搜档网
当前位置:搜档网 › 函数的概念及相关典型例题

函数的概念及相关典型例题

函数的概念及相关典型例题
函数的概念及相关典型例题

函数的概念及相关典型例题

一、知识点

1、函数的定义:给定两个非空数集A 和B ,如果按照某个对应关系f ,

对于集合A 中的任意一个数x ,在集合B 中都存在唯一确定的数)(x f 和它对应,那么就把对应关系f 叫做定义在集合A 上的函数,记作B A f →:,或)(x f y =,

x ∈A 。习惯上我们称y 是x 的函数。

2、函数的三要素:

、定义域:x 取值的集合A 叫做函数的定义域,也就是自变量 x 的取值

范围;

、对应关系(对应法则):对应关系f 是核心,它是对自变量x 进行“操作”的“程序”,是连接x 与y 的纽带。

、值域:就是函数值的集合,{}A x x f ∈|)(。

A B

B A f →: 对应关系

定义域A 值域{}A x x f ∈|)( 3、常见函数的定义域和值域 .一次函数b ax x f +=)()0(≠a :定义域R, 值域R; .反比例函x

k

x f =

)()0(≠k :定义域{}0|≠x x , 值域{}0|≠y y ;

.二次函数c bx ax x f ++=2

)()0(≠a :定义域R

x

)(x f

值域:当0>a 时,??????-≥a b ac y y 44|2;当0

?

??-≤a b ac y y 44|2

4、 相等函数:如果两个函数的定义域相同,并且对应关系完全一致,

那么我们就称这两个函数相等或称这两个函数为同一函数 。(与表示自变量的字

母无关,例如:12)(+=t t f 与12)(+=x x f 表示同一函数。)

5、复合函数:如果函数y =)(t f 的定义域为A ,函数t=g (x )的定义域

为D ,值域为C ,则当C=A 时,称函数y =))((x g f 为f 与g 在D 上的复合函数,其中t 叫做中间变量,t=g (x )叫内函数,y =)(t f 叫外函数。(内函数的值域等于

外函数的定义域)

6、区间。

定 义 名 称 符 号 数 轴 表 示

{x|a ≤x ≤b} 闭区间 [a ,b] {x|a

{x|a ≤x

{x|a

左开右闭区间

(a ,b]

这样实数集R 也可用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a ,x>a ,x ≤b ,x

二、典型例题

(一)、判断变量间的关系。

1、函数关系 多对一 非函数关系:一对多 一对一

2、根据图形判断对应关系是否为函数关系的方法。

作垂直于x 轴直线l →在定义域内移动l →只有一个交点的是函数关系,有两个

或两个以上交点的不是函数关系。

3、判断一个对应关系是否为函数的方法。

判断A 、B 是否为非空数集→判断A 中任一元素在B 中的是否有元素与之对应→判断A 中任一元素在B 中的对应关系是否是唯一确定的。

(二)求函数的定义域

1、求给出解析式的函数的定义域(求使解析式各部分都有意义的自变量的取值范围)

①分式中分母不为零;②偶次根式中,被开方数非负;③x 0中,x ≠0; ④整式部分自变量的取值范围为R.

2、求抽象函数的定义域。 ①已知

的定义域是[a ,b ],求的定义域。

,即为所求的定义域。

②已知

的定义域是[a ,b ],求f(x)定义域。

方法是:由

,求g(x)的值域,即所求f(x)的定义域。

③已知f(g(x))定义域[a ,b ],求f(h(x))的定义域。

用题型②的方法根据y=f(g(x))定义域求y=f(x)的定义域,用题型①的方法根据y=f(x)的定义域求y=f(h(x))的定义域。 (注:在同一法则f 下,

与f(h(x))中g (x )与h(x)的范围是相同的。)

④已知()f x 的定义域,求四则运算型函数的定义域。

若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

例:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域.

解:由()f x 的定义域为[]35-,,则()x ?必有353255x x --??

-+?,

≤≤≤≤解得40x -≤≤.

所以函数()x ?的定义域为[]40-,.

练习:已知函数定义域是,求的定义

域。

分析:分别求f(x+a)与f(x-a)的定义域,再取交集。 解:由已知,有

,即函数的定义域由确

(比较两个区间左右端点,取交集)

函数

的定义域是

3、求实际问题中的函数的定义域。

①满足解析式;②实际意义对自变量的限制(处理几何图形的周长、面积、体积等问题时,切记各线段的长度均为正数。)

4、函数定义域的逆向思维(已知所给函数的定义域,求解析式中参数的取值范围。)

解法:当二次函数的二次项系数不确定时,需要对其是否为0进行分类讨论;运用转化思想,把函数定义域问题转化成恒成立问题。

例1、 已知函数

的定义域为R ,求实数m 的取值范围。

分析:函数的定义域为R ,表明,使一切x ∈R 都成立,由项的

系数是m ,所以应分m=0或

进行讨论。

解:当m=0时,函数的定义域为R ;

当时,是二次不等式,其对一切实数x都成立的充要条件是

综上可知。

例2、已知函数的定义域是R,求实数k的取值范围。

解:要使函数有意义,则必须≠0恒成立,因为的定义域为R,即无实数

①当k≠0时,恒成立,解得;

②当k=0时,方程左边=3≠0恒成立。

综上k的取值范围是。

(三)求函数值

1、已知函数的解析式求值。

方法:将自变量的值直接代入求解。(求f(g(x))时,一般遵循先内后外的原则.)

2、抽象函数求值。

赋值法:根据条件和结论对变量赋一个特殊的值。

思路:从条件中自变量的极端值开始取值、计算出对应的函数值,再结合条件逐步深入,最后使问题获解。

3、与求值有关的含参问题。

方法:利用方程思想求解.

(四)求函数的值域。

1. 直接观察法

方法:①、利用熟悉的函数的值域;②、利用图像的最高点和最低点。

例1. 求函数的值域。

解:∵

显然函数的值域是:

2. 配方法

对于二次函数型的解析式,通过配方含有自变量的平方式与常数的和,然后根据自变量的取值范围确定函数的值域。

例2. 求函数的值域。

解:将函数配方得:

由二次函数的性质可知:当x=1时,,当时,

故函数的值域是:[4,8]

3.判别式法

此法常用于求分子或分母的最高次数为二次的分式型函数的值域,求解时把函数看成是一个关于自变量的二次方程,根据原函数的定义域为非空数集,可知此方程有解,即Δ≥0,从而求出原函数的值域。

例3. 求函数的值域。

解:原函数化为关于x 的一元二次方程 (y-1)2x -x +(y-1)=0 (1)当

时,

解得:

(2)当y=1时,,而

故函数的值域为

4、分离常数法

就是把函数式分子中含x 的项分离掉,即分子中不含x 项(在分子中写出一个和分母一样的式子,然后变形),此法常用于求形如y =b

ax d

cx ++(a ≠0)的函数的值域.。

例4.求函数=

y x

x

-+43的值域 解:=

y x x -+43=x x -+--47)4(=-1+x

-47

x

-47

≠0 ∴1-≠y

∴此函数值的值域为{}1|-≠y y

5、反解法(反函数法)

形如y =b

ax d cx ++(a ≠0)的函数的值域,也可使用反解法。

例5. 求函数=y 值域。

解:由原函数式可得:

∴5

3

-≠y

故所求函数的值域为:????

??

-≠53|y y

6、换元法

其题型特征是函数解析式含有根式或三角函数公式模型. 例6. 求函数

的值域。 解:令1-=x t ,

又,由二次函数的性质可知 当

时,

当0>t 时,0>y 故函数的值域为

7、函数的有界性法

此法将函数变形成一边为某个有界函数,另一边为含y 的代数式的形式,

再利用函数的有界性构造关于y 的不等式求解。

例7.求函数1

1

22+-=x x y 的值域

解:由函数的解析式可知,函数的定义域为R ,对函数进行变形可得:

)1()12+-=-y x y (

因为1≠y ,所以2x =)1(1

1

≠∈-+-

y R x y y ,, 所以01

1

≥-+-

y y ,所以11<≤-y 所以函数1

1

22+-=x x y 的值域为{}11|<≤-y y

8、数形结合法

根据函数图象或函数的几何图形,利用数型结合的方法来求值域

9、函数的单调性法

①如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则

函数y=f(x)在x=b 处有最大值f(b);

②如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);

(五)函数值域的逆向思维

求函数值域的逆向问题,主要利用已知函数的值域,求出满足条件的参数的值。 解法:

1、数形结合思想.根据解析式画出图像,结合已知条件,利用数形结合思想。

2、分式型函数:把所求值域问题和一元二次方程根与系数的关系联系起来求参数。

(六)函数思想的应用。

例:设a,b,c ∈R,且它们的绝对值都不大于1,求证:ab+bc+ca+1≥0 证明:设()1+++=ca bc ab a f , 当b+c=0时,()10+=bc f ,显然()00≥f 当b+c ≠0时,()a f 是关于a 的一次函数, 因为a,b,c ∈[-1,1],

所以()0)1)(11

()1(11≥++=+++=+++=c b c c b c bc b f () ()0)1)(1(1)1(11≥--=-+-=+-+-=-c b c c b c bc b f 所以()a f 在[-1,1]上的值恒为非负数 所以ab+bc+ca+1≥0

(解法:运用函数思想构造函数,由函数的性质使问题得以解决。)

集合与函数概念单元测试题-有答案

高一数学集合与函数测试题 一、选择题(每题5分,共60分) 1、下列各组对象:?2008年北京奥运会上所有的比赛项目;②《高中数学》必修1中的所有难题;③所有质数;⑷平面上到点(1,1)的距离等于5的点的全体;⑤在数轴上与原点O非常近的点。其中能构成集合的有() A . 2组B. 3组C. 4组 D . 5组 2、下列集合中与集合{x x 2k 1, k N }不相等的是( ) A. {x x 2k 3,k N} B. {x x 4k 1,k N } C. {x x 2k 1,k N} D. {x x 2k 3, k 3,k Z} 2 3、设f(x)学」,则半等于()X 1f(1) A . 1 B . 1 C . 3 D 3 5 5 4、已知集合 A {xx24 0},集合B {x ax 1},若B A ,则实数a的值是() A . 0 B . 1 C . 0 或—D.0或1 2 2 2 5、已知集合 A {( x, y) x y 2} , B {(x,y)x y 4},则AI B() A . {x 3,y 1} B .(3, 1) C . {3, 1} D.{(3, 1)} 6、下列各组函数 f (x)与g(x)的图象相同的 是 ( ) (A) f (x) x,g(x) (.x)2(B) 2 2 f(x) x ,g(x) (x 1) (C)f(x) 1,g(x) x0 x (D) f(x) |x|,g(x) (x 0) x (x 0) 7;l是定义在'■上的增函数则不等式畑"厮一劭的解集

是() (A)(0 ,+ OO)(B)(0,2)(C)(2 , + OO )(D) (2,兰) 7 8已知全集U R,集合A {x x 1或x 2},集合B {x 1 x 0},则AU C U B() A. {x x 1或x 0} B. {x x 1或 x 1} C. {x x 2或x 1} D. {x x 2或 x 0} 9、设A 、B为两 个 -非空集 合, 定义A B { (a,b) a A,b B} ,若A {1,2,3}, B {2,3 ,4},则 A B中的兀素个数为() A. 3 B.7 C.9 D.12 10、已知集合 A {yy x21},集合 B {xy22x 6},则Al B ( ) A ? {(x,y) x 1,y 2} B. {x1 x 3} C. {x| 1 x 3} D. 11、若奇函数f x在1,3上为增函数,且有最小值0,则它在3, 1上 () A.是减函数,有最小值0 B.是增函数,有最小值0 C.是减函数,有最大值0 D.是增函数,有最大值0 12、若1,a,b 0,a2,a b,则a2005 b2005的值为( ) a (A)0 (C) 1 (B)1 (D)1 或1

高中数学必修一《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A I ( ) A. }{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2. 若{{}|0,|12A x x B x x =<<=≤<,则A Y B=( ) A . {}|0x x ≤ B .{}|2x x ≥ C .{0x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x x y y ==,1 B .1,112-=+?-=x y x x y C.55 ,x y x y == D .2)(|,|x y x y == 4.函数x x x y +=的图象是( ) 5.0≤f 不是映射的是A .1:3f x y x ?? →= B .1 :2 f x y x ??→= C .1:4f x y x ??→= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

9.有下面四个命题: ①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称; ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1 B .2 C .3 D .4 10.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 11.若函数))(12()(a x x x x f -+= 为奇函数,则=a ( ) A.21 B.32 C.43 D.1 12.已知函数x x x x f 22 11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x 21+ B.x x 212+- C.x x 212+ D.x x 21+- 13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 14.已知函数[](]?????∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4 15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 A .增函数 B .减函数

幂函数经典例题

例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,求实数t的值. 分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数.

故t =1且f (x )=x 85或t =-1且f (x )=x 2 5 . 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件 t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值范围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α 在 α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )

集合与函数概念单元测试题_有答案

高一数学集合与函数测试题 一、 选择题(每题5分,共60分) 1、下列各组对象:○12008年北京奥运会上所有的比赛项目;○2《高中数学》必修1中的所有难题;○3所有质数;○4平面上到点(1,1)的距离等于5的点的全体;○5在数轴上与原点O 非常近的点。其中能构成集合的有( ) A .2组 B .3组 C .4组 D .5组 2、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 3、设221()1x f x x -=+,则(2)1()2 f f 等于( ) A .1 B .1- C .35 D .35- 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{(,)2}A x y x y =+=,{(,)4}B x y x y =-=,则A B =I ( ) A .{3,1}x y ==- B .(3,1)- C .{3,1}- D .{(3,1)}- 6、下列各组函数)()(x g x f 与的图象相同的是( ) (A )2)()(,)(x x g x x f == (B )22)1()(,)(+==x x g x x f (C )0)(,1)(x x g x f == (D )???-==x x x g x x f )(|,|)( )0()0(<≥x x 7、是定义在上的增函数,则不等式的解集

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

指对幂函数经典练习题

高一数学期末复习幂函数、指数函数和对数函数 1、若函数x a a a y ?+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13-=x y 3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c 4、若210,5100==b a ,则b a +2= ( ) A 、0 B 、1 C 、2 D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.

集合与函数概念单元测试题(含答案)

新课标数学必修1第一章集合与函数概念测试题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2+bx +c =0,a ,b ,c ∈R } B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2+bx +c =0|a ,b ,c ∈R } D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111+=的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0} B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =?????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150) 5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30 8.函数y=x x ++-1912是( )

初二函数知识点及经典例题.

第十八章 函数 一次函数 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

集合与函数概念测试题

修文县华驿私立中学2012-2013学年度第一学期单元测试卷(四) (内容:集合与函数概念 满分:150 时间:120 制卷人:朱文艺) 班级: 学号: 姓名: 得分: 一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分) 1. 下列命题正确的是 ( ) A .很小的实数可以构成集合 B .集合{} 1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合 C .自然数集N 中最小的数是1 D .空集是任何集合的子集 2. 已知{}32|≤≤-=x x M ,{}41|>-<=x x x N 或, 则N M 等于 ( ) A. {}43|>≤=x x x N 或 B. {}31|≤<-=x x M C. {}43|<≤=x x M D.{}12|-<≤-=x x M 3. 函数2() = f x ( ) A. 1 [,1]3- B. 1(,1)3- C. 11(,)33- D. 1(,)3 -∞- 4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( ) A .2 ()1,()1x f x x g x x =-=- B .()21,()21f x x g x x =-=+ C .2(),()f x x g x == D .0()1,()f x g x x == 5. 方程组? ??-=-=+122 y x y x 的解集是 ( ) A .{}1,1==y x B .{}1 C.{})1,1(|),(y x D . {})1,1( 6.设{} 是锐角x x A |=,)1,0(=B ,从A 到B 的映射是“求正切”,与A 中元素0 60相对应的B 中元素是 ( ) A .3 B . 33 C .21 D .2 2

中考攻略:初中数学函数知识点大全+典型例题

初中数学函数知识点大全+典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称

点A 、B ,然后顺次连接五点,画出二次函数的图像。 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 知识点三、二次函数的最值 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当 a b x 2-=时,a b a c y 442-=最值。 如果自变量的取值范围是21x x x ≤≤,那么,首先要看a b 2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a b 2-时,a b a c y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时, c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减 小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222 最小。 知识点四、二次函数的性质 1、二次函数的性质

最全函数概念及基本性质知识点总结及经典例题(汇编)

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈.

幂函数的典型例题.doc

经典例题透析 类型一、求函数解析式 例1.已知幕函数y = (nr-m-])x,,,2-2m~3,当xw(0, + 8)时为减函数,则幕函数y二___________________ . 解析:由于丁 =(加2—血—1)#宀2心为幕函数, 所以m2— \ = \,解得m = 2 ,或m = —\. 当ni = 2时,nr -2m-3 = -3 , y = x~3在(0, + 8)上为减函数; 当m = -l时,/7?2-2m-3 = 0, y = %° =1(x^0)在(0, + ?)上为常数函数,不合题意,舍去. 故所求幕函数为y = x-3. 总结升华:求慕函数的解析式,一般用待定系数法,弄明白需函数的定义是关键. 类型二、比较幕函数值大小 例2.比较下列各组数的大小. 4 4 _ 3 _ 3 (1)3」4万与兀了;(2)(-近门与(-73)^. 4 4_4 解:⑴由于幕函数y = ?亍(x>0)单调递减且3」4 <龙,???3.14万 > 兀了. _3 (2)由于y =兀5这个幕函数是奇函数.???f (-x) =-f (x) —_ 3 _ 3 _ 3 _ 3 _ _因此,(一血门二一(血)V,(―巧)V =—(內)V ,而y = (x>0)单调递减,且血 3 3 3 3 3 3 ???(血戸 >"门即(一血门v( 总结升华. (1)各题中的两个数都是“同指数”的幕,因此可看作是同一个幕函数的两个不同的函数值,从而可根据幕函数的单调性做出判断. (2)题(2)中,我们是利用幕函数的奇偶性,先把底数化为正数的幕解决的问题.当然,若直接利用x<0 上幕函数的单调性解决问题也是可以的. 举一反三 【变式一】比较O.805, O.905, 0.9皿的大小. 思路点拨:先利用幕函数)=兀"的增减性比较0?8°5与0.9°"的大小,再根据幕函数的图象比较0.9°"与0.9七5的大小. 解:y = x Q-5^.(0, + oo)上单调递增,且0.8 v 0.9 , .?,0.805 <0.905. 作出函数y = X05与歹=兀七5在第一象限内的图彖, 易知0.严< 0.9心.

第一章 集合与函数概念测试题

集合与函数概念测试题 一、选择题(每小题5分,满分60分) 1.已知(){},3A x y x y =+=,(){},1B x y x y =-=,则A B = ( ). A .{}2,1 B .(){}2,1 C .{}2,1x y == D .()2,1 2.如图,U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合是 ( ). A .()M P S B .()M P S C .()()U M P C S D .()()U M P C S 3.下列各组函数表示同一函数的是( ). (A) 2 (),()f x g x = = (B) 0 ()1,()f x g x x == (C) 2 1()1,()1 x f x x g x x -=+=- (D )2 (),()f x g x = = 4.函数{}()1,1,1,2f x x x =+∈-的值域是( ). (A) 0,2,3 (B) 30≤≤y (C) }3,2,0{ (D )]3,0[ 5.已知函数2 2 1()12,[()](0)x g x x f g x x x -=-= ≠,则(0)f 等于( ) . (A) 3- (B) 32 - (C) 32 (D ) 3 6.函数2 ()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是( ). A .3a ≥- (B) 3a ≤- (C) 5a ≤ (D )3a ≥ 7.函数()f x 是定义在R 上的奇函数,当0>x 时,1)(+-=x x f ,则当0

函数的单调性知识点汇总及典型例题(高一必备)

第二讲:函数的单调性 一、定义: 1.设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f <那么就说)(x f 在区间D 上是增函数.区间D 叫)(x f y =的单调增区间. 注意:增函数的等价式子:0) ()(0)]()()[(2 1212121>--?>--x x x f x f x f x f x x ; 难点突破:(1)所有函数都具有单调性吗? (2)函数单调性的定义中有三个核心①21x x <②)()(21x f x f <③ 函数)(x f 为增函数,那么①②③中任意两个作为条件,能不能推出第三个? 2. 设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f >那么就说)(x f 在区间D 上是减函数.区间D 叫)(x f y =的单调减区间. 注意:(1)减函数的等价式子:0) ()(0)]()()[(21212121<--? <--x x x f x f x f x f x x ; (2)若函数)(x f 为增函数,且)()(,2121x f x f x x <<则. 题型一:函数单调性的判断与证明 例 1.已知函数)(x f 的定义域为R ,如果对于属于定义域内某个区间I 上的任意两个不同的自变量21,x x 都有 .0) ()(2 121>--x x x f x f 则( ) A.)(x f 在这个区间上为增函数 B.)(x f 在这个区间上为减函数 C.)(x f 在这个区间上的增减性不变 D.)(x f 在这个区间上为常函数

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

次函数与幂函数典型例题

二次函数与幂函数 1.求二次函数的解析式. 2.求二次函数的值域与最值. 3.利用幂函数的图象和性质分析解决有关问题. 【复习指导】 本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用. 基础梳理 1.二次函数的基本知识 (1)函数f (x )=ax 2+bx +c (a ≠0)叫做二次函数,它的定义域是R . (2)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,对称轴方程为x = -b 2a ,顶点坐标是? ?? ?? -b 2a , 4ac -b 2 4a . ①当a >0时,抛物线开口向上,函数在? ????-∞,-b 2a 上递减,在?????? -b 2a ,+∞上递增,当x =-b 2a 时,f (x )min =4ac -b 2 4a ; ②当a <0时,抛物线开口向下,函数在? ????-∞,-b 2a 上递增,在?????? -b 2a ,+∞上递减,当x =-b 2a 时,f (x )max =4ac -b 2 4a . ③二次函数f (x )=ax 2+bx +c (a ≠0)当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ |a | . (3)二次函数的解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+h (a ≠0); ③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.幂函数

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

相关主题