搜档网
当前位置:搜档网 › 光学镜头设计流程

光学镜头设计流程

光学镜头设计流程
光学镜头设计流程

镜头设计

变焦镜头设计案例 本案例的公开已征得客户的同意,但关键参数无法公开,且约为90%的设计进程。 一、设计应用 单透镜反射式照相机,全画幅(像面对角线为43mm)。 二、设计要求 适用波长:可见光 EFL:75~150mm 镜片数量:不超过12片 镜片面型:全部球面 镜片材料:光学玻璃 总长度:小于254mm 最大光圈:2 后截距:大于40mm 分辨率:大于80lp/mm@0.3 调焦方式:内调焦

可加入可变光圈 三、设计特点 采用机械补偿的变焦方式,这样做与光学补偿相比,可以使系统长度更短。而且,像面可以保持不变。然而,机械补偿方式的弊端就是给机械设计带来更多难度,因每个变焦组的移动量不成线性关系,必须加入空间凸轮。 四、设计结果

上海荧沃光电科技有限公司依托北京航天大学和杭州电子科技大学,设计团队由光学工程,电子专业硕、博士和教授组成,有近十年的多领域的光学设计经验,可根据客户订制要求设计各种镜头设计,激光光路设计,望远系统,扫描光路设计和LED透镜,手电筒反光碗,路灯透镜设计加工等。我们主要运用ZEMAX、Code V 、TracePro、Lighttool等国外优秀光学设计软计,为客户提供精准、高效、低成本的光学及机械设计方案和技术支持。 照明光学业务: 订制远、近红外透镜,玻璃透镜,安防透镜,车灯透镜,LED透镜光学设计,透镜LED,直下式LED背光透镜光学设计,LED透镜设计,LED透镜光学设计, COB透镜,LED透镜,凹面透镜,凸面透镜,菲尼尔透镜光学设计与加工;路灯透镜, PMMA透镜, PC透镜, 鼠标透镜,非球面透镜设计及加工生产;透光率极高,光效极度好,无黄斑。 成像光学设计:手机镜头,照相镜头,PDA镜头设计,望远镜头,扫描仪镜头,显微镜头,投影镜头,工业镜头等镜头的设计、加工。

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

800 万像素手机镜头的zemax设计

800 万像素手机镜头的zemax设计2012.03.13 评论关闭 4,757 views 目录 [隐藏] , 1引言 , 2, 感光器件的选取 , 3, 设计指标 , 4, 设计思路 , 4.1,(, 材料选取 , 4.2,(, 初始结构选取 , 4.3,(, 优化过程 , 5, 设计结果 , 5.1,(, 光学调制传递函数 , 5.2,(, 点列图 , 5.3,(, 场曲和畸变 , 5.4,(, 色差和球差 , 5.5,(, 相对照度 , 6, 公差分析 , 7, 结论 随着手机市场对高像素手机镜头的需求增大,利用,,,,,光学设计软件设计一款大相对孔径,,,万像素的广角镜头。该镜头由,片非球面玻璃镜片,,片非球面塑料镜片,,片滤光镜片和,片保护玻璃构成。镜头光圈值,为,(,,,视场角,ω为,,?,焦距为,(,,,,,后工作距离为,(,,,。采用,,,,,, 公司的,,,,,,,型号,,,

万像素传感器,最大分辨率为,,,,×,,,,,最小像素为,(,μ,。设计结果显示:各视场的均方根差(,,,)半径小于,(,μ,,在奈奎斯特频率,,,处大多数视场的,,,值均大于,(,,畸变小于, ,,,, 畸变小于,(, ,。关键词:手机镜头;光学设计;,,,万像素;,,,,, 引言 手机镜头的研发工作始于,,世纪,,年代,世界上第一款照相手机是由夏普,,,,,,(现在的日本沃达丰)在,,,,年推出的,,,,,手机,它只搭载了一个,,万像素的,,,,数码相机镜头。随后各大手机知名制造厂商纷纷开始研发手机摄像功能。,,,,年,月,,日夏普制造了,,,万素的,,,,,,目前照相手机的市场占有率几乎是,,,,,特别是带有高像素,,、,,、,,、,, 的镜头就成为镜头研发的热点,,,。目前,,,万像素的手机市场占有率还不是太多,但随着人们对高端手机的需求量越来越大,,,,万像素手机肯定是主流趋势。鉴于此,在选用合理初始结构的基础上,优化出了一款,,,万像素的手机镜头。 , 感光器件的选取 感光器件有,,,(电荷耦合器件)和,,,,(互补金属氧化物半导体)两种。,,,,器 件产生的图像质量相比于,,,来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用,,,作为感光元件;,,,,感应器则作为低端产品 应用于一些摄像镜头上,目前随着,,,,技术的日益成熟,也有一些高端数码产品使用,,,,器件。,,,,相对于,,,有很多优点,比如价格低、集成化程度高、体积小、质量轻、功耗低、无光晕、高读出速率等,,,。所以很多手机生产商都采用,,,,器件作为手机镜头的图像传感器。目前,,,,芯片的尺寸越做越小,相应的像素尺寸也越来越小,分辨率反而越来越高。 现在国际上,,,,生产厂家主要有,,,,,,、,,,,,,,,,,、,,,,;,,、,,,,,,,等,本文采用,,,,,,公司的 ,,,,,,, 型号 ,(,,,,(,,,(,,,;,),该款传感器采用超低

一种微型变焦系统的设计

第7卷 第10期 2007年5月1671 1819(2007)010 2343 04科 学 技 术 与 工 程 Sc i ence T echno logy and Eng i neer i ng V o l 7 N o 10 M ay 2007 2007 Sci T ech Engng. 机电技术 一种微型变焦系统的设计 谢洪波 张春慧 李保安 郁道银 王向军 (天津大学精仪学院,光电信息技术科学教育部重点实验室,天津300072) 摘 要 为适应某些特殊领域对微型化和简单化的需要,运用光学设计软件CODE V,在传统机械补偿式变焦镜头的基础上,结合非球面透镜理论,设计了一个可见光波段的只有一个移动镜的4片式微型变焦系统。此系统具有结构简单、精度高、成本低、体积小等特点,可满足在变焦范围内连续清晰成像的要求。 关键词 变焦系统 非球面 超小型 中图分类号 TH74; 文献标识码 A 变焦距光学系统原理是焦距在一定范围内连续改变,其物面、像面保持不动。应用变焦距系统时,应满足均匀地改变焦距,且在此过程中像面保持稳定,相对孔径基本保持不变等基本要求。变焦距光学系统通常都是由前固定组、变焦组和固定组三个部分组成。变焦组移动改变放大倍率的同时,成像位置也会随之变化;因此,在变焦组透镜移动的过程中,必须有其他的透镜组作像差补偿,以保证在所有变焦位置连续清晰成像。正因如此,目前的变焦系统都较为复杂,透镜数目多,长度和体积也较大。然而,有些特殊领域,需要产品简单化、小型化,甚至微型化,这就使传统的变焦镜头难以胜任。现设计了一个接收器为贫点阵CCD的微型变焦系统,与常用的变焦系统不同,此系统只含有一片移动透镜,没有补偿组,是一个微型化的、可连续清晰成像的变焦系统。 1 原理分析 变焦距光学系统原理是根据 物像交换原则,使焦距在一定范围内连续改变时,其像面基本保持不动。虽然传统的变焦理论已比较成熟,但它并不是可以通用于所有变焦系统的设计,而且传统理论 2006年12月6日收到 第一作者简介:谢洪波(1969!),男,湖南常德人,副教授,博士生,研究方向:成像技术和显示技术。相对繁琐,设计结果也比较复杂。要想做到结构简单并且能连续清晰成像,运用传统变焦理论就显得比较困难了。只有充分研究透镜形状、玻璃材料和它们的光学特性,改进传统设计方法,才可能实现系统的简化和微型化。在像质允许的情况下,尽量降低对像差的要求,从而达到用4至5片透镜起到一个复杂变焦系统所能实现的功能。由于现设计系统的接收器是贫点阵CCD,其像差要求相对较低;因此,尝试固定或删除机械补偿式系统的补偿组透镜,通过合理地优化改进,使得像面的微位移小于焦深,从而达到既结构简单,又能实现在两个视场连续清晰成像的目标。 另一方面,球面透镜对远轴光成像会出现较大的散焦和像差。经过特定设计的非球面透镜则可使远轴光同近轴光一样有良好的聚焦能力,使得成像像质得到极大改善[1]。因为单透镜的球差与透镜两个面的曲率半径分配有关,而非球面各点的曲率值在不同方向上是不同的;所以,可改变镜面曲率来降低系统的球差[2]。换言之,选择可变参数比球面镜多的非球面镜可更好地校正像差。现在的设计正是运用非球面的性质,简化系统的组成。 2 设计过程和结果 2 1 系统设计的总体目标 物镜外形尺寸: 7mm?21mm或更小,物镜分

光学详细知识点

光学知识点大汇总 一、光的直线传播、 1、光现象 2、光源:能够发光的物体叫做光源。 ● 光源按形成原因分,可以分为自然光源和人造光源。 例如,自然光源有太阳、萤火虫等,人造光源有如蜡烛、霓虹灯、白炽灯等。 ● 月亮不是光源,月亮本身不发光,只是反射太阳的光。 3、光的直线传播:光在真空中或同一种均匀介质中是沿直线传播的,光的传播不需要介质。 大气层是不均匀的,当光从大气层外射到地面时,光线发了了弯折(海市蜃楼、早晨看到太阳时,太阳 还在地平线以下、星星的闪烁等) 光沿直线传播的现象:小孔成像、井底之蛙、影子、日食、月食、一叶障目。 ● 光沿直线传播的应用: ① 激光准直. 排直队要向前看齐. 打靶瞄准 ② 影的形成:光在传播过程中,遇到不透明的物体,由于光是沿直线传播的,所以在不透光的物体后面,光照射不到,形成了黑暗的部分就是影。 ③ 日食月食的形成 日食的成因:当月球运行到太阳和地球中间时,并且三球在一条直线上,太阳光沿直线传播过程中,被不透明的月球挡住,月球的黑影落在地球上,就形成了日食. 月食的成因:当地球运行到太阳和月球中间时,太阳光被不透明的地球挡住,地球的影落在月球上,就形成了月食. 如图:在月球后 1的位置可看到日全食, 在2 的位置看到日偏食, 在3的位置看到日环食。 小孔成像原理: 光在同一均匀介质中,不受引力作用干扰的情况下沿直线传播 根据光的直线传播规律证明:像长和物长之比等于像和物分别距小孔屏的距离之比。

4、光线:用一条带有箭头的直线表示光的径迹和方向的直线。(光线是假想的,实际并不存在) 光线是由一小束光抽象而建立的理想物理模型,建立理想物理模型是研究物理的常用方法之一。 5、光速 (1)光在真空中速度C=3×108 m/s=3×105 km/s ;光在空气中速度约为3×108 m/s 。光在水中速度为 真空中光速的3/4,在玻璃中速度为真空中速度的2/3 。 雷声和闪电在同时同地发生,但我们总是先看到闪电后听到雷声,这说明什么问题? 这表明光的传播速度比声音快. (2)光年是长度的单位,1光年表示光在1年时间所走的路程,1光年=3×108米/秒×365×24×3600秒=9.46×1015米 注意:光年不是时间的单位。 二、光的反射 1. 反射: 定义:光从一种介质射向另一种介质表面时,一部分光被反射回原来介质的现象叫光的反射。任何物体的表面都会发生反射。 我们能够看见不发光的物体,是因为物体反射的光进入了我们的眼睛。 2. 探究实验:探究光的反射规律 【设计实验】 把一个平面镜放在水平桌面上,再把一张纸板ENF 竖直地立在平面镜上,纸板上的直线ON 垂直于镜面,如图2-2所示。 一束光贴着纸板沿着某一个角度射到O 点,经平面镜的反射,沿另一个方向射出,在纸板上用笔描出入射光EO 和反射光OF 的径迹。改变光束的入射方向,重做一次。换另一种颜色的笔,记录光的径迹。 取下纸板,用量角器测量NO 两侧的角i 和r 。 【实验表格】 图2-2

光学系统设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它是你要 的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data,键入你 要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第二、三行键入 0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength主要是用来计算光学 系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的 effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue 上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO 即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO行中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO行中的thickness栏上直接键入4。Zemax 的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负 值。再令第2面镜的thickness为100。 9、现在数据已大致输入完毕。如何检验你的设计是否达到要求呢?选analysis中的fans,然后选择其中的 Ray Aberration,将会出现如图1-1所示的TRANSVERSE RAY FAN PLOT。

800 万像素手机镜头的zemax设计

800 万像素手机镜头的zemax设计 2012.03.13 评论关闭4,757 views 目录 [隐藏] ?1引言 ?21感光器件的选取 ?32设计指标 ?43设计思路 ? 4.13.1材料选取 ? 4.23.2初始结构选取 ? 4.33.3优化过程 ?54设计结果 ? 5.14.1光学调制传递函数 ? 5.24.2点列图 ? 5.34.3场曲和畸变 ? 5.44.4色差和球差 ? 5.54.5相对照度 ?65公差分析 ?76结论 随着手机市场对高像素手机镜头的需求增大,利用Zemax光学设计软件设计一款大相对孔径800万像素的广角镜头。该镜头由1片非球面玻璃镜片,3片非球面塑料镜片,1片滤光镜片和1片保护玻璃构成。镜头光圈值F为2.45,视场角2ω为68°,焦距为4.25mm,后工作距离为0.5mm。采用APTINA公司的MT9E013型号800万像素传感器,最大分辨率为3264×2448,最小像素为1.4μm。设计结果显示:各视场的均方根差(RMS)半径小于1.4μm,在奈奎斯特频率1/2处大多数视场的MTF值均大于0.5,畸变小于2%,TV畸变小于0.3%。 关键词:手机镜头;光学设计;800万像素;Zemax 引言 手机镜头的研发工作始于20世纪90年代,世界上第一款照相手机是由夏普JPHONE(现在的日本沃达丰)在2001年推出的JSH04手机,它只搭载了一个11万像素的COMS数码相机镜头。随后各大手机知名制造厂商纷纷开始研发手机摄像功能。2003年5月22日夏普制造了100万素的JSH53,目前照相手机的市场占有率几乎是100%,特别是带有高像素2M、3M、5M、8M的镜头就成为镜头研发的热点[1]。目前800万像素的手机市场占有率还不是太多,但随着人们对高端手机的需求量越来越大,800万像素手机肯定是主流趋势。鉴于此,在选用合理初始结构的基础上,优化出了一款800万像素的手机镜头。 1感光器件的选取 感光器件有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种。CMOS器件产生的图像质量相比于CCD来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用CCD作为感光元件;CMOS感应器则作为低端产品

CCTV光学镜头设计的若干问题

CCTV光学镜头设计的若干问题 许正光赵一菲梁来顺 (公安部第一研究所光电技术事业部,北京,100044) 摘要:本文综述了CCTV光学镜头设计和生产制造当中涉及到一些值得关注的问题。这些问题包括设计指导思想、先进光学生产技术、CCTV镜头安全环保性能和RoSH指令、符合使用效果的几点设计经验等。本文对以上问题进行有益的总结和探讨,对设计人员有一定参考价值。 关键词:CCTV光学镜头先进光学生产技术非球面技术RoSH指令 20世纪70年代以来,以先进加工技术、先进材料技术和自动优化设计软件为代表的先进光学生产技术得到了长足发展,安防产业中广泛使用的CCTV镜头充分分享到了这门先进的技术带来的好处,传统的设计和生产制造也由此发生了重大的变化。然而,和生产、制造、使用紧密相关的镜头设计过程并没有完全脱离实践当中积累的经验,许多经验总结今天看来仍旧可以作为最基本的设计原则,而这些对刚刚入门或正陷入困惑的业内设计人员有一定的指导意义。此外,日益受到各国重视的CCTV镜头安全环保性能和欧洲正在推行的RoSH指令,使得安防镜头的材料和制造工艺也将面临严峻考验。本文总结了一些笔者在CCTV光学镜头研制过程中的心得体会,供大家参考。 1 设计和使用必须紧密结合[1] 评价CCTV光学镜头的好坏,直接涉及到使用、设计和制造三个方面,它们之间的关系极为密切。为了获得一个较理想的光学镜头,光学设计人员首先清晰明确地了解使用要求、使用效果和设计结果转入加工制造时的可能性。在使用和设计要求方面,设计人员对CCTV镜头所要求的焦距、孔径、视场、最近成像距离等光学特性参数和分辨率、畸变、光学传递函数等成像质量特性参数都比较熟悉。而当涉及使

现代光学设计作业

现代光学设计——结课总结 光学工程一班陈江坤 学号2120100556

一、掌握采用常用评价指标评价光学系统成像质量的方法,对几何像差和垂轴像差进行分类和总结。 像质评价方法 一、几何像差曲线 1、球差曲线: 球差曲线纵坐标是孔径,横坐标是球差(色球差),使用这个曲线图,一要注意球 差的大小,二要注意曲线的形状特别是代表几种色光的几条曲线之间的分开程度,如果单 根曲线还可以,但是曲线间距离很大,说明系统的位置色差很严重。 2、轴外细光束像差曲线 这一般是由两个曲线图构成。图中左边的是像散场曲曲线,右边的是畸变,不同颜色 表示不同色光,T和S分别表示子午和弧矢量,同色的T和S间的距离表示像散的大小,纵坐标为视场,左图横坐标是场曲,右图是畸变的百分比值,左图中几种不同色曲线间距 是放大色差值。

3、横向特性曲线(子午垂轴像差曲线): 不同视场的子午垂轴像差曲线,纵坐标EY代表像差大小,横坐标PY代表入瞳大小,每一条曲线代表一个视场的子午光束在像面上的聚交情况。理想的成像效果应当是曲线和横轴重合,所有孔径的光线对都在一点成像。纵坐标上对应的区间就是子午光束在理想像面上的最大弥散斑范围。这个数值和点列图中的GEO尺寸一致,GEO尺寸就是横向特性曲线中该视场三个光波中弥散最大的那个半径。其中主光线用于描述单色像差情况;三个波长曲线用于描述垂轴色差情况。横向像差特性曲线图表示了视场角由小到大时垂轴像差曲线的变化,从中可以看出子午垂轴像差随视场变化规律。子午垂轴像差曲线的形状当然是子午像差:细光束子午场曲、子午球差和子午彗差决定的,因此曲线形状和像差数量的对应关系经常在像差校正中用到。根据像差曲线可以判断出要改善系统的成像质量,就必须改变曲线的形状和位置,即改变三种子午像差的数量。 将子午光线对a、b作连线,该连线的斜率m = (Ya-Yb)/2h 与宽光束子午场曲X’T 成正比。口径改变时,连线斜率变化表示宽光束子午场曲也随着变化。当口径减小趋于0时,连线成了坐标原点(对应主光线)的切线,切线的斜率和细光束子午场曲x’t相对应。子午光线对连线的斜率与原点切线斜率之间的差和子午球差(X’T –x’t)成正比,两个斜率夹角越大,子午球差越大。即:宽光束子午场曲与细光束子午场曲的差和子午球差成正比。当宽光束子午场曲与细光束子午场曲的符号由同号变成异号时表明子午球差加大。子午光线对连线和纵坐标交点的高度等于(Ya +Yb)/2,是子午彗差K’T。不同波长子午光线对连线和纵坐标交点之差表示两种不同波长光之间的“色彗差”。彗差是与孔径和视场都有关的一个像差,主要反映了经过光学系统后与主光线原对称的光线对不再与主光线对称的情形,能量上反映了对于中心点的不对称,也就是“彗尾现象”。 至于色差情况,三个波长的横向特性曲线差值就反映了轴外点垂轴色差的情况。横向特性曲线充分反映了轴外像点的成像质量和随入瞳孔径、视场大小的变化规律。在光学设计过程中,我们需要仔细的分析这些像差中那一个占据主要地位以及采取相应的措施,达到像差校正和像差平衡的目的。 弧矢像差的分析方法与子午像差分析方法相同。 对应轴上点,只有两种像差需要分析,即:轴向球差和轴向色差。“轴上点像差特性曲线(longitudinal aberration)”,通过对于轴上点球差、轴向色差的描述,综合的反映了轴上点成像质量;“场曲和畸变特性曲线”,描述了系统的子午场曲、弧矢场曲、色散、畸变等像差参数;“横向色差特性曲线”,描述了系统垂轴色差随着视场变化的规律。 二、点列图 由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。,点列图是在现代光学设计中最常用的评价方法之一。

变焦系统设计的小型化

doi:10.3969/j.issn.1671-1041.2011.02.013 变焦系统设计的小型化 冯蕾1,王栋2,冯冲3,张桂源1 (1.长春理工大学光电工程学院,长春130022;2.山西师范大学,临汾042603;3.东北大学,沈阳110031) 摘要:目前,随着光学设计水平的不断提高,变焦光学系统的质量可与定焦系统相媲美,正向着大倍率、大相对孔径、小型化的方向发展,变焦系统的应用也随之日益广泛。本文根据变焦系统的基本原理,利用ZEMAX软件设计了一个用于监控的变焦系统,变焦范围:200mm一600mm,变倍比:3x,镜筒长度:450mm。设计结果表明:该变焦系统较之同类设计结果,具有结构紧湊,质量轻,长度短的优点。 关键词:变焦透镜;光学系统;小型化设计 中图分类号:TH703文献标志码:A Miniature of zoom systems design FENG Lei1,WANG Dong2,FENG Chong3,ZHANG Gui-yuan1 (1.School of Optical Enginerring,Changchun University of Science and Technology,Changchun130022,China; 2.ShanXi Normal University,Linfen042603,China;3.Northeastern University,Shenyang110031,China) Abstract:At present,as the development of optical level,the quality of zoom lens have been possible compared with fixed focus system.The zoom lens are developing to the direction of the big percentage,the greatly relative aperture and miniature.And day and day,the zoom lens are applied in widespread field.The article is based on the principle of zoom lens.A monitoring system is designed by using ZEMAX software.Zoom scope is200mm to600mm.Change percentage is3times.The system length is450mm.The results show that the zoom lens has the characteristics of miniature and light weight and small length. Key words:zoom lens;optical system;design miniature 0引言 变焦距系统是一种焦距可以连续变化而像面保持稳定,且在变焦过程中像质保持良好的光学系统。变焦的原理基于成像的一个简单性质—物像交换原则,即透镜要满足一定的共轭距可有两个位置。若物面一定,当透镜从一个位置向另一个位置移动时,像面将要发生移动,若采取补偿措施使像面不动,便构成一个变焦系统。目前变焦镜头都用改变透镜组之间的间隔来改变整个物镜的焦距。在移动透镜组改变焦距时,总是要伴着像面的移动,因此要对像面的移动给以补偿。根据变焦补偿方式的不同,补偿方法分为机械补偿法和光学补偿法。机械补偿法就是用一组透镜(通称补偿组)作少量移动以补偿像面位移。补偿透镜组的移动与其它透镜(通称变倍组)的移动方向不同且不等速。但它们的相对运动却有严格的对应关系,各透镜组通过一个复杂的凸轮机构实现相对运动。光学补偿法用几组透镜作变倍和补偿时,各透镜组的移动同向等速,只需要用简单的机构把各透镜组连在一起就行了。变焦距光学系统可以实现对目标的连续探测,已广泛应用于国民经济和国防工业的很多领域,由于光学参数,成像质量及自动化控制变焦的要求,市场难以选择到合适的光学系统满足要求,所以需要进行专门设计。 市场上常见的变焦镜头,焦距不长,总长相对比较长,结构比较复杂。这是因为受到成像质量以及加工工艺,加工条件的限制。焦距变长,系统很难校正像差,从而难以保证成像质量。本文主要研究长焦距变焦系统的小型化设计。在设计中使用了特殊材料,更好的校正了二级光谱。 1系统设计 1.1光学技术指标要求 变焦范围:200-600mm;变倍比:3x;F数为4;镜筒长度:450mm;像面接收为1/2英寸的CCD。 1.2系统分析 由于该系统的变倍比不大,焦距又比较长,所以系统中的色差和二级光谱的校正较为困难,而且变焦 □科研设计成果□仪器仪表用户 38EIC Vol.182011No.2欢迎光临本刊网站http://www.eic.com.cn

双胶合望远镜头设计要点

XX大学 课程设计说明书 201X/201X 学年第 1 学期 学院:信息与通信工程学院 专业:XXXXXXXX 学生姓名:XXXXX 学号:XXXXX 课程设计题目:双胶合望远镜头设计 起迄日期:20XX年12月22日~20XX年01月02日课程设计地点:XX大学5院楼513、606 指导教师:XXXX 职称: 教授

摘要 (1) 关键词 (1) 第一章课题要求 1.1课题背景 (2) 1.2设计目的 (2) 1.3设计内容和要求 (2) 第二章方案分析 2.1课题名称 (3) 2.2主要数据 (3) 2.3设计思路 (3) 2.4实现原理 (3) 2.5主要过程 (4) 第三章光学系统设计 3.1光圈参数设定 (5) 3.2视场参数设定 (5) 3.3波长设定 (6) 3.4玻璃厚度的设定 (6) 3.5像空间的设定 (7) 第四章光学系统分析 4.1 2D光路分布草图 (7) 4.2 标准点列图Spot Diagram (8) 4.3 光路图OPD FAN (9) 4.4 光线相差图RAY FAN (10) 4.5波前分布图 (11) 第五章光学系统优化 5.1光学系统调焦 (12) 5.2设置可变参数 (13) 5.3优化函数设定 (13) 5.4最终优化 (14) 第六章系统优化前后比较 6.1优化后的2D草图 (15) 6.2优化后的标准点列 (15) 6.3优化后光路图 (16) 第七章心得体会 心得体会 (17)

ZEMAX是一款多功能的光学设计软件,可建立反射、折射、绕射等光学模型,可以用来模拟、分析和辅助设计光学系统,并对光学系统进行优化。双胶合透镜不仅有较好的横向分辨率,而且有较高的轴向分辨率,能够作为共焦3-D成像的一种理想光学元件,在光学领域得到了广泛的应用。本次课程设计,我们将利用ZEMAX软件设计一个双胶合望远镜头,展示利用ZEMAX设计、分析和优化一个简单光学系统的过程,进一步掌握该软件。 关键词:ZEMAX双胶合望远镜头光学系统设计分析

红外连续变焦镜头的结构设计

万方数据

第1期李永刚.等:红外连续变焦镜头的结构设计61 统,共有14片透镜,包括变焦物镜系统和二次成像系统。镜片数日的增加,有利于校正像差,可提高像质;二次成像系统的作用是为了减小物镜的直径同时保证100%的冷屏效率。 1.2变倍组导向机构选型 连续变焦镜头在连续变焦的过程中,光轴随着变倍和补偿镜组的位移始终在跳动,而光轴跳动量的大小直接影响系统的性能指标。所以变倍、补偿镜组的导向机构设计是此红外变焦距镜头结构设计的核心。变焦距镜头导向机构的种类很多,按接触摩擦性质可分成两大类:滑动摩擦机构和滚动摩擦机构。滑动摩擦机构是导轨与移动镜组之间采用滑动接触方式,滚动机构是导轨与移动镜组之间采用滚动方式…。常用的变倍机构有以下几种形式¨】:1.圆柱导轨滑动机构。这种结构变倍精度高,径向结构尺寸小,适用于变倍和补偿组光学通光口径较小的结构。 2.两根圆柱导轨滑动机构。由于滑动部件为两根圆柱导轨,这种结构变倍精度高,承载的负荷也比第一种大。但是由于是超定位结构,光学通光口径太大,容易产生机构卡死现象,机构的径向尺寸也较大。一般适用通光口径30—80mm的结构。 3.三根圆柱导轨滑动机构。这种结构的优点是运动舒适、平稳,不容易产生卡死现象,可以带动通光口径较大的光学组件。缺点是运动精度较前两种低,一般适用通光口径50—120mm的结构。 滚动摩擦机构就是在上述滑动摩擦机构的基础上,加上精密轴承或者精密钢球等,来减小摩擦力矩,提高系统总体性能。 根据以上经验,本文选用两根圆柱导轨形式,并且在变倍、补偿镜组与圆柱导轨之间采用精密直线轴承配合,使该机构由滑动摩擦变为滚动摩擦。1.3调焦机构选型 调焦组的作用是通过调焦机构,使调焦镜组沿光轴方向移动,以保证在远近不同距离上的物体,都能清晰地成像在像面上。因此,它的机构优劣直接影响到变焦距镜头的成像质量。 光学系统调焦机构大体有三种方式,一种是凸轮调焦¨1,一种是采用直线电机调焦…,另一种是丝杠丝母调焦。考虑到调焦系统行程短,通光口径比较大,如果采用丝杠丝母调焦或者直线推进调焦机构,对加工装配要求就很严格,而且很容易出现卡滞现象。而采用简单的凸轮机构实现调焦过程,可以避免上述的缺点。 2主要机械结构设计 2.1凸轮机构设计 由于补偿组作非线性移动,直接的直线驱动很难控制其与变倍组线性同步,而采用圆柱凸轮,由凸轮的旋转同时带动变倍、补偿镜组实现直线移动,可使得驱动控制简单易行。 凸轮机构是实现由电机旋转运动转化为变倍、补偿镜组沿光轴方向平移运动的执行机构,凸轮机构主要由带齿轮的凸轮、轴承环、导轨、导钉、导环等组成,结构简图如图1所示。当电机带动带齿轮的凸轮转动时,通过导环、导钉将运动传递给变倍、补偿镜组,通过导轨的导向作用,将凸轮的旋转运动转化为变倍、补偿镜组光轴方向的平行移动。 图1变倍、补偿镜组凸轮机构简图 Fig.1Camguidemechanismsketchof varifocusingandcompensating 图2凸轮结构图 Fig.2Sketchofcamconfiguration 凸轮圆周上开有两条空间曲线槽,通过这样的曲线轨迹实现确定的轨迹。其中一条为变倍用,一 条为补偿用。使变倍镜组移动时,补偿镜组做相应  万方数据

光学设计报告

光学设计课程报告 班级: 学号: 姓名: 日期:

目录 双胶合望远物镜的设计 (02) 摄远物镜的设计 (12) 对称式目镜的设计与双胶合物镜的配合 (20) 艾尔弗目镜的设计 (30) 低倍消色差物镜的设计 (38) 无限筒长的高倍显微物镜的设计 (47) 双高斯照相物镜的设计 (52) 反摄远物镜的设计 (62) 课程总结 (70)

双胶合望远物镜的设计 1、设计指标: 设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下:视放大率: 3.7?;出瞳直径:4mm ;出瞳距离:大于等于20mm ;全视场角:210w =?;物 镜焦距: ' =85f mm 物;棱镜折射率:n=(K9);棱镜展开长:31mm ;棱镜与物镜的 距离40mm ;孔径光阑为在物镜前35mm 。 2、初始结构计算 (1) 求 J h h z ,, 根据光学特性的要求4.728.142=== D h : 44.75tan 85tan ''=?=?=οωf y 0871 .0''==f h u 648.0'''==y u n J (2)计算平行玻璃板的像差和数 C S S S I I I I ,, 平行玻璃板入射光束的有关参数为 0871.0=u 0875.0)5tan(-=-=οz u 005 .1-=u u z 平行玻璃板本身的参数为 d=31mm ; n=; 1.64=ν 带入平行玻璃板的初级像差公式可得: 000665.01.51631-1.5163×0.0871×-3113 24 432-==--=I du n n S 0.0006682=(-1.005)×-0.000665=u u × =z I I I S S 000824.0087.05163.11.6415163.131122 22-=??-?-=--=I u n n d S C υ

长变焦镜头的设计

分类号密级 U D C 大孔径长变焦镜头的设计 董春艳 导师姓名(职称) 李林(教授)答辩委员会主席安连生 申请学科门类工学申请学位专业 论文答辩日期 2007.07.05 测试计量技术及仪器 2007年06月28日

大孔径长变焦镜头的设计 北京理工大学

研究成果声明 本人郑重声明:所提交的学位论文是我本人在指导教师的指导下进行的研究工作获得的研究成果。尽我所知,文中除特别标注和致谢的地方外,学位论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京理工大学或其它教育机构的学位或证书所使用过的材料。与我一同工作的合作者对此研究工作所做的任何贡献均已在学位论文中作了明确的 说明并表示了谢意。 特此申明。 签名:日期: 关于学位论文使用权的说明 本人完全了解北京理工大学有关保管、使用学位论文的规定,其中包括:①学校 有权保管、并向有关部门送交学位论文的原件与复印件;②学校可以采用影印、缩印 或其它复制手段复制并保存学位论文;③学校可允许学位论文被查阅或借阅;④学校 可以学术交流为目的,复制赠送和交换学位论文;⑤学校可以公布学位论文的全部或 部分内容(保密学位论文在解密后遵守此规定)。 签名:日期: 导师签名:日期:

摘要 近年来,随着计算机技术的飞速发展和变焦距镜头光学设计理论的不断完善以及加工工艺的成熟,变焦距光学系统的种类日益丰富,成像质量逐渐提高,可与定焦系统相媲美,因此广泛的应用到各种工作领域中。这种情况下,研究变焦距镜头的设计无疑具有重要的意义。 本论文首先对变焦距镜头系统的发展历史进行了回顾,介绍了变焦距镜头的结构型式,变焦方法等的发展过程;第二章分析了变焦距镜头的高斯光学,总结出了变焦距镜头的高斯光学基本表达式,分别对机械补偿法、全动型变焦距镜头的高斯光学建立了数学模型,并对系统各组元的运动情况做了详细的分析,另外还讨论了关于变焦距镜头小型化的一些问题;第三章主要介绍了编制的机械补偿和全动型变焦距镜头计算机辅助设计软件,并利用实例进行了计算分析,在第四章中,利用所得结果,尝试设计了两种不同用途的变焦距镜头,像质良好,达到使用要求,结果表明软件功能基本达到预期目的,同时验证了前面推导的理论公式的正确性。 关键词:变焦距镜头;高斯光学;凸轮曲线

光学基础知识

光学基础知识 可见光谱只是所有电磁波谱中的一小部分,人眼可感受到可见光的波长为400nm(紫色)~700nm(红色)。 红、绿、蓝被称为三原色(RGB)。红色、绿色、蓝色比例的变化可以产生出多种颜色,三者等量的混合可以再现白色。 补色的概念:从白色中减去颜色A所形成的颜色,称之为颜色A的补色(complementary color)。 白色-红色red=青色cyan 白色-绿色green=洋红magenta 白色-蓝色blue=黄色yellow 白色-红色-绿色-蓝色=黑色 补色的特点:当使用某个补色滤镜时,该补色对应的原色会被过滤掉。 原色以及所对应补色的名称: 颜色再现有两种方式: 原色加法:三原色全部参与叠加形成白色,任意其中两种原色相加形成不参与合成的颜色的补色。 原色减法:三补色全部参与叠加形成黑色,任意其中两种补色相加形成不参与合成的颜色的原色。

原色加法比较简单,由原色叠加而形成其他颜色,但是应用较少;而原色减法是从白色中减掉相应原色而形成其他颜色,就是用补色来叠加形成其他颜色,应用的场合比较多。 光的直线传播定律:光在均匀介质中沿直线传播。 费马定律:当一束光线在真空或空气中传播时,由介质1投射到与介质2的分界面上时,在一般情况下将分解成两束光线:反射(reflection)光线和折射(refraction)光线。 反射定律:反射角等于入射角。i = i' 镜面表面亮度取决于视点,观察角度不同,表面亮度也不同。 一个理想的漫射面将入射光线在各个方向做均匀反射,其亮度与视点无关,是个常量。 折射定律:n1 sin i = n2 sin r 任何介质相对于真空的折射率,称为该介质的绝对折射率,简称折射率(Index of refraction)。公式中n1和n2分别表示两种介质的折射率。

手机照相镜头的光学设计

本科毕业设计论文 手机照相镜头的光学设计 摘要 随着市场的发展,可拍照手机逐渐取代普通手机,而手机的小型超薄化也是必然趋势,手机的照相功能的提升和小型超薄化应并进,而二者又是相互制约的,因此尽量减小手机照相镜头的体积并提高其性能成为必然趋势。 本文后半部分运用ZEMAX对所设计的镜头进行了调整和优化,用缩放法对初始模型反复调试和修改,并根据课题要求进行了数据分析,最终得出了符合设计要求的结果.最终设计结果为:镜头总长:10.07mm,后焦距:1.27mm。畸变范围-1.07到1。76 之间.中心视场MTF@160lp/mm值为0.52.边缘视场MTF@120lp/mm值为0.53。 关键字:可拍照手机镜头小型化ZEMAX 优化。 目录 摘要 (Ⅰ) Abstract (Ⅱ) 目录 (1) 1 绪论 (1) 1。1 研究的目的和意义 (1) 1。2 可拍照手机和镜头设计的国内外发展 (1) 1。2。1 可拍照手机国内外发展状况 (1) 1。2。2 现今镜头设计的国内外发展状况 (2) 2 手机照相镜头的成像原理介绍 (3) 2.1 可拍照手机照相原理....................................... (3) 2。2 感光元件简介............................................. (3)

2。3 镜头结构分类及选择........................... (3) 2.4手机镜头的性能指标和相关术语 (4) 2.4。1镜头类型选择的依据[7] (4) 2.4.2数码镜头鉴别率 (4) 2。4。3光圈范围 (4) 2. 4. 4影响像质的几个因素 (5) 3光学系统设计 (6) 3。1光学设计软件简介 (6) 3.1.1 ZEMAX MTF函数 (6) 3。1.2缺省的评价函数及优化 (6) 3。1. 3归一化的视场和光瞳坐标 (7) 3。2设计要求及分析 (7) 3.3初始结构的选择 (8) 3。3。1 视场角的确定 (10) 3.3.2 F数的确定 (10) 3。3。3 工作波长的选择 (10) 3.3.4调制传递函数图如下 (11) 3.3.5七种塞得像差分别为 (11) 3。3.6场曲和畸变图 (12) 3.3。7点列图如下 (12) 3.3.8光线特性曲线图 (13) 3。4 像差的初步校正 (13) 3.4.1初步校正后的数据 (13) 3.4。2二维光路图如下 (15) 3.4。3调制传递函数图如下: (15) 3.4。4场曲畸变图 (16) 3。4.5点列图 (17) 3.4.6光线特性曲线图 (17) 3。5系统优化 (18) 3.5。1优化数据 (18) 3. 5。2二维光路图 (19) 3.5.3 点列图 (20) 3。5。4场曲畸变示意图 (20) 3.5.5 MTF分析图 (21) 3.5。6光线特性曲线图 (23) 3。6公差分析 (24) 3. 6. 1公差分析的一般过程 (24)

相关主题