搜档网
当前位置:搜档网 › 苏教版数学高二- 选修1-2素材 1.1独立性检验是如何判断两个事件是否相互独立的

苏教版数学高二- 选修1-2素材 1.1独立性检验是如何判断两个事件是否相互独立的

苏教版数学高二- 选修1-2素材 1.1独立性检验是如何判断两个事件是否相互独立的
苏教版数学高二- 选修1-2素材 1.1独立性检验是如何判断两个事件是否相互独立的

1.1 独立性检验是如何判断两个事件是否相互独立的

独立性检验的基本思想类似于反证法.要确认“两个分类变量有关系”这一结论成立的可信程度,首先假设结论不成立,即假设结论“两个分类变量没有关系”成立,在该假设下构造的随机变量2

χ应该很小.如果由观测数据计算得到的2χ的观测值很大,则在一定程度上说明假设不合理.根据随机变量2

χ的含义,可以通过概率式评价该假设不合理的程度,由实际计算的2

χ>6.635,说明假设不合理的程度约为99%,即“两个分类变量有关系”这一结论成立的可信程度约为99%.

当2

χ≤3.841时,认为两个分类变量是无关的.对于两事件而言即相互独立.

1.两个事件独立的判定

例1: 为了研究不同的给药方式(口服与注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果列表如下:

根据193个病人的数据,能否作出药的效果与给药方式有关的结论?请说明理由.解:提出假设H0:药的效果与给药方式无关系.

根据列联表中的数据,得χ2=

2

193(58314064)

122719895

-?-?

???

≈1.3896<2.072.

当H0成立时,χ2>1.3896的概率大于15%,

这个概率比较大,所以根据目前的调查数据,不能否定假设H0,即不能作出药的效果与给药方式有关的结论.

注意:这是一个由列联表来验证的独立性检验问题,其结论是没有关系的假设成立.并且应该注意上述结论是对所有口服药物与注射药物的实验人而言的,绝不要误以为对被跟踪的193个跟踪研究对象成立.

例2:调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表.试问能以多大把握认为婴儿的性别与出生时间有关系.

分析:利用表中的数据通过公式计算出2

χ统计量,可以用它的取值大小来推断独立性是否成立.

解:由公式

()841.368892.357

3234553182624892

2

<≈????-??=χ 故婴儿的性别与出生时间是相互独立的(也可以说没有充分证据显示婴儿的性别与出生时间有关).

2.两个事件不独立的判定

例3:在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.利用独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?

分析:列出22?列联表,利用公式求出2

χ与两个临界值3.841与6.635比较大小得适当范围.

解:根据题目所给数据得到如下表所示: 秃顶与患心脏病列联表

由公式,得:

()635

.6373.16772

665104838945117559721414372

2

>≈????-??=χ

所以有99%的把握认为“秃顶与患心脏病有关”.

说明:因为这组数据来自住院的病人,因此所得到的结论适合住院的病人群

体.

例4.某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人,则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约是多少?

解:

2x =059.523

272426)981518(502

=????-?, ()024.52>x P =0.025,

有97.5%的把握认为喜欢玩电脑游戏与认为作业多有关系.

高考数学中的29个问题_理科数学问题

高考数学中的29个问题 一、主干部分 (一)三角函数 (1)三角函数的化简与求值 要求:掌握基本公式:三角函数的定义,同角三角函数的关系,诱导公式,两角和与差的三角函数,倍角公式,辅助角公式。化简思想:切割化弦,降幂思想,统一角思想,角的代换 (2)三角函数的图像与性质注意:会做基本三角函数的图像,掌握正弦,余弦,正切函数的图像及单调性,奇偶性,周期性,对称性 (3)正余弦定理的应用注意:掌握正余弦定理,边角的转换思想, (二)数列 (1)等差等比数列,掌握等差等比数列基本量的计算,性质的应用,证明,等差和的最值,等比积的最值的性质,找规律 (2)数列通项利用和与项的关系求通项利用递推公式求通项 (3)数列求和.求和原则:通项特征决定求和方法。 掌握基本的求和方法(1)公式法:(2)分组求和法(3)错位相减法: (4)裂项相消法:(5)并项求和:(6)倒序相加法: (三)统计与概率 (1)统计掌握抽样方法,频率分布直方图,茎叶图中均值,方差,中位数,众数的求法,统计案例独立性检验,线性回归方程 (2)概率与分布列注意:会求基本事件的概率(古典概型,几何概型,条件概率),互斥事件,相互独立事件,独立重复试验概率的求法 注意超几何分布,二项分布的区别,理解正态分布 (四)立体几何 (1)三视图,球的切接问题 (2)平行与垂直的判定与性质,注意直线与平面平行,面面平行的判定与性质,直线与直线垂直,线面垂直,面面垂直的判定与性质 (3)空间角的求法,会用空间向量求角(异面直线,直线与平面,二面角) (五)解析几何 (1)直线与圆 (2)圆锥曲线的概念与性质注意椭圆,双曲线,抛物线的定义,中点弦问题,抛物线中焦点弦的性质

2020_2021学年高中数学课时素养评价三1.2.2~1.2.4独立性检验独立性检验的基本思想独立

课时素养评价三独立性检验独立性检验的基本思想独立性检验 的应用 (20分钟·50分) 一、选择题(每小题5分,共20分) 1.经过对χ2的研究,得到了若干个临界值,当χ2≤ 2.706时,我们认为事件A与B ( ) A.有95%的把握认为A与B有关系 B.有99%的把握认为A与B有关系 C.没有充分理由说明事件A与B有关系 D.不能确定 【解析】选C.当χ2>2.706时,有90%以上的把握说明A与B有关系,但当χ2≤2.706时,只能说明A与B是否有关系的理由不够充分. 2.利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用2×2列联表,由计算可得χ2≈7.245,参照下表:得到的正确结论是( ) P(χ2≥x0) 0.01 0.05 0.025 0.010 0.005 0.001 x0 2.706 3.841 5.024 6.635 7.879 10.828 A.有99%以上的把握认为“爱好该项运动与性别无关” B.有99%以上的把握认为“爱好该项运动与性别有关” C.有95%的把握认为“爱好该项运动与性别有关” D.有95%的把握认为“爱好该项运动与性别无关” 【解析】选B.由χ2≈7.245>6.635,可得有99%以上的把握认为“爱好该项运动与性别有关”. 3.为了研究性格和血型的关系,抽查80人试验,血型和性格情况如下:O型或A型者是内向型的

有18人,外向型的有22人,B型或AB型是内向型的有12人,外向型的有28人,则有多大的把握认为性格与血型有关系( ) A.95% B.99% C.没有充分的证据显示有关 D.1% 【解析】选C. χ2=错误!未找到引用源。=1.92<2.706,所以没有充分的证据显示有关. 4.以下关于独立性检验的说法错误的是( ) A.独立性检验依赖小概率原理 B.独立性检验得到的结论一定正确 C.样本不同,独立性检验的结论可能有差异 D.独立性检验不是判定两事物是否相关的唯一方法 【解析】选B.受样本选取的影响,独立性检验得到的结论不一定正确. 二、填空题(每小题5分,共10分) 5.以下三个命题中:①在回归分析中,可用相关系数r的值判断模型的拟合效果,|r|(|r|≤1)越大,模拟的拟合效果越好;②在一组样本数据(x1,y1),(x2, y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i, y i)(i=1,2,…,n)都在直线y=-错误!未找到引用源。x+1上,则这组样本数

高二数学独立事件概率例题解析 人教版

高二数学独立事件概率例题解析 一. 本周教学内容: 独立事件概率 互斥事件有一个发生的概率、相互独立事件同时发生的概率 二. 重点 1. 互斥事件只有一个发生的概率 如果事件A 1,A 2,…,A n 彼此互斥,那么事件A 1+A 2+…+A n 发生(即A 1,A 2,…,A n 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即 P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 2. 相互独立事件同时发生的概率 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B ) 推广:如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 【典型例题】 例1.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率: (1)取到的2只都是次品; (2)取到的2只中正品、次品各一只; (3)取到的2只中至少有一只正品. 解:从6只灯泡中有放回地任取两只,共有62=36种不同取法. (1)取到的2只都是次品情况为22=4种.因而所求概率为9 1364=. (2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次品;及第一次取到次品,第二次取到正品.因而所求概率为 P =9 436423624=?+? (3)由于“取到的两只中至少有一只正品”是事件“取到的两只都是次品”的对立事件.因而所求概率为 P =1-9 891= 例2.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于2 1,求男女生相差几名? 解:设男生有x 名,则女生有36-x 名.选得2名委员都是男性的概率为

高二数学1-2 独立性检验

独立性检验 教学重点、独立性检验的基本方法,独立性检验的步骤 难点:.基本思想的领会及方法应用. 知识点 一、独立性检验的基本概念和原理 独立性检验是研究相关关系的方法。 1.分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量.比如男女、是否吸烟、是否患癌症,宗教信仰、国籍等等。 2列联表:分类变量的汇总统计表(频数表). 一般我们只研究每个分类变量只取两个 3.条形图 为了更清晰地表达这个特征,我们还可用如下的等高条形图表示两种情况下患肺癌的比例.如图3.2一3 所示,在等高条形图中,浅色的条高表示不患肺癌的百分比;深色的条高表示患肺癌的百分比. 通过分析数据和图形,我们得到的直观印象是“吸烟和患肺癌有关”.那么我们是否能够以一定的把握认为“吸烟与患肺癌有关”呢? 4.独立性检验的步骤 为了回答下面问题,我们先假设H :吸烟与患肺癌没有关系,看看能够得到什么样 的结论。 不患肺癌患肺癌合计不吸烟 a b a+b 吸烟 c d c+d 合计a+c b+d a+b+c+d 样本容量 n=a+b+c+d 如果“吸烟与患肺癌没有关系”,则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:

()()() ()()()() 2 2 0a c a c d c a b ad b c a b c d ad bc ad bc n ad bc k a b c d a c b d n a b c d ≈?+≈+?-≈++---= ++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱. 越大, 说明吸烟与患肺癌之间关系越强构造随机变量 其中 为样本容量 若 H 0 成立,即“吸烟与患肺癌没有关系”,则 K “应该很小.根据表3一7中的数据,利用公式(1)计算得到 K “的观测值为 ()2 2 996577754942209956.63278172148987491 K ?-?=≈???, 这个值到底能告诉我们什么呢? 统计学家经过研究后发现,在 H 0成立的情况下, 2( 6.635)0.01P K ≥≈. (2) (2)式说明,在H 0成立的情况下,2 K 的观测值超过 6. 635 的概率非常小,近似为0 . 01, 是一个小概率事件.现在2 K 的观测值k ≈56.632 ,远远大于6. 635,所以有理由断定H 0 不成立,即认为“吸烟与患肺癌有关系”.但这种判断会犯错误,犯错误的概率不会超过0.01,即我们有99%的把握认为“吸烟与患肺癌有关系” . 在上述过程中,实际上是借助于随机变量2 K 的观测值k 建立了一个判断H 0是否成立的规则: 如果k ≥6. 635,就判断H 0不成立,即认为吸烟与患肺癌有关系;否则,就判断H 0成立,即认为吸烟与患肺癌没有关系. 在该规则下,把结论“H 0 成立”错判成“H 0 不成立”的概率不会超过 2( 6.635)0.01P K ≥≈, 即有99%的把握认为H 0不成立. 假设检验 备择假设H 1 不成立的前提下进行推理 10成立 推出有利于H 1成立的小概率事件(概率不超过α的事件)发 生,意味着H 1成立的可能性(可能性为(1-α))很大 下任上例的解决步骤 第一步:提出假设检验问题 H 0:吸烟与患肺癌没有关系? H 1:吸烟与患肺癌有关系 第二步:选择检验的指标 2 2 ()K ()()()() n ad bc a b c d a c b d -=++++ (它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大. 第三步:查表得出结论

人教版高中数学高二选修2-3 第二章《事件的相互独立性》教案

2.2.2事件的相互独立性 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结 果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件 12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,, ,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++ 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这 两个坛子里分别摸出1个球,它们都是白球的概率是多少? 事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球, 得到白球

高中数学概率统计

概率与统计 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是

高二数学教案:相互独立事件同时发生的概率(2)

相互独立事件同时发生的概率(2) 一、课题:相互独立事件同时发生的概率(2) 二、教学目标: 1.能正确分析复杂事件的构成; 2.能综合运用互斥事件的概率加法公式和相互独立事件的概率的乘法公式解决一些实际 问题。 三、教学重、难点:掌握求解较复杂事件概率的一般思路:正向思考和反向思考。正向思考的 一般步骤是:通过“分类”或“分步”将较复杂事件进行分解,转化为简单的互斥事件的 和事件或相互独立事件的积事件;反向思考就是转化为求它的对立事件的概率。 四、教学过程: (一)复习:互斥事件、对立事件和相互对立事件的概念。 (二)新课讲解: 例1 在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就 能正常工作。假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内 线路正常工作的概率。 解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C . 由题意,这段时间内3个开关是否能够闭合相互之间没有影响。 根据相互独立事件的概率乘法公式,这段时间内3个开关都不能 闭合的概率是 [][][]()()()()1()1()1()(10.7)(10.7)(10.7)0.027 P A B C P A P B P C P A P B P C ??=??=---=---= ∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是 1()10.0270.973P A B C -??=-=. 答:在这段时间内线路正常工作的概率是0.973. 变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内 此开关能够闭合的概率也是0.7,计算在这段时间内线路正常 工作的概率。 (1()()0.9730.70.6811P A B C P D ??-???=?=?? ) 变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都 是0.7,计算在这段时间内线路正常工作的概率。 方法一:()()()()() ()()()()()()()()()()()()()()()0.847 P A B C P A B C P A B C P A B C P A B C P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C ??+??+??+??+??=??+??+??++??+??= 方法二:分析要使这段时间内线路正常工作只要排除C J 开且 A J 与 B J 至少有1个开的情况。

高中数学 选修1-2 3.独立性检验

3.独立性检验 教学目标 班级____姓名________ 1.了解分类变量、列联表、随机变量2 K . 2.了解独立性检验的基本思想和方法. 教学过程 一、知识要点. 1.分类变量:变量不同的值表示个体所属的类别不同. 2.列联表:两个分类变量的频数表. 3.随机变量:) )()()(()(22 d b c a d c b a bc ad n K ++++-=,010.0)635.6(2 ≈≥K P (小概率事件) 4.独立性检验:运用统计分析的方法确定分类变量的关系. (1)要判断“两个分类变量有关系”; (2)假设结论不成立,即“0H :两个分类变量没有关系”; (3)确定一个判断规则的临界值0k :当02k K ≥时,认为“两个分类变量有关系”,否则认为“两个分类变量没有关系”;(0k 是根据允许误判概率的上限来确定的) (4)按照上述规则,误判概率为)(02k K P ≥. 0k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.82 )(02k K P ≥ 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 (5)拓展: ①令|| d c c b a a W +-+=,则) )(() )((22d b c a d c b a n W K ++++?=; ②令) )(() )((00d c b a n d b c a k w ++++? = ; ③02 k K ≥等价于0w W ≥,所以)(0w W P ≥等价于)(02 k K P ≥; ④可以用)(0w W P ≥来作为判断依据. 二、例题分析. 例1:研究吸烟与患肺癌的关系. 1.确定研究对象:吸烟与患肺癌的关系.

【高考数学专题复习】专题10.2 事件的相互独立性(原卷版)

10.2 事件的相互独立 运用一对立与互斥事件 【例1】(1)(2019秋?红岗区校级期末)袋中装有3个黑球、2个白球、1个红球,从中任取两个,互斥而不对立的事件是() A.“至少有一个黑球”和“没有黑球” B.“至少有一个白球”和“至少有一个红球” C.“至少有一个白球”和“红球黑球各有一个” D.“恰有一个白球”和“恰有一个黑球” (2)(2019秋?红山区校级月考)若颜色分别为红,黑,白的三个球随机得分布给甲、乙、丙3人,每人分 得1个球,事件“甲分得红球”与事件“乙分得红球”是() A.对立事件B.不可能事件C.互斥事件D.必然事件 【举一反三】 1.(2019秋?保定月考)学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是() A.对立事件B.不可能事件 C.互斥但不对立事件D.不是互斥事件 2.(2019秋?岳麓区校级月考)甲、乙两人对同一个靶各射击一次,设事件A=“甲击中靶”,事件B=“乙击中靶”,事件E=“靶未被击中”,事件F=“靶被击中”,事件G=“恰一人击中靶”,对下列关系式(表示A的对立事件,表示B的对立事件):①,②F=AB,③F=A+B,④G=A+B,⑤, ⑥P(F)=1﹣P(E),⑦P(F)=P(A)+P(B).其中正确的关系式的个数是()

A.3 B.4 C.5 D.6 3.(2019秋?天心区校级期中)从装有2个白球和3个黑球的口袋内任取两个球,那么下列事件中是互斥而不对立的事件是() A.“恰有两个白球”与“恰有一个黑球” B.“至少有一个白球”与“至少有一个黑球” C.“都是白球”与“至少有一个黑球” D.“至少有一个黑球”与“都是黑球” 运用二独立事件的计算 【例2】(1)(2019秋?武邑县校级月考)从一箱产品中随机抽取一件,设事件A={抽到一等品},事件B={抽到二等品},且已知P(A)=0.65,P(B)=0.2,则事件“抽到的不是一等品”的概率为()A.0.8 B.0.6 C.0.35 D.0.2 (2)(2018秋?太原期末)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P()=()A.0.5 B.0.1 C.0.7 D.0.8 【举一反三】 1.(2019春?红岗区校级期末)袋中有6个不同红球、4个不同白球,从袋中任取3个球,则至少有两个白球的概率是() A.B.C.D. 2.(2019春?锦州期末)已知随机事件A和B互斥,且P(A∪B)=0.5,P(B)=0.3,则P()=()A.0.5 B.0.2 C.0.7 D.0.8 3.(2019春?潍坊期末)甲队和乙队进行足球比赛,两队踢成平局的概率是,乙队获胜的概率是,则甲队不输的概率是() A.B.C.D. 4.(2019春?三明期末)已知随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=0.3,P(C)= 0.6,则P(A+B)=() A.0.3 B.0.6 C.0.7 D.0.9 1.(2018秋?南平期末)一箱产品中有正品4件,次品2件,从中任取2件,以下事件:①恰有1件次品和

高中数学教学案例分析(独立性检验)

高中数学人教A版选修2-3第三章3.2独立性检验的基本思 想及其初步应用教学设计 一、教材分析 本节课是人教A版(选修)2—3第三章第二单元第二节第一课时的内容.在本课之前,学生已经学习过事件的相互独立性、正态分布及回归分析的基本思想及初步应用。本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要课节,也是高考的重要考点。 在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。独立性检验的基本思想和反证法类似,它们都是假设论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。 学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。在大数据时代,我们每天都会接触到影响生活的统计方面的信息,因此具备一些统计知识已经成为现代人已具备的一种数学素养。 二、学情分析 授课对象:高二理科15班(重二班)。 知识上:学生已经学习过统计、变量回归分析等知识,这为本节课的学习提供了知识基础。但本节课的内容独立性检验对学生来说是新的内容,为什么有这么一个方法?为什么要学习这个方法?通过课前的新闻引入可以让学生体会到本节课知识的应用性。独立性检验相当于建立一个判别“两个分类变量之间有关系”这一结论是否成立的规则,并且给出该规则把“两个分类变量之间没有有关系”错判成“两个分类变量之间有关系”的概率。所以首先要教会学生的是了解并初步理解这个规则,而后才是会用这个规则解决问题。 能力方面:学生具备了一定的认知、分析、归纳能力;能够进行小组活动。 但学生缺少深入探究问题的方法;运算能力和语言表达能力有待提高。针对这个问题,课堂上我通过适时引导学生探究,鼓励学生积极展示来解决。

高二数学相互独立事件同时发生的概率教案

高二数学相互独立事件同时发生的概率教案 一、教学目标:1.了解相互独立事件的意义; 2.注意弄清事件“互斥”与“相互独立”是不同的两个概念; 3.会用相互独立事件同时发生的概率乘法公式计算一些事件的概率。 二、教学重、难点:相互独立事件的意义;相互独立事件同时发生的概率乘法公式; 事件的相互独立性的判定。 三、教学过程: (一)复习引入: 1.复习互斥事件的意义及其概率加法公式: 互斥事件:不可能同时发生的两个事件称为互斥事件.()()()P A B P A P B +=+ 对立事件:必然有一个发生的互斥事件叫做对立事件.()1()1()P A A P A P A +=?=- 2.问题:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子 里分别摸出1个球,它们都是白球的概率是多少? 事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白 球。 提问1:问题1、2中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以) 提问2:问题1、2中事件A (或B )是否发生对事件B (或A )发生的概率有无影响? (无影响) (二)新课讲解: 1.相互独立事件的定义: 事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相 互独立事件。 例1.(步步高P127例1) 说明:若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立。 2.相互独立事件同时发生的概率: 问题1中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生, 就是事件A ,B 同时发生,记作A B ?. 从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能 的结果。于是从这两个坛子里分别摸出1个球,共有54?种等可能的结果。同时摸出白球 的结果有32?种。所以从这两个坛子里分别摸出1个球,它们都是白球的概率 323()5410 P A B ??==?. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A = ,从乙坛子里摸出1个球,得到白球的概率2()4 P B =.显然()()()P A B P A P B ?=?. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。一般地, 如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件同时发生的概率,等于每个事件 发生的概率的积,即1212()()()()n n P A A A P A P A P A ???=???L L . 例2.(书P152例1)甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙 射中的概率为0.9,求: (1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; 变式:(4)2人至多有1人射中目标的概率? 解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,

高中数学概率统计

第八讲 概率统计 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:

① 求概率的步骤是: 第一步,确定事件性质???????等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算???和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -?=???+=+???=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [考查目的]本题主要考查概率的概念和等可能性事件的概率求法. [解答过程]0.3提示:1335C 33.54C 10 2P ===? 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 . [考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法. 用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20 提示:51.10020P == 例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________. [考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.

高中数学选修1-2《独立性检验基本思想及其初步应用》教案

高中数学选修1-2《独立性检验基本思想及其初步应用》教案 High school mathematics elective 1-2 "basic idea of independe nce test and its preliminary application" teaching plan

高中数学选修1-2《独立性检验基本思想及 其初步应用》教案 前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角 度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的 作用,是学习和研究现代科学技术必不可少的基本工具。本教案根据数学课程标准 的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和 计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文档下载后内容可 按需编辑修改及打印。 教学要求:通过探究“吸烟是否与患肺癌有关系”引出 独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性. 教学重点:理解独立性检验的基本思想及实施步骤. 教学难点:了解独立性检验的基本思想、了解随机变量 的含义. 教学过程: 教学过程: 一、复习准备: 独立性检验的基本步骤、思想

二、讲授新课: 1.教学例1: 例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效? ① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论; 第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果; 第三步:由学生计算出的值; 第四步:解释结果的含义. ② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.

高中数学复习典型题专题训练122---独立性检验

高中数学复习典型题专题训练122 .独立性检验 1.两个变量之间的关系; 常见的有两类:一类是确定性的函数关系;另一类是变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的.当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系. 2.散点图:将样本中的n 个数据点()(12)i i x y i n =L ,,,,描在平面直角坐标系中,就得到了散点图. 散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系. 3.如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关;此时,散点图中的点在从左下角到右上角的区域. 反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关.此时,散点图中的点在从左上角到右下角的区域. 散点图可以判断两个变量之间有没有相关关系. 4.统计假设:如果事件A 与B 独立,这时应该有()()()P AB P A P B =,用字母0H 表示此式,即0:()()()H P AB P A P B =,称之为统计假设. 5.2χ(读作“卡方”)统计量: 统计学中有一个非常有用的统计量,它的表达式为2 2 112212211212 ()n n n n n n n n n χ++++-=,用它的大小可以 用来决定是否拒绝原来的统计假设0H .如果2χ的值较大,就拒绝0H ,即认为A 与B 是有关的. 2χ统计量的两个临界值:3.841、6.635;当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 6.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的. 独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的. 1.独立性检验的步骤:统计假设:0H ;列出22?联表;计算2χ统计量;查对临界值表,作出判断. 2.几个临界值:222()0.10( 3.841)0.05( 6.635)0.01P P P χχχ≈≈≈≥2.706, ≥,≥. 22?联表的独立性检验: 如果对于某个群体有两种状态,对于每种状态又有两个情况,这样排成一张22?的表,如下: 知识内容 板块五.独立性检验

人教版 高中数学【选修 2-1】第一章独立性检验Word版

人教版高中数学精品资料 重点列表: 重点名称重要指数 重点1 独立性检验★★★ 重点2 独立性检验与概率交汇综合问题. ★★★★ 重点详解: 重点1:独立性检验 【要点解读】 1.独立性检验的两个关键,一是是正确列出2×2列联表,二是准确理解并计算出2 K的值. 2.弄清判断两变量有关的把握性与犯错误概率的关系,根据题目要求作出正确的回答. 3.独立性检验中统计量K2的观测值k的计算公式较为复杂,在解题中应明确数据的意义,代入公式准确计算.准确计算2k的值是正确判断的前提. 【考向】独立性检验 【例题】 【2016辽宁省沈阳质量监测一】为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下: 现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为2 5 . (Ⅰ)求22 ?列联表中的数据x,y,A,B的值;(Ⅱ)能够有多大把握认为疫苗有效? 附: 2 2 () ()()()() n ad bc a b a c c d b d χ- = ++++ 未发病发病合计未注射疫苗20 x A 注射疫苗30 y B 合计50 50 100

【答案】(Ⅰ)10y =,40B =,40x =,60A =.(Ⅱ)至少有99.9%的把握认为疫苗有效. 【名师点睛】 1.独立性检验是对两个变量有关系的可信程度的判断,而不是对其是否有关系的判断. 2.独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表.在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果做出错误的解释. 重点2:独立性检验与概率交汇综合问题 【要点解读】 在近几年高考中统计案例与概率结合的解答题所占比例较往年有所增加,重点考查回归直线方程的求解和应用、独立性检验及概率的知识,注重考查考生对相关数据的统计、分析与应用的能力,此类试题一般为中档题. 【考向】独立性检验与概率交汇综合问题 【例题】【2016吉林长春质量监测二】近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门也推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功的交易,并对其评价进行统计,对商品的好评率为 35,对服务的好评率为3 4 ,其中对商品和服务都做出好评的交易为80次. (1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关? (2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率. 2()0.150.100.050.0250.0100.0050.001 2.072 2.706 3.841 5.024 6.6357.87910.828 P K k k ≥

高中数学 3.2 独立性检验(一)教案 北师大选修2-3

3.2 独立性检验 教学目标 (1)通过对典型案例的探究,了解独立性检验(只要求22?列联表)的基本思想、方法 及初步应用; (2)经历由实际问题建立数学模型的过程,体会其基本方法. 教学重点、难点:独立性检验的基本方法是重点.基本思想的领会及方法应用是难点. 教学过程 一.问题情境 5月31日是世界无烟日。有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题: 1. 某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515 个成年人,其中吸烟者220人,不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病. 问题:根据这些数据能否断定“患呼吸道疾病与吸烟有关”? 二.学生活动 为了研究这个问题,(1)引导学生将上述数据用下表来表示: (2)估计吸烟者与不吸烟者患病的可能性差异: 在吸烟的人中,有 3716.82%220≈的人患病,在不吸烟的人中,有21 7.12%295 ≈的人患病. 问题:由上述结论能否得出患病与吸烟有关?把握有多大? 三.建构数学 1.独立性检验: (1)假设0H :患病与吸烟没有关系. 若将表中“观测值”用字母表示,则得下表: (近似的判断方法:设n a b c d =+++,如果0H 成立,则在吸烟的人中患病的比例与 不吸烟的人中患病的比例应差不多,由此可得 a c a b c d ≈ ++,即()()0a c d c a b ad bc +≈+?-≈,因此,||ad bc -越小,患病与吸烟之间的关系越弱, 否则,关系越强.)

事件的独立性与条件概率专题

1.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.31 B .0.32 C .0.33 D .0.36 2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为( ) A.12 B.35 C.34 D.310 3.打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( ) A.35 B.34 C.1225 D.1425 4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为 ( ) A.310 B.13 C.38 D.29 5.(优质试题·济南质检)优质试题年国庆节放假,甲去北京旅游的概率为13 ,乙,丙去北京旅游的概率分别为14,15 .假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北

京旅游的概率为( ) A.5960 B.35 C.12 D.160 6.(优质试题·合肥月考)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.48 7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13,视力合格的概率为16 ,其他几项标准合格的概率为15 ,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( ) A.49 B.190 C.45 D.59 8.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 二、填空题 9.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625 ,则该队员每次罚球的命中率为________. 10.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为________. 11.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为________. 12.在一段时间内,甲去某地的概率是14,乙去此地的概率是15 ,假定两人的行动相互之间没有影响,那么在这段时间内至少有一人去此地的概率是________.

相关主题