流比精密电流互感器,通常用来扩大仪表的量程。 电流互感器跟变压器一样,都是根据电磁感应的基本原理进行工作,互感器改变的是电流而变压器改变的是电压值。互感器连接的被测电流的绕组Nl为一次绕组(即初级绕组);连接测量仪表的NZ是二次绕组(即次级绕组)。在发电,变电,输电,配电和用电的线路中电流大小悬殊上的差距,为方便测量,控制和保护必须得到一致的电流,还有路线上的电压通常很高,不能直接测量其数值。电流的互感器起到的就是实现电流的变换和隔离的效果。 二、现场检验周期及检验项目 (1)新投运或改造后的I,1,m,四类电能的高压测量装置要在30天内进行当场检验。检验事项通常有:首先,电能计量器具的准确性。其次,检查电能计量装置的运行状况,及时发现用电异常如:报装容量,变比大小,端子接触,窃电迹象等。最后,检查二次负荷有无变化,二次回路接线是否正确等。(2)I 类电能表要保证每三个月进行一次现场检验,1类电能表要每六个月进行,m类电能表则每年检验一次。(3)互感器十年进行一次现场检验,当互感器的误差超过标准范围时,要找到原因,重新调整试验的思路和计划,尽快解决,时间要少于最近主设备每次的完成检验时间。(4)运行中的35千伏及其以上的电压互感器中的二次电路的电压差值,要保证每隔两年进行一次检验。当二次电路的负荷数值超过电流互感器的标准二次负荷或者二次电路电压降的数值超过标准的差值时,要进行及时的检查,尽量在一个月内排除这些问题。 三、现场检验设备 第一,现场检验用标准器的准确度等级,至少具高2个准确度等级,其他测量用指示仪表的准确度等级应不低于oj级,配置合理。电能表现场检验标准至少应每3个月在试验室比对一次。第二,现场检验标准应有测量电压,电流,相位和错误接线判别功能,以及数据存储和通信功能。第三,现场检验应配置专用

电流互感器检验方法

电流互感器检验方法 电流互感器是一种用于检测和测量电网中电流变化的设备,其主要作用是将高电流转 换成低电流并输出给仪器,使得电流被监测和控制。在使用电流互感器之前,需要对其进 行检验,以确保其准确性和可靠性。本文将介绍电流互感器的检验方法,并详细描述每个 步骤。 1. 检查设备和工具是否准备充分 在检验电流互感器之前,需要准备适当的设备和工具,包括:万用表、频率计、交流 电源、数字示波器、电流定值器、稳压电源、负载箱等。还需要检查仪器和工具是否正常 工作,为检验做好充分准备。 2. 校准电流互感器 校准是确保电流互感器准确度的关键步骤。首先需要将电流互感器连接到稳定电源上,并通过万用表检查它的输出电流是否与额定值一致。如果不一致,则需要调整电流互感器 的变比以校准输出电流。校准时需要用到负载箱,可以根据负载箱的参数来确定校准变 比。 3. 测量基本误差 基本误差是检验电流互感器的关键指标之一,可以通过测量AC和DC误差的方式来确定。这些误差包括额定电流下的误差、额定电压下的误差、负载误差和温度误差。要测量 这些误差,需要通过数字示波器、万用表和频率计来测量电流和电压输出值,并通过计算 和比较来确定误差值。测量时需要注意选择合适的测试频率、温度和负载参数。 4. 测量相位角误差 相位角误差也是电流互感器检验的重要指标之一,它与电流互感器的生产工艺和材料 有关。在测量相位角误差时,需要使用数字示波器或频率计来测量电压和电流输出信号的 相位差,并通过计算来确定相位角误差值。与测量基本误差一样,测量相位角误差时需要 选择合适的测试频率、温度和负载参数。 5. 测量短路阻抗 短路阻抗是另一个关键指标,它可以确保电流互感器在实际使用中的稳定性和安全性。在测量短路阻抗时,需要将电流互感器连接到短路负载上,并通过数字示波器或交流电源 来测量输出电流和电压,从而计算出短路阻抗的值。同时需要注意选择合适的测试频率和 电压级别。 6. 检查外观和机械性能

互感器二次回路安装试验及检查方法

互感器二次回路安装试验及检查方法 互感器二次回路安装试验及检查方法 【摘要】针对现场安装工作中遇到的常见问题,根据规程要求,提出试验和解决方法,规范现场施工,从源头消除不稳定因素,为安全生产提供保障。 【关键词】互感器核相带负荷 随着计算机技术的迅速发展,微机保护越来越广泛的应用于电力系统,这些装置依赖于二次电流电压对于一次系统运行状态的准确反映。装置对于接入的电流,电压的相互关系及抗干扰等各方面均有严格的要求。在实际安装过程中,还存在许多不规范的环节,本文根据规程要求,列举出最可能出现问题的环节,并提出了针对性的试验方法。 1 电压互感器 根据《电力系统继电保护及安全自动装置反事故要点》的规定,电压互感器二次接线必须符合以下几点: (1) 电压互感器二次回路必须分别有且只能有一点接地。 (2) 经过控制室N600连通的几组电压互感器二次回路,只能在保护小室N600一点接地,各电压互感器二次中性点 在开关场的接地点必须断开。为保证可靠接地,各电压互感器二次中性线不得接有可能断开的开关(熔丝)或接触器。 (3) 已在保护小室一点接地的电压互感器二次绕组,在开关场加装放电间隙,其击穿电压必须符合要求。 (4) 来自电压互感器二次的四根开关场引入线和互感器开口三角回路的2(3)根开关场引入线必须分开,不得公用。 1.1 压变的作用 压变主要用于采集一次系统电压供保护装置用于和故障电流判断系统是否有异常(故障)并作出相应的正确反映和遥测、电能量的计算等。 线路压变除采集线路电压之外,还具有线路保护高频信号的传输。化使用0.2级,计量接D级,不符合规程要求。

1.2可能发生的接错误及危害 (4) 二次接线极性错误,造成保护、计量或测控装置内部相位不符合要求(错误相相位相差180,保护装置自采3异常)。若发生在线路压变上,角差不符合规定要求,造成不能同期合闸。 (5) 压变端子箱内部N600未接放电间隙或N600直接接地。当系统故障时,两点接地对N600产生附加电压或未加装放电间隙造成N600过电压,均可能影响保护正确动作。 备用绕组中的一端(如图a点)未接地。极易造成人身和设备伤害(压变不接地会对地产生高电压)。可能发生的接线错误见图1。 (6) 相序错误。保护装置自采零序(3)异常告警、负序(M)电压异常。 (7) 压变二次电压并列后相别不同,将发生二次电压回路短路。 (8) 取用的二次电压不符合要求,例如要求接入的 110kV电压,实际接入220kV电压。 (9) 有旁路代运行方式的线路压变N600或者不同保护小室之间N600经端子排转接后共点接地和本线保护用的 N600公用一根从屏顶小母线引下线,当本保护校验做安全措施拆开N600引下线时,压变失去永久的保护接地点,危及人身和设备安全。 (10) 当有高频保护时,结合滤波器引线未接到压变内部的大N端子或大N未与XL断开,造成高频通道中断,不能进行通道交换;线路压变到结合滤波器引线用裸露导线易造成高频通道接地,不能进行通道交换。无高频保护时,压变内部的大N端子未与XL连接,造成线路压变失去一次接地点,使二次电压采样不正确并危及人身和设备安全。 (11) 电压回路短路。特别是正常运行时压变开口三角的 二次绕组被短路是很难被发现,一旦系统发生接地故障时将严重影响保护的正常运行。这方面的教训已经很多,如直接接地系统发生保护装置误动或拒动、不接地系统发生不能及时判断系统接地故障的同时引起压变二次回路产生极大的 短路电流,引起压变烧毁。 1.3 试验及核相

电流互感器常见故障分析及检验方法介绍)本科毕业设计(论文)

电子科技大学 毕业设计(论文) 论文题目:电流互感器常见故障分析及检验方法介绍 摘要 电力系统中广泛采用的是电磁式电流互感器,电流互感器由闭合铁芯和绕组组成。依据电磁感应原理工作,电流互感器作为一种特殊的变压器,通过串接在测量仪表之中保护电路,广泛应用于电力系统测量研究、仪表测量、自动装置和继电器保护系统中。电流互感器在工作状态下,始终呈闭合形式,只有当电网电压和电流超过预设值时,电能表和其他测量仪表通过互感器接入电网系统之中继而保护电力设备并进行其他测量。本文主要就实际工作中遇到的电流互感器问题进行分析,同时结合目前状态检修工作中的电流互感器检验项目和试验方法进行分析,从而找到解决问题的方法,为今后的安全工作提供有效的保证,也希望对相关工作人员有所参考。 关键词电流互感器常见故障检验方法

Abstract Electric current transformer is widely used in electric power system, and the current transformer is composed of closed core and winding. According to the principle of electromagnetic induction, current transformer is a special kind of transformer, which is widely used in electric power system measurement, instrument measurement, automatic device and relay protection system. Current transformer in the working state, always in a closed form, only when the power grid voltage and current exceeds the preset value, the electric energy meter and other measuring instruments through the transformer access to the power system of the power equipment and other measurement. This paper mainly analyzes the current transformer problems encountered in practical work, and combined with the current transformer test project and test method in the current condition based maintenance work to find a way to solve the problem, and provide an effective guarantee for the safety work in the future. KEY WORD:Method of common fault test for current transformer

电流与电压二次回路接线检查方法

电流与电压二次回路接线检查方法 【摘要】二次回路接线复杂多变,由于现场条件限制,无法进行加压模拟实验,一旦接线出现错误,会出现电压互感器不能正确反映系统运行电压,甚至可能导致高压保险熔断、烧毁互感器等严重后果。本文探讨目前电流与电压二次回路中存在的各类典型问题,提出电流与电压二次回路接线检查的方法,以确保确保了接线正确性。 【关键字】电流与电压,二次回路,电压回路,方法 一、引言 设备大修、改造或因为交流回路技改工作完成后,都要对电流互感器二次回路接线和电压回路相序进行检查核对,确保极性相序正确,从而保证继电保护装置的安全可靠运行。 二、电流与电压二次回路接线检查方法 (一)机组电压回路定相检查 1. 利用系统倒送电方式进行电压回路定相试验 1) 如图1所示,拆开机组定子出口母线,并断开发电机定子与系统母线,合上Q2 和Q1,由系统倒送电至机组TV2 回路,使得系统TV1 与机组TV2 均处于同一个电压系统。 2) 用万用表测试系统TV1和机组TV2二次电压,应有(设系统TV1 电压为UA、UB 和UC,机组TV2 电压为Ua、Ub、Uc 和Un):UAa =UBb =UCc =0 V;Uan=Ubn =Ucn =60 V;Uab =Ubc =Uca =100 V;测量TV开口三角形接线的零序电压Uo应很小(接近于零)。则表示TV 回路接线正确。 2. 结合整步表进行TV二次回路定相试验 1) 拉开Q2,断开Q1,发电机组空载运行。手动投入机组同期系统。 2) 用三个电压表同时监视系统TV1与机组TV2之间的电压差UAa、UBb 和UCc。由于机组与系统分属不同的电力系统,故所测得的电压差在不断变化(变化范围为0~100 V之间)。 3) 观察整步表的角度变化,当整步表的角度差最大时,电压差UAa、UBb 和

电流互感器原理及测试方法

电流互感器原理及测试方法 电流互感器是一种用于测量电流的装置,它通过电流变压器的原理来 实现。电流互感器主要由铁心、一次绕组、二次绕组和磁通计量装置组成。其工作原理是将待测电流通过一次绕组,产生磁通,从而诱导出二次绕组 中的电压信号,通过磁通计量装置来测量二次绕组中的电压信号,从而间 接测量出一次绕组中的电流。 1.额定参数测试:包括额定一次电流、二次电流、额定频率、二次负 载等参数的测试。可以通过直接测量或利用仪器设备进行测试。 2.空载测试:将一次绕组接入待测电流,二次绕组不接入任何负载, 通过测量二次绕组的电压信号,来判断电流互感器的空载性能。 3.比值测试:将一次绕组接入一定电流,测量二次绕组的电压信号, 通过计算得到电流互感器的变比,进而判断电流互感器的准确性。 4.负载特性测试:将一次绕组接入一定电流,将二次绕组接入一定负载,通过测量二次绕组的电压信号和负载电流,计算得到电流互感器的负 载特性,包括负载误差、相位角误差等。 5.温升测试:将一次绕组接入一定电流,通过一定时间的加热,测量 电流互感器的温升情况,判断电流互感器的热稳定性。 6.绝缘测试:通过测量电流互感器的一次绕组与二次绕组之间的绝缘 电阻,来判断电流互感器的绝缘性能。 7.阻抗测试:通过测量电流互感器的一次绕组和二次绕组之间的等效 电阻和等效电感,来判断电流互感器的阻抗特性。

在进行电流互感器的测试时,需要使用专门的测试仪器和设备,如电流互感器测试装置、电压表、电流表、负载电阻等。同时,还需要注意测试环境的稳定性和准确性,避免外界因素对测试结果的影响。 总之,电流互感器的测试方法主要包括额定参数测试、空载测试、比值测试、负载特性测试、温升测试、绝缘测试和阻抗测试等。通过这些测试可以评估电流互感器的性能和准确性,确保其在实际应用中的可靠性和稳定性。

防止电流互感器二次回路开路的反事故措施

防止电流互感器二次回路开路的反事故措施发电企业因电流互感器二次回路N线开路导致区外故障保护误动作事故,原因是电流互感器二次回路验收及定检方法存在不足。为防止电流二次回路开路,提高继电保护及安全自动装置运行可靠性,应采取如下反措。 一、电流互感器二次回路验收要求 新安装或更改后的电流二次回路验收应严格执行GB/T 50976-2014 《继电保护及二次回路安装及验收规范》及DL/T 995-2016 《继电保护和电网安全自动装置检验规程》交流电流回路验收要求。 重点检查: (一)检查电流互感器二次绕组的用途、接线方式、级别、容量、实际使用变比、极性、接地点位置,测量各二次绕组直流电阻。 检查方法:核查设备铭牌、图纸、试验报告等,并与实际接线进行核对;使用万用表分别检查并记录二次绕组内阻、负载直流电阻及接地电阻,三相直流电阻应平衡,接地电阻应小于0.5Ω;结合绝缘检查进行电流回路一点接地检查:断开电流互感器二次回路接地点,检查全回路对地绝缘,若绝缘合格可判断仅有一个接地点。 (二)新安装或更改后的电流二次回路应结合发电机短路试验或利用专用升流仪器完成一次升流检查。升流试验范围应包括所有保护用电流互感器。通过一次升流试验检查电流互感器的变比、电流回路接线的完整性和正确性、电流回路相别标示的正确性。一次升流试验应包括单相升流试验,以检查零序电流回路的完整性和正确性。 (三)如现场条件限制无法进行一次升流试验,则应用二次通流试验代替。在电流互感器接线盒或就地端子箱,逐相通入二次电流,检验接入保护的二次绕组连接组别的正确性。

二、电流互感器二次回路定检要求 电流二次回路定检应严格执行DL/T 995-2016 《继电保护和电网安全自动装置检验规程》交流电流回路定检要求。重点要求如下:(一)定检时应重点检查电流二次回路的完整性和正确性。定检结束前,在端子箱或保护装置端子排处分别检查并记录每相电流回路的CT内阻及二次负载。电流二次回路接线恢复完整后,检查每相回路接地电阻。检查结束恢复措施后,禁止改动电流二次回路。应将定检数据与历次定检数据进行比对分析。数据记录模板如表所示。 电流二次回路定检数据记录模板 三、带负荷检查要求 带负荷检查应严格执行《中国大唐集团有限公司水力发电厂技术监控规程第7部分:继电保护与安全自动装置技术监督》相关要求。重点要求如下: (一)新安装、经更改以及定检后的电流回路,应利用负荷电流检查电流二次回路接线的正确性。装置未经该检验,不能正式投入运行。 (二)对接入电流、电压的相互相位、极性有严格要求的装置(如带方向的电流保护、距离保护等),检查其相别、相位关系以及所保护的方向是否正确。 (三)检查电流差动保护(母线、发电机、变压器的差动保护、线路纵联差动保护及横差保护等)接到保护回路中的各组电流回路的相对极性

电流互感器试验方法

电流互感器试验方法 电流互感器是一种测量电流的设备,常用于电力系统中的电流测量和保护控制。为保证电流互感器的准确性和可靠性,在使用前需要进行试验。电流互感器的试验主要包括静态试验、误差试验和热特性试验等。 一、静态试验: 静态试验是对电流互感器的基本特性进行测试,主要包括变比误差、相位差和磁化曲线等试验内容。试验步骤如下: 1. 首先,将电流互感器接入试验装置,保证试验电路的连接正确。 2. 设置电流互感器的工作电流值,通过电源给电流互感器供电。 3. 分别测量试验电路中的电流互感器的一次侧电流和二次侧电流,计算变比误差。 4. 测量试验电路中电流互感器的一次侧电流和二次侧电流的相位差,计算相位差。 5. 根据试验要求,测量电流互感器在一定范围内的磁化曲线,绘制磁化曲线图。 二、误差试验: 误差试验是对电流互感器的变比误差和相位误差进行测试,其目的是评估电流互感器在工作电流下的测量准确性。试验步骤如下: 1. 设置试验电流,通常选择电流互感器额定工作电流的80%和120%。 2. 分别测量试验电路中的电流互感器的一次侧电流和二次侧电流,并计算变比误差。

3. 测量试验电路中电流互感器的一次侧电流和二次侧电流的相位差,计算相位误差。 4. 根据试验结果评估电流互感器在不同电流下的误差情况,判断其准确性。 三、热特性试验: 热特性试验是对电流互感器的温度变化对其测量特性的影响进行测试,主要包括温升试验和温漂试验。试验步骤如下: 1. 设置试验电流,通常选择电流互感器额定工作电流的80%和120%。 2. 在设定电流下使电流互感器工作一段时间,观察其温度变化。 3. 测量电流互感器在稳定工作状态下的温度升高,并计算温升值。 4. 将电流互感器置于不同环境温度下,测量电流互感器的电流变比与环境温度之间的关系,计算温度漂移。 除了上述三种常用试验方法外,还可以根据实际需求进行其他试验,比如绝缘强度试验、机械强度试验和外观检查等,以评估电流互感器的绝缘性能、机械可靠性和外观完好程度。 综上所述,电流互感器的试验方法主要包括静态试验、误差试验和热特性试验等。通过这些试验可以评估电流互感器的基本特性、测量准确性和热特性,确保其在使用中的可靠性和准确性。同时,根据实际需求可以进行其他辅助试验,以更全面地评估电流互感器的性能。

电流互感器原理及测试方法

电流互感器原理及测试方法 电流互感器(Current Transformer,简称CT)是一种用于测量高电 流的电气设备,主要用于将高电流变换成较小电流,以便进行测量、保护 和控制等操作。本文将详细介绍电流互感器的工作原理和测试方法。 一、工作原理 当高电流通过一次线圈时,会在磁芯内产生磁场。由于磁芯的存在, 磁场会集中在磁芯中,形成一条闭合磁通。根据电磁感应定律,二次线圈 中就会产生相应的电动势,从而在二次线圈上产生一定电流。该电流与一 次线圈中的电流成正比,即I2=(N2/N1)I1,其中I1为一次线圈中的电流,I2为二次线圈中的电流,N1为一次线圈的绕组数,N2为二次线圈的绕组数。由于一次线圈中的电流较大,而二次线圈中的电流较小,因此通常将 电流互感器的变比称为额定变比。 二、测试方法 为了保证电流互感器的准确性和可靠性,需要对其进行定期的测试和 校验。下面将介绍电流互感器的测试方法。 1.直流短路方法 直流短路方法是一种常用的检测电流互感器变化特性的方法。具体操 作步骤如下: (1)用直流电源将0.2~0.5倍额定电流加到电流互感器的一次绕组上; (2)记录电流互感器二次绕组上的电流值,并标定; (3)通过改变一次绕组上的电流,重复上述操作,记录多组数据;

(4)根据测得的数据绘制电流互感器的变比特性曲线。 2.测量铭牌参数法 测量铭牌参数法是通过测量和计算电流互感器的参数来进行测试的方法。具体操作步骤如下: (1)根据电流互感器的铭牌参数,测量和记录其一次绕组和二次绕组的电流,电压和绕组数等参数; (2)通过计算,得到电流互感器的变比值和额定负荷等参数; (3)将测得的结果与标定的结果进行比较,看是否在允许范围内。 3.比值测试法 比值测试法是通过测量电流互感器的比值误差来进行测试的方法。具体操作步骤如下: (1)将标准电流与电流互感器的一次绕组相连接,将电流互感器的二次绕组接到比率变送器等测试设备上; (2)根据被测电流互感器的铭牌参数设置标准电流值,并记录; (3)测量电流互感器输出的电流值,并记录; (4)通过计算,得到电流互感器的比值误差,并与标准误差进行比较。 总结:电流互感器是一种重要的电气设备,起到了电流转换和测量的作用。通过了解电流互感器的工作原理和测试方法,可以更好地应用和维护电流互感器,保证电力系统的正常运行和安全性。

检验电流互感器二次回路的常用方法

检验电流互感器二次回路的常用方法 摘要:本文结合现场试验实例,分别论述了直流电源法、一次通流法、发电机 短路试验、大型电动机启动电流等试验方法检验电流互感器二次回路方法的特点 及其适用范围,可供工程调试人员参考。 Abstract: Combined with field test examples, this paper discussed the characteristics and application scopes of DC power method, once through-flow method, generator short circuit test and a large motor starting to test current transformer secondary circuit, provided reference for engineering commissioning officers. 关键词:电流互感器;二次回路;极性 Key words: current transformer;secondary circuit;polarity 中图分类号:TM452 文献标识码:A 文章编号:1006-4311(2014)14-0031-03 引言 在新设备投运前,确认电流互感器二次回路的接线正确是项非常重要的工作。确认电流互感器二次回路的接线正确除了检查二次回路接线及进行二次通流试验外,还须对电流互感器进行极性试验,以使电流互感器的二次回路接线满足保护、测量装置的极性要求,而对于升压站投运还必须用一次通流加以检验和判定。本 文结合近年来的工程调试实例,针对新建发电机组不同调试阶段分别介绍了检验 电流互感器二次回路的几种常用方法。新建发电机组调试阶段一般分为机组整套 启动前、机组整套启动、升压站投运、机组并网后等四个阶段。 1 机组整套启动前的调试阶段 1.1 直流电源法直流电源法原理图如图1所示。电流互感器一次线圈通过小 开关接入一组电池,二次线圈接入直流毫安表A(直流指针表或者较灵敏的万用 表的直流档)。当合开关的瞬间,如直流毫安表A指针向正方向摆动,则电池组 正极所接一次端子P1与直流毫安表A正极所接二次端子S1为同极性端。反之, 则为非同极性端。 根据电流互感器所属设备的不同,大致可以分三种方式进行电流互感器的极 性试验。一是发电机CT,如图1中发电机CT极性试验图;二是变压器CT,如图 1中变压器CT极性试验图,此图中接线方式可以检验A、B相套管CT的极性情况,C相套管CT依据类似方法进行测试;三是升压站GIS开关的CT,如图1中 升压站GIS开关CT极性试验图,图中断开1117接地闸刀SF6封闭金属外壳的接 地点,合上11开关、1127接地闸刀,在断开点位置注入直流进行测试,经过大 地形成回路。 依据直流电源法原理进行电流互感器极性测试工作有四个必须注意的环节: ①测试前试验人员必须熟悉电流互感器安装位置、电流互感器铭牌标识的极性指向、一次电流实际流向;②试验过程中操作直流电源开关试验人员与观察直流毫安表指针的试验人员之间要协调一致,防止误判;③测试完成后根据测试的实际结果及保护、测量等装置的极性要求进行二次回路接线或者改线;④测试完成,还需要进行电流互感器的二次回路负载试验。总之,直流电源法比较简单实用, 缺点是整个过程比较繁琐,任何一个环节出现问题都会影响电流互感器二次回路 接线的可靠性。此方法适合新建机组启动前分系统调试阶段绝大部分的电流互感 器极性校验。 1.2 一次通流法一次通流试验前首先要根据设计院系统图纸编制一次通流的

电流互感器试验方法

电流互感器试验方法 一.测量绝缘电阻 测量方法与变压器类似 1.工具选择 一次绕组:2500V兆欧表 二次绕组:1000V兆欧表或2500V兆欧表 2.步骤 ⑴断开互感器外侧电源; ⑵用放电棒分别对一次侧和二次侧接地充分放电; ⑶擦拭变压器瓷瓶; ⑷摇测高压侧对地绝缘电阻 ①所有二次侧短接,并接地; ②拆开一次侧中性点接地端; ③短接一次侧,并对地遥测绝缘值; ④记录数据。 ⑤用放电棒分别对一次侧和二次侧接地充分放电; ⑸用放电棒分别对ABC接地充分放电; ⑹摇测低压侧对地绝缘电阻(一般有星形和开口三角) ①短接一次侧,并接地; ②拆开二次侧中性点接地端; ③短接二次侧,并对地遥测绝缘值; ④记录数据。 ⑤用放电棒分别对一次侧和二次侧接地充分放电; ⑺用放电棒分别对二次侧接地充分放电; ⑻摇测高压对低压绝缘电阻 ①拆开一次侧中性点接地端; ②拆开二次侧中性点接地端; ③分别短接一次和二次侧,并遥测高压对低压间的绝缘值; ④记录数据。 ⑤用放电棒分别对一次侧和二次侧接地充分放电; ⑼摇测低压对低压绝缘电阻 ①拆开二次侧中性点接地端; ②分别短接星形二次侧和开口△二次侧; ③一次侧短接,并接地;

④遥测低压对低压间的绝缘值 ⑤记录数据。 ⑥用放电棒分别对一次侧和二次侧接地充分放电; 二.测量介质损失tanδ(有关内容见《进网作业电工培训教材》P346) 只对35KV及以上互感器的一次绕组连同套管,测量tanδ 1.工具选择 QS1型或QS2型高压交流平衡电桥,又称为“西林电桥”。 QS1电桥的技术特性:额定电压10KV;tanδ测量范围0.5~60%;试品测量范围Cx30pF~0.4μF(当C N=50 pF时);测量误差tanδ=0.5~3%时≤±0.3%,tanδ=0.3~6%时≤±10%;Cx测量误差≤±5%。 2.高压测量(常见的二种方法) ⑴正接线方法,如下图所示 正接线是按照电桥设计的绝缘状态,高压部分接试验高压,低压部分接试验低压,接地部分接地。 桥体引线“C X”、“C N”、“E”处于低压,该引线可任意放置,不需使其“绝缘”。 ⑵反接线方法,如下图所示 反接线与电桥设计的绝缘状态成反相接线,高压部分接地,接地部分接试验高压。 桥体引线“C X”、“C N”、“E”处于高压,同时标准电容C N外壳处于高压,因此在试验时,该引线须“绝缘”。这种接法适用于被试品一极接地的情况。

电力电流互感器检测试验方法

电力电流互感器检测试验方法 摘要:在电网实际运行过程中,变电站是不可缺少的关键枢纽,电力电流互 感器的使用可以帮助变电站维持安全稳定的运行。在电力电流互感器的使用中, 容易出现变比误差,引发电流互感器发生二次开路的情况,为避免出现此类问题,需针对电力电流互感器开展检测检验工作,科学选用高效的检测检验方法,提高 检测结果的准确性,降低安全事故的发生概率,为电力系统提供良好的运行条件。 关键词:电力电流互感器;检验项目;检测试验方法 为满足新时期人们生产生活对电量的需求,电网的建设规模不断增大,电力 电流互感器的应用范围逐渐变得广泛,且数量大幅增加。由于电力电流互感器需 要定期进行检测试验,才能保证实际应用中的安全性及可靠性,为提高检测工作 效率,应加强相关检测试验方法的研究。 1.电流互感器的检验标准 电力企业开展电力电流互感器检测试验工作的实际目的是提高电能计量的准 确性,保证电力系统能够维持稳定运行,是电力企业在电能计量器具检定周期内 增设的现场检验及监督项目。为保证检验工作的有序性及规范性,应明确现场检 验执行标准,主要包括《电能计量装置检验规程》以及《电能计量装置技术管理 规程》中的相关规定内容,严格按照电力安全生产规章制度开展和落实各项工作。 2.电力电流互感器检验周期及检验项目 2.1检验项目分析 针对电力系统中新投入运行或者经过改造的Ⅰ、Ⅱ、Ⅲ,几类电能的高压测 量装置而言,应保证在30天内完成相应的检验工作。检验工作内容主要包含以 下几项:首先,有效检验电能计量器具的准确性;其次,仔细观察和检查电能计 量装置的运行状态,如果发现存在用电异常的情况,如端子接触、窃电迹象以及

相关主题