搜档网
当前位置:搜档网 › 换热器的结构和分类

换热器的结构和分类

换热器的结构和分类
换热器的结构和分类

换热器的结构和分类

换热器的分类

?按用途分类:

加热器、冷却器、冷凝器、蒸发器和再沸器

?按冷热流体热量交换方式分类:

混合式、蓄热式和间壁式

?主要内容:

1. 根据工艺要求,选择适当的换热器类型;

2. 通过计算选择合适的换热器规格。

间壁式换热器的类型

一、夹套换热器

?结构:夹套式换热器主要用于反应过程的加热或冷却,是在容器外壁安装夹套制成。

?优点:结构简单。

?缺点:传热面受容器壁面限制,传热系数小。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。也可在釜内安装蛇管。

二、沉浸式蛇管换热器

?结构:这种换热器多以金属管子绕成,或制成各种与容器相适应的情况,并沉浸在容器内的液体中。

?优点:结构简单,便于防腐,能承受高压。

?缺点:由于容器体积比管子的体积大得多,因此管外流体的表面传热系数较小。

三、喷淋式换热器

?结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。在下流过程中,冷却水可收集再进行重新分配。

?优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好

?缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。

?用途:用于冷却或冷凝管内液体。

四、套管式换热器

?结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。

?优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。

?缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。

?用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。

五、列管式换热器

列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。

?优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。

?结构:壳体、管束、管板、折流挡板和封头。一种流体在管内流动,其行程称为

差时,依靠补偿圈的弹性变形来适应它们之间的不同的热膨胀。

特点:结构简单,成本低,壳程检修和清洗困难,壳程必须是清洁、不易产生垢层和腐蚀的介质。

(2)浮头式

1—分程板(管程隔板) 2—壳程隔板 3—内封头(浮头)

两端的管板,一端不与壳体相连,可自由沿管长方向浮动。当壳体与管束因温度不同而引起热膨胀时,管束连同浮头可在壳体内沿轴向自由伸缩,可完全消除热应力。

特点:结构较为复杂,成本高,消除了温差应力,是应用较多的一种结构形式。(3)U型管式

1—列管 2—隔板

把每根管子都弯成U形,两端固定在同一管板上,每根管子可自由伸缩,来解决热补偿问题。

特点:结构较简单,管程不易清洗,常为洁净流体,适用于高压气体的换热。

六、新型高效换热器

1. 螺旋板式换热器

?结构:螺旋板式换热器由两块金属薄板焊接在一块分隔板上并卷制成螺旋状而构成的。换热时,冷、热流体分别进入两条通道,在器内作严格的逆流流动。

2. 板式换热器

1.固定压紧板

2.夹紧螺栓

3.前端板

4.换热板片

5.密封垫片

6.后端板

7.下导板8.后支柱9.活动压紧板

10.上导板

结构紧凑,占用空间小很小的空间即可提供较大的换热面积,不需另外的拆装空间;相同使用环境下,其占地面积和重量是其他类型换热器的1/3~1/5。

3. 板翅式换热器

在两块平行金属板之间夹入波纹状金属翅

23—1—导管—吸液芯—蒸汽4—吸热蒸发端5—保温层6放热冷凝端

结构及工作原

冷凝液沿着具有毛细结构的吸液芯在毛细管力的作用下回流至加热段再次沸腾汽化,工作介质如此反复循环,热量则由热管的轴向由加热端传至冷却端。

附:

换热器:在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液体汽化或把蒸汽冷凝成液体,这些工艺过程都是通过热量传递来实现的。进行热量传递的设备称为换热器。

换热器按用途分为以下几种:

1.加热器——把流体加热到必要的温度,但加热流体没有发生相

的变化。

2.预热器——预先加热流体,为后序操作提供标准的工艺参数。

3.过热器——用于把流体(工艺气或蒸汽)加热到过热状态。

4.蒸发器——用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。

5.再沸器——用于使装置中冷凝了的液体再度加热,使其蒸发。

6.深冷器——用于把流体冷却到0℃以下的低温状态。

7.冷却器——用于把流体冷却到工艺要求的温度。

8.冷凝器——用于冷却凝结性气体,使其流体凝结液化。

9.全凝器——使凝结性气体全部冷凝为液体。

换热器按照内部结构分类

一、分为列管式换热器和非列管式换热器。

二、列管式换热器根据结构特点的不同可分为固定管板式、浮头式、U形管式和填料函式。

三、非列管式换热器分为:沉浸式、套管式、喷淋式、板式、螺旋板式和热管式。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

换热器分类

换热器分类 换热器作为传热设备随处可见,在工业中应用非常普遍,特别是耗能用量十分大的领域,随着节能技术的飞速发展,换热器种类开发越来越多。适用于不同介质,不同工况,不同温度,不同压力的换热器,结构和形式亦不同,换热器种类随新型,高效换热器的开发不断更新,具体分类如下。 (一)按传热原理分类 1.直接接触式换热器这类换热器主要工作原理是两种介质经接触面而相互传递热量,实现传热,接触面积直接影响到传热量。这类换热器的介质通常是一种气体,另一种为液体,主要以塔设备为主体的传热设备,但通常又涉及传质。故很难区分与塔器的关系,通常归口为塔式设备,电厂用凉水塔为最典型的直接接触式换热器。 2.蓄能式换热器(简称蓄能器)这类换热器用量极少,原理是通过一种固体物质,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到传递热量的目的。 3.板,管式换热器这类换热器用量非常大,占总量的99%以上,原理是热介质通过金属或非金属将热量传递给冷介质的传热设备,这类换热器是我们通常称为管壳式,板式,板翘式,板壳式换热器。(二)按传热种类分类 1.无相变传热一般分为加热器和冷却器。 2.有相变传热一般分为冷凝器和重沸器。重沸器又分为釜式重沸器,虹吸式重沸器,再沸器,蒸发器,蒸汽发生器,废热锅炉。

(三)按结构分类 分为釜式换热器,固定管板式换热器,填料函式换热器,u形管式换热器,蛇管式换热器,双壳程换热器,单套管换热器,多套管换热器,外导流筒换热器,折流杆式换热器热管式换热器,插管式换热器,滑动管板式换热器。 (四)按折流板分类 分为单弓形换热器,双弓形换热器,三弓形换热器,螺旋弓形换热器。(五)按板状分类 分为螺旋板式换热器,板式换热器,板翘式换热器,板壳式换热器,板式蒸发器,板式冷凝器,印刷电路板换热器,穿孔板换热器。(六) 按密封形式分类 此类换热器多用于高温,高压装置中,具体分为:螺旋锁紧环换热器,薄膜密封换热器,钢垫圈换热器,密封盖板式换热器。 (七)非金属材料换热器分类 分为石墨换热器,氟塑料换热器,陶瓷纤维复合材料换热器,玻璃钢换热器。 (八)按材料分类 主要为金属和非金属两大类,金属又可分为低合金钢,高合金钢,低温钢,稀有金属等。 换热器种类繁多,还有按管箱分类等,各种换热器各自适用于某一种工况,为此,应根据介质,温度,压力的不同选择不同种类的换热器,扬长避短,使之带来更大的经济效益。

列管式换热器课程设计报告书

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

2.浮头换热器结构设计要点讲解

浮头换热器 结构设计常用要点汇总 (根据标准和手册综合整理)(碳钢、卧式、内导流) 2011-11-11

目录 一、换热管————————————————————————————3 二、筒体、隔板————————————————————————————3 三、法兰——————————————————————————————3 四、缠绕垫片————————————————————————————3 五、双头螺柱/带肩双头螺柱/支耳————————————————————4 六、管板结构————————————————————————————5 七、钩圈与浮动管板——————————————————————————8 八、折流板与支持板——————————————————————————9 九、拉杆——————————————————————————————10 十、滑道———————————————————————————————10 十一、内导流筒与防冲板———————————————————————11 十二、防短路结构—————————————————————————12 十三、排液(排气)口—————————————————————————13 十四、吊耳与顶丝——————————————————————————14 附件1: Ⅰ级管束的管板管孔/折流板管孔—————————————————15 附件2 球面封头半径SR尺寸—————————————————————15 附件3 隔板槽处管孔中心距—————————————————————15 附件4 关于螺纹的一般要求—————————————————————15 附件5 关于技术要求—————————————————————15 附件6 分程隔板密封面加工——————————————————————16

换热器原理介绍

换热器基础知识 简单计算板式换热器板片面积 选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热对数温差 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 换热器的分类与结构形式 换热器作为传热设备被广泛用于耗能用量大的领域。随着节能技术的飞速发展,换热器的种类越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一、换热器按传热原理可分为: 1、表面式换热器 表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器 蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器 流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。 4、直接接触式换热器 直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 二、换热器按用途分为: 1、加热器 加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。 2、预热器 预热器预先加热流体,为工序操作提供标准的工艺参数。 3、过热器 过热器用于把流体(工艺气或蒸汽)加热到过热状态。

换热器分类有哪些

换热器分类有哪些 换热器能够充分利用工业的二次能源,并且能够实现余热回收以达到的节能。因为现在人们追求换热器重量轻、占地面积少、使用经济性高,所以换热器的类型也在不断增加,越来越多的换热器开始进入人们的生活,换热器分类有哪些?本文小编将根据不同的分类形式为用户详细解答。 换热器的定义:换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。换热器作为传热设备被广泛用于锅炉暖通领域,随着节能技术的飞速发展,换热器的种类越来越多。 换热器按传热原理分类 1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面的对流,在两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体再传递给低温流体,热介质先通过加热固体物质达到一定的温度后,冷介质再通过固体物质然后被加热,达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体换热器之间循环,在高温流体换热器接受热量,在低温流体换热器把热量再释放给低温流体换热器。 4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 换热器按用途分类 1、加热器加热器是把流体加热到必要的温度,但加热流体没有发生相应的变化。

2、预热器预热器预先加热流体,为工序的操作提供标准的工艺参数。 3、过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。 4、蒸发器蒸发器用于加热流体,达到沸点以上的温度,使其流体蒸发,一般有相应的变化。 按换热器的结构分类 可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。 按冷、热流体热量交换的原理和方式分类 基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。 结语 换热器在在石油、暖通、轻工、制药、能源等工业生产中使用广泛,尤其是在暖通行业,人们常把换热器用于家庭采暖系统,如今在多年的发展中,仅在集中供暖行业换热器市场规模就已超过30亿元,未来发展前景一篇大好。

换热器介绍

换热器 一,定义: 换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。 二,换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: (一)_换热器按传热原理分类 1、表面式换热器:表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器:蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器:流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。 4、直接接触式换热器:直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 (二)换热器按用途分类 1、加热器:加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。 2、预热器:预热器预先加热流体,为工序操作提供标准的工艺参数。 3、过热器:过热器用于把流体(工艺气或蒸汽)加热到过热状态。 4、蒸发器:蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。 (三)按换热器的结构分类 可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。

三,换热器类型 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。 1 .间壁式换热器的类型 (1)夹套式换热器这种换热器是在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高.为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数.为补充传热面的不足,也可在釜内部安装蛇管. 夹套式换热器广泛用于反应过程的加热和冷却。 (2)沉浸式蛇管换热器这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中.蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀材料制造;其缺点是容器内液体湍动程度低,管外给热系数小.为提高传热系数,容器内可安装搅拌器。 (3)喷淋式换热器这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器.喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多.另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用.因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。 (4)套管式换热器套管式换热器是由直径不同的直管制成的同心套管,并由U形弯头连接而成.在这种换热器中,一种流体走管内,另一种流体走环隙,两者皆可得到较高的流速,故传热系数较大.另外,在套管换热器中,两种流体可为纯逆流,对数平均推动力较大。套管换热器结构简单,能承受高压,应用亦方便(可根据需要增减管段数目). 特别是由于套管换热器同时具备传热系数大,传热推动力大及能够承受高压强的优点,在超高压生产过程(例如操作压力为3000大气压的高压聚乙烯生产过程)中所用的换热器几乎全部是套管式。 (5)板式换热器:最典型的间壁式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。主体结构由换热板片以及板间的胶条组成。长期在市场占据主导地位,但是其体积大,换热效率低,更换胶条价格昂贵(胶条的更换费用大约占整个过程的1/3-1/2).主要应用于液体-液体之间的换热,行业内常称为水水换热,其换热效率在5000w/m2.K。为提高管外流体

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

固定管板式换热器结构设计

固定管板式换热器的结构设计 摘要 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。 换热器的型式繁多,不同的使用场合使用目的不同。其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。 固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。 固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。管束安装在壳体内,两端固定在管板上。管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。 关键词:换热器;固定管板式换热器;结构;设计

The Structural Design of Fixed Tube Plate Heat Exchanger Author : Chen Hui-juan Tutor : Li Hui Abstract Heat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy. The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, the most widely used in various industry departments. Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat

第1章 换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

板式换热器结构及工作原理

板式换热器结构及工作原理 要了解板式换热器,首先看一下其结构图: 板式换热器是按一定的间隔,由多层波纹形的传热板片,通过焊接或由橡胶垫片压紧构成的高效换热设备。按其加工工艺分为可拆式换热器和全焊接不可拆式换热器,办焊接式换热器是介于两者之间的结构,即两种流体作为相对独立的结构体进行组装的。板片的焊接或组装遵循两两交替排列原则组装时,两组交替排列。为增加换热板片面积和刚性,换热板片被冲压成各种波纹形状,目前多为v型沟槽,当流体在低流速状态下形成湍流,从而强化传热的效果,防止在板片上形成结垢。板上的四个角孔,设计成流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量的交换。 板式换热器的特点: (1)由于采用0.6mm—0.8mm不锈钢片,传热效率得以极大的提高。 (2)体积小,是管壳式换热器体积的1/3——1/5,既节省了金属材料,又减少了占地面积。 (3)组装灵活,便于推行标准作业,从而为进一步降低生产成本带来可能。

(4)不易结构,清洗方便,便于日常维护。 (5)由于体积小、响应迅速,运行热损失小。 (6)焊接式板式换热器的缺点是焊接工艺要求高、带来成本的增加:可拆卸换热器运行温度受密封材料制约,一般在200摄氏度以 下,耐压能力也较差。 实际应用中,根据不同用户的要求,选择不同的换热器。一般工矿企业、社区楼宇集中供热换热站采用可拆式换热器,家庭生活用热水、室内空调等小功率用户采用全焊接式板式换热器。随着焊接技术和工艺的不断改进和提高,大功率换热器采用全焊接工艺将日益普及,结构更趋经凑合理。 发展展望:据统计,在现代石油化工企业中,换热器投资占30% ~40%。在制冷机中,蒸发器和冷凝器的重量占机组重量的30% ~40%,动力消耗占总动力消耗的20% ~30%。可见换热器对企业投资、金属耗量以及动力消耗有着重要的影响。大力发展板式换热器更替原有效率低下、材料消耗惊人的陈旧换热器是节能降耗有效途径,行业发展也将迎来新的机遇。

换热器的结构和分类

换热器的结构和分类 换热器的分类 按用途分类: 加热器、冷却器、冷凝器、蒸发器和再沸器 按冷热流体热量交换方式分类: 混合式、蓄热式和间壁式 主要内容: 1. 根据工艺要求,选择适当的换热器类型; 2. 通过计算选择合适的换热器规格。 间壁式换热器的类型 一、夹套换热器 结构:夹套式换热器主要用于反应过程的加热或冷却,是在容器外壁安装夹套制成。 优点:结构简单。 缺点:传热面受容器壁面限制,传热系数小。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。也可在釜内安装蛇管。 二、沉浸式蛇管换热器 结构:这种换热器多以金属管子绕成,或制成各种与容器相适应的情况,并沉浸在容器内的液体中。 优点:结构简单,便于防腐,能承受高压。 缺点:由于容器体积比管子的体积大得多,因此管外流体的表面传热系数较小。

三、喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。在下流过程中,冷却水可收集再进行重新分配。 优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好 缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。 用途:用于冷却或冷凝管内液体。 四、套管式换热器

结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。 优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。 缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。 用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。五、列管式换热器 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。 优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。 结构:壳体、管束、管板、折流挡板和封头。一种流体在管内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 根据所采取的温差补偿措施,列管式换热器可分为以下几个型式。 (1)固定管板式 1—列管2—膨胀节 壳体与传热管壁温度之差大于 蚀的介质。

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

监测换热器介绍说明

监测换热器 在我国石油化工、冶金和发电等行业上,大多采用工业循环冷却水。目前,为了进一步节能减排,提高循环冷却水的利用率,从而对水处理的技术和药剂的质量要求越来越高。同时,加强水处理的监测也越来越重要。监测换热器较好地模拟了工业现场换热器,对测量有关水质的腐蚀、结垢数据十分重要。它适用于各种材质的换热器,如陶瓷换热器,金属换热器等。 1. 监测换热器的原理 监测换热器 监测换热器是一种模拟用的小型换热器, 其工作条件较接近于换热器装置的实际运行条件, 其特点是有一个传热的金属表面, 能够监测传热面上腐蚀、结垢和沉积的情况。适于各种材质的换热器监测,如陶瓷换热器、金属换热器、石墨换热器等。所以监测换热器法是冷却水系统进行腐蚀、结垢监测和评价的一种重要方法。

监测换热器安装在循环冷却水旁。试验管采用¢19×2 毫米无缝钢管, 外壁镀铬, 有效长度1177 毫米, 有效传热面积0.055米2 , 流经试管的冷却水( 给水) 流量636 公斤/小时( 流速1米/秒) ; 采用低压饱和蒸汽, 试管传热强度约500, 000 千焦(/ 米2时) , 水侧壁温75~80℃。测量水的流量、进出口温度和蒸汽温度等数据, 计算当前污垢热阻值。取出试管和挂片通过失重法计算腐蚀率、粘附速度等。 2. 监测换热器的分类根据热介质来源不一样, 可以分为我们通常说的蒸汽式监测换热器和电加热式监测换热器。 3. 监测换热器的热介质来源现场带压工作蒸汽, 虽然监测换热器工作要求蒸汽压力在0.8~1.0kg/cm2, 但在进入监测换热器前蒸汽压力要保持在 4.0~ 5.0kg/cm2, 然后再减压到监测换热器工作压力。如果进入监测换热器前蒸汽压力低于4.0 kg/cm2, 在冬天尤其是在北方, 蒸汽管线中蒸汽含水过多, 影响测量; 如果进入监测换热器前蒸汽压力高于5.0 kg/cm2, 蒸汽的波动, 难以控制。为了稳定蒸汽压力, 采用一种蒸汽自力式调压阀, 它是一种不需要外加能源的这些执行机构, 外来蒸汽压力在4.0~10.0kg/cm2 波动, 经过蒸汽自力式调压阀, 使压力可以稳定在0.8~1.0kg/cm2中的某个值, 运用场合比较大。 4. 电加热式监测换热器用于不能提供外来蒸汽的现场, 通过电加热容器里的水产生蒸汽给试验管加热。使用电加热式监测换热器, 消耗功率在18 千瓦以上, 监测成本较高。

换热器的种类

换热器的种类 一.换热器的概念 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热设备因其用途不同,类型繁多,性能不一,但均可归结为管壳式结构和板式结构两大类。 二.换热器的工作原理 换热器是将热流体的部分热量传递给冷流体的设备,即在一个大的密闭容器内装上水或其他介质,而在容器内有管道穿过。让热水从管道内流过。由于管道内热水和容器内冷热水的温度差,会形成热交换,也就是初中物理的热平衡,高温物体的热量总是向低温物体传递,这样就把管道里水的热量交换给了容器内的冷水,换热器又称热交换器。 三.机械结构形式 换热器的分类良多,可以按传热原理、结构和用途等进行分类,按其结构分类主要有管壳式和板式两种。 根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 1、间壁式换热器的类型 a.夹套式换热器 这种换热器是在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高.为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或

其它增加湍动的措施,以提高夹套一侧的给热系数.为补充传热面的不足,也可在釜内部安装蛇管.夹套式换热器广泛用于反应过程的加热和冷却。 b.沉浸式蛇管换热器 这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中.蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀材料制造;其缺点是容器内液体湍动程度低,管外给热系数小.为提高传热系数,容器内可安装搅拌器。 c.喷淋式换热器 这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器.喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多.另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用.因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。 d.套管式换热器 套管式换热器是由直径不同的直管制成的同心套管,并由U形弯头连接而成.在这种换热器中,一种流体走管内,另一种流体走环隙,两者皆可得到较高的流速,故传热系数较大.另外,在套管换热器中,两种流体可为纯逆流,对数平均推动力较大。套管换热器结构简单,能承受高压,应用亦方便(可根据需要增减管段数目).特别是由于套管换热器同时具备传热系数大,传热推动力大及能够承受高压强的优点,在超高压生产过程(例如操作压力为3000大气压的高压聚乙烯生产过程)中所用的换热器几乎全部是套管式。 e.管壳式换热器 管壳式(又称列管式)换热器是最典型的间壁式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。为提

(完整版)管壳式换热器简介及其分类

管壳式换热器简介及分类 概述 换热器是在具有不同温度的两种或两种以上流体之间传递热量的设备。在工业生产中,换热器的主要作用是使热量从温度较高的流体传递给温度较低的流体,使流体温度达到工艺流程规定的指标,以满足过程工艺条件的需要。换热器是化工、炼油、动力、食品、轻工、原子能、制药、航空以及其他许多工艺部门广泛使用的一种通用设备。在华工厂中,换热器的投资约占总投资的10%-20%;在炼油厂中该项投资约占总投资的35%-40%。 目前,在换热器中,应用最多的是管壳式换热器,他是工业过程热量传递中应用最为广泛的一种换热器。虽然管壳式换热器在结构紧凑型、传热强度和单位传热面的金属消耗量无法与板式或者是板翅式等紧凑换热器相比,但管壳式换热器适用的操作温度与压力范围较大,制造成本低,清洗方便,处理量大,工作可靠,长期以来人们已在其设计和加工方面积累了许多经验,建立了一整套程序,人么可以容易的查找到其他可靠设计及制造标准,而且方便的使用众多材料制造,设计成各种尺寸及形式,管壳式换热器往往成为人们的首选。 近年来,由于工艺要求、能源危机和环境保护等诸多因素,传热强化技术和换热器的现代研究、设计方法获得了飞速发展,设计人员已经开发出了多种新型换热器,以满足各行各业的需求。如为了适应加氢装置的高温高压工艺条件,螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器技术获得了快速发展,并在乙烯裂解、合成氨、聚合和天然气工业中大量应用,可达到承压35Mpa、承温700℃的工艺要求;为了回收石化、原子能、航天、化肥等领域使用燃气、合成气、烟气等所产生的大量余热,产生了各种结构和用途的废热锅炉,为了解决换热器日益大型化所带来的换热器尺度增大,震动破坏等问题,纵流壳程换热器得到飞速的发展和应用;纵流壳程换热器不仅提高了传热效果,也有效的克服了由于管束震动引起的换热器破坏现象。另外,各种新结构的换热器、高效重沸器、高效冷凝器、双壳程换热器等也大量涌现。 管壳式换热器按照不同形式的分类 工业换热器通常按以下诸方面来分类:结构、传热过程、传热面的紧凑程度、所用材料、

常见换热器结构及优缺点

6.7 换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。 6.7.1 直接接触式(混合式) 在这类换热器中,冷热两种流体通过直接混合进行热量交换。在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。 6.7.2 蓄热式 蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。 6.7.3 间壁式 这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。 (1)夹套式换热器 结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。 优点:结构简单,加工方便。 缺点:传热面积A小,传热效率低。 用途:广泛用于反应器的加热和冷却。 为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。 (2)沉浸式蛇管换热器 结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。 优点:结构简单,便于防腐,能承受高压。 缺点:传热面积不大,蛇管外对流传热系数小, 为了强化传热,容器内加搅拌。 (3)喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被

换热器的结构讲解

换热器的结构 管壳式换热器就是具有换热管和壳体的一种换热设备,换热管与管板连接,再用壳体固定。 按其结构型式,主要分为:固定管板式换热器、浮头式换热器、U形管式换热器、填料函式 换热器、方形壳体翅片管换热器等。详细结构如下: 固定管板式换热器: 固定管板式换热器结构如上图所示,换热器的两端管板采用焊接方法与壳体连接固定。换 热管可为光管或低翅管。其结构简单,制造成本低,能得到较小的壳体内径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,故在工程中广泛应用。 其缺点是壳侧不便清洗,只能采用化学方法清洗,检修困难,对于较脏或对材料有腐蚀性的介质不能走壳程。壳体与换热管温差应力较大,当温差应力很大时,可以设置单波或多波膨胀节减小温差应力 浮头式换热器 浮头式换热器结构如图所示,其一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不会产 生温差应力。浮头端设计成可拆结构,使管束可以容易地插入或抽出,这样为检修和清洗提 供了方便。这种形式的换热器特别适用于壳体与换热管温差应力较大,而且要求壳程与管程 都要进行清洗的工况。 浮头式换热器的缺点是结构复杂,价格较贵,而且浮头端小盖在操作时无法知道泄漏情况, 所以装配时一定要注意密封性能 U形管式换热器

上图为双壳程U形管式换热器。U形管式换热器是将换热管弯成U形,管子两端固定在同 一块管板上。由于换热管可以自由伸缩,所以壳体与换热管无温差应力。因U形管式换热 器仅有一块管板,所以结构较简单,管束可从壳体内抽出,壳侧便于清洗,但管内清洗稍困难,所以管内介质必须清洁且不易结垢。U形管式换热器一般用于高温高压情况下,尤其是 壳体与换热管金属壁温差较大时。 壳程可设置纵向隔板,将壳程分为两程(如图中所示)。 填料函式换热器 上图为填料函式双管程双壳程换热器,填料函式换热器的换热管束可以自由滑动,壳侧介质靠填料密封。对于一些壳体与管束温差较大,腐蚀严重而需经常更换管束的换热器,可采用填料函式换热器。它具有浮头换热器的优点,又克服了固定管板式换热器的缺点,结构简单, 制造方便,易于检修清洗。 填料函式换热器的缺点:使用直径小;不适于高温、高压条件下;壳程介质不适于易挥发、易燃、易爆、有毒等介质 方形壳体翅片管换热器:

相关主题