搜档网
当前位置:搜档网 › (新)高中数学-推理与证明复习总结

(新)高中数学-推理与证明复习总结

(新)高中数学-推理与证明复习总结
(新)高中数学-推理与证明复习总结

推理与证明

本章知识网络: 一、推理 ●1. 归纳推理

1)归纳推理的定义:从个别事实....中推演出一般性...的结论,像这样的推理通常称为归纳推理。

2)归纳推理的思维过程大致如图:

3)归纳推理的特点:

①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。 ②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。

③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。 ●2. 类比推理

1)根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。 2)类比推理的思维过程是:

●3. 演绎推理

1)演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。 2)主要形式是三段论式推理。

3)三段论式常用的格式为: M ——P (M 是P )

推理与证明

推理

证明

合情推理

演绎推理

归纳

类比

综合法 分析法

反证法

直接证明

间接证明

数学归纳法

S——M (S是M)②

S——P (S是P)③

其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;

③是结论,它是根据一般性原理,对特殊情况做出的判断。

二、证明

●1. 直接证明:是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。

综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。

分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。

要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。

●2. 间接证明:即反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

反证法的一般步骤是:反设——推理——矛盾——原命题成立。(所谓矛盾是指:与假设矛盾;与数学公理、定理、公式、定义或已证明了的结论矛盾;与公认的简单事实矛盾)。

常见的“结论词”与“反议词”如下表:

原结论词反议词原结论词反议词

至少有一个一个也没有对所有的x都成立存在某个x不成立

至多有一个至少有两个对任意x不成立存在某个x成立

至少有n个至多有n-1个p或q?p且?q

至多有n个至少有n+1个p且q?p或?q

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证

明原命题成立,这种证明方法叫反证法。

1、已知数列的前n项和,且,通过计算猜想

()

A、 B、 C、 D、

a1=1

a2=1/3

a3=1/6

a4=1/10

an=1/[1+2+...+(n-1)+n]=1/[(1+n)*n/2]

2、已知a1=1,然后猜想

()

A、n

B、n2

C、n3

D、

3、设条件甲:x=0,条件乙:x+yi(x,y∈R)是纯虚数,则()

A、甲是乙的充分非必要条件

B、甲是乙的必要非充分条件

C、甲是乙的充分必要条件

D、甲是乙的既不充分,又不必要条件

解:根据复数的分类,x+yi为纯虚数的充要条件是x=0,y≠0.“若x=0则x+yi为纯虚数”是假命题,反之为真.∴x,y∈R,则“x=0”是“x+yi为纯虚数”的必要不充分条件

故选B

4、已知关于x的方程x2-(2i-1)x+3m-i=0有实根,则实数m应取的值是()

A、m≥-

B、m≤-

C、m=

D、m=-

X^2-(2i-1)x+3m-i=0

(x^2+x+3m)-(2x+1)i=0

x=-1/2

代入得到m=1/12

5、设R+,,M分别表示正实数集,负实数集,纯虚数集,则集合加{m2| m∈M}是()

A、R+

B、R-

C、R+∪R-

D、R-∪{0}

6、若2+3i是方程x2+mx+n=0的一个根,则实数m,n的值为()

A、m=4,n=-3

B、m =-4,n=13

C、m=4,n=-21

D、m=-4,n=-5

7、下列表述正确的是().

①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是

①当n=1时,左边=2,右边=2,等式成立。

②设当n=k,时等式成立,即(k+1)(k+2)...(k+k)=2^k.1.3...(2k-1)

当n=k+1时,左边=(k+2)(k+3)....(k+k)(k+K+1)(k+k+2)

=2^k.1.3.5 ...(2k-1).(2k+1)(2k+2)/(k+1)

=2^(k+1).

1.3.....(2k-1)(2k+1)

右边

=2^(k+1).1.3....[2(k+1)-1]=2^(k+1).1.3.....(2k+1) 即左边=右边,等式成立

综上:当N属于N+时,等式成立。

一、1、B 2、B 3、B 4、C 5、B 6、B 6-16 DCABB CABBB

推理与证明

【最新考纲透析】

1.合情推理与演绎推理

(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;

(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;

(3)了解合情推理和演绎推理之间的联系和差异。

2.直接证明与间接证明

(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过

程、特点;

(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。 3.数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

【核心要点突破】

要点考向1:合情推理

考情聚焦:1.合情推理能够考查学生的观察、分析、比较、联想的能力,在高考中越来越受到重视;

2.呈现方式金榜经,属中档题。

考向链接:1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;

2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。

例1:(2010·福建高考文科·T16)观察下列等式: ① cos2a=22

cos a -1;

② cos4a=84cos a - 82

cos a + 1;

③ cos6a=326cos a - 484cos a + 182

cos a - 1;

④ cos8a=1288cos a - 2566cos a + 1604cos a - 322

cos a + 1;

⑤ cos10a= m 10

cos a - 12808

cos a + 11206

cos a + n 4

cos a + p 2

cos a - 1. 可以推测,m – n + p = .

【命题立意】本题主要考查利用合情推理的方法对系数进行猜测求解. 【思路点拨】根据归纳推理可得.

【规范解答】观察得:式子中所有项的系数和为1,m 12801120n p 11∴-+++-=,

m n p 162∴++=,又9p 10550,m 2512=?===,n 400∴=-,m n p 962∴-+=.

【答案】962.

要点考向2:演绎推理

考情聚焦:1.近几年高考,证明题逐渐升温,而其证明主要是通过演绎推理来进行的; 2.主要以解答题的形式呈现,属中、高档题。

考向链接:演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。

例2:(2010·浙江高考理科·T14)设

11

2,,(2)(3)23

n n n n N x x ≥∈+-+2012n n a a x a x a x =+++???+,

将(0)k a k n ≤≤的最小值记为n T ,则234533551111

0,,0,,,,2323n T T T T T ==-==-??????

其中n T =__________________ .

【命题立意】本题考查合情推理与演绎推理的相关知识,熟练掌握相关的推理规则是关键. 【思路点拨】观察n T 的奇数项与偶数项的特点. 【规范解答】观察

n

T 表达式的特点可以看出

240,0

T T ==,……,

∴当n 为偶数时,0

n T =;

3331123T =

-,55511

23T =-,……,∴当n 为奇数时,

1123n n n T =-. 【答案】0

,11

,23n n

n n T n ??

=?-??当为偶数时当为奇数时.

要点考向3:直接证明与间接证明

考情聚焦:1.直接证明与间接证明是数学证明的两种思维方式,考查了学生的逻辑思维能力,近几年高考对此部分的考查有所加强。

2.以解答题的形式呈现,属中档题目。 例3:(2010·北京高考文科·T20) 已

)

2}(,,2,1},1,0{,),,,({21≥=∈==n n i x x x x X X S i n n 对于

12(,,...,)n A a a a =,

12(,,,)n n B b b b S =∈…,定义

A 与

B 的差为

1122(||,||,||);n n A B a b a b a b -=---…

A 与

B 之间的距离为∑=-=

n

i i i

b a

B A d 1

),(

(Ⅰ)当n=5时,设(0,1,0,0,1),(1,1,1,0,0)A B ==,求A B -,(,)d A B ; (Ⅱ)证明:,,,n n A B C S A B S ?∈-∈有,且(,)(,)d A C B C d A B --=; (Ⅲ) 证明:,,,(,),(,),(,)n A B C S d A B d A C d B C ?∈三个数中至少有一个是偶数 【命题立意】本题属于创新题,考查了学生运用新知识的能力。本题情景是全新的,对学生的“学习能力”提出了较高要求。要求教师真正的重视学生的探究性学习,更加注重学生“学习能力”、“创新能力”的培养.

【思路点拨】(I )(Ⅱ)直接按定义证明即可;(Ⅲ) “至少”问题可采用反证法证明. 【规范解答】(Ⅰ)(01,11,01,00,10)

A B -=-----=(1,0,1,0,1)

(,)0111010010

d A B =-+-+-+-+-=3

(Ⅱ)设

121212(,,,),(,,,),(,,,)n n n n

A a a a

B b b b

C c c c S =???=???=???∈

因为11,{0,1}

a b ∈,所以

11{0,1}(1,2,,)

a b i n -∈=???

从而

1122(,,)n n n

A B a b a b a b S -=--???-∈

由题意知,,{0,1}(1,2,,)

i i i a b c i n ∈=??? 当0i c =时,

i i i i i i

a c

b

c a b ---=-

1

i c =时,

(1)(1)i i i i i i i i

a c

b

c a b a b ---=---=-

所以

1

(,)(,)

n

i i i d A C B C a b d A B =--=-=∑

(Ⅲ)证明:设

121212(,,,),(,,,),(,,,)n n n n

A a a a

B b b b

C c c c S =???=???=???∈

(,),(,),(,)d A B k d A C l d B C h ===

0(0,0,0)n

S =???∈由(Ⅱ)可知

(,)(,)(0,)(,)(,)(0,)(,)(,)d A B d A A B A d B A k d A C d A A C A d C A l d B C d B A C A h

=--=-==--=-==--=

所以

(1,2,,)

i i b a i n -=???中1的个数为k,

(1,2,,)

i i c a i n -=???中1的个数为l

设t 是使

1

i i i i b a c a -=-=成立的i 的个数。则2h l k t =+-

由此可知,,,k l h 三个数不可能都是奇数,

即(,),(,),(,)d A B d A C d B C 三个数中至少有一个是偶数.

注:(1)有关否定性结论的证明常用反证法或举出一个结论不成立的例子即可;

(2)综合法和分析法是直接证明常用的两个方法,我们常用分析法寻找解决问题的突破口,然后用综合法来写出证明过程,有时候,分析法和综合法交替使用。

要点考向4:数学归纳法

考情聚焦:1.新课标区对数学归纳法的考查在去年有加强的趋势,望能引起足够的重视;

2.以解答题的形式呈现,属中档题。

例4:等比数列{n a }的前n 项和为n S , 已知对任意的n N +

∈ ,点(,)n n S ,均在函数(0x

y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值;

(11)当b=2时,记 22(log 1)()n n b a n N +

=+∈

证明:对任意的n N +

∈ ,不等式

1212111

·······1n n

b b b n b b b +++>+成立 【解析】因为对任意的n N +

∈,点(,)n n S ,均在函数(0x

y b r b =+>且1,,b b r ≠均为常数的图像上.所以得n

n S b r =+,当1n =时,11a S b r ==+,当2

n ≥时,111

1()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列,所以1r =-,公比为b ,1

(1)n n a b b -=-

(2)当b=2时,11(1)2n n n a b b --=-=, 1

222(log 1)2(log 21)2n n n b a n -=+=+=

1212n n b n b n ++=,所以1

212111

35721

(246)

2n n b b b n b b b n

++++=?? . 下面用数学归纳法证明不等式

1212111

35721

(1246)

2n n b b b n n b b b n

++++=??>+成立. ① 当1n =时,左边=

3

2

,右边2,因为322>,所以不等式成立.

② 假设当n k =时不等式成立,即

121211135721

(1246)

2k k b b b k k b b b k ++++=??>+成立.则当1n k =+时,左边=

1121211111

3572123

(246)

222

k k k k b b b b k k b b b b k k ++++++++=????

?+ 2223(23)4(1)4(1)11

1(1)1(1)1224(1)4(1)4(1)

k k k k k k k k k k k ++++++>+===+++>++++++所以当1n k =+时,不等式也成立.由①、②可得不等式恒成立.

注:(1)用数学归纳法证明与正整数有关的一些等式,命题关键在于“先看项”,弄清

等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关,由n=k 到n=k+1时等式的两边会增加多少项,增加怎样的项。

(2)在本例证明过程中,①考虑“n 取第一个值的命题形式”时,需认真对待,一般情况是把第一个值供稿通项,判断命题的真假,②在由n=k 到n=k+1的递推过程中,必须用归纳假设,不用归纳假设的证明就不是数学归纳法。

(3)在用数学归纳法证明的第2个步骤中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确n=k+1时证明的目标,充分考虑由n=k 到n=k+1时,命题形式之间的区别和联系。

【高考真题探究】

1.(2010·山东高考文科·T10)观察2'

()2x x =,4'

3

()4x x =,'

(cos )sin x x =-,由

归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )

(A )()f x (B)()f x - (C) ()g x (D)()g x -

【规范解答】选D .通过观察所给的结论可知,若()f x 是偶函数,则导函数()g x 是奇函数,故选D .

2.(2010·陕西高考理科·T12)观察下列等式:

332123,+=33321236,++=33332123410+++=,……,根据上述规律,第五个等式为

____________.

【规范解答】由所给等式可得:等式两边的幂式指数规律明显,底数关系如下:

123,1236,123410,+=++=+++=即左边底数的和等于右边的底数。故第五个等式为:

33333322123456(123456)21.+++++=+++++=

【答案】3333332

12345621.+++++=

4.(2010·江苏高考·T23)已知△ABC 的三边长都是有理数。 (1)求证:cosA 是有理数;

(2)求证:对任意正整数n ,cosnA 是有理数。

【命题立意】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。

【思路点拨】(1)利用余弦定理表示cosA ,由三边,,a b c 是有理数,求得结论;(2)可利用数学归纳法证明.

【规范解答】方法一:(1)设三边长分别为,,a b c ,222

cos 2b c a A bc

+-=,∵,,a b c 是有理数,

222b c a +-是有理数,

分母2bc 为正有理数,又有理数集对于除法的具有封闭性, ∴222

2b c a bc

+-必为有理数,∴cosA 是有理数。

(2)①当1n =时,显然cosA 是有理数;

当2n =时,∵2cos22cos 1A A =-,因为cosA 是有理数, ∴cos2A 也是有理数; ②假设当(2)n k k ≤≥时,结论成立,即coskA 、cos(1)k A -均是有理数。 当1n k =+时,cos(1)cos cos sin sin k A kA A kA A +=-,

1

cos(1)cos cos [cos()cos()]2k A kA A kA A kA A +=---+,

11

cos(1)cos cos cos(1)cos(1)22

k A kA A k A k A +=--++,

解得:cos(1)2cos cos cos(1)k A kA A k A +=--

∵cosA ,cos kA ,cos(1)k A -均是有理数,∴2cos cos cos(1)kA A k A --是有理数, ∴cos(1)k A +是有理数

即当1n k =+时,结论成立。综上所述,对于任意正整数n ,cosnA 是有理数。 5.(2009江苏高考)设a ≥b >0,求证:3332a b +≥22

32a b ab +.

证明:33222222

32(32)3()2()(32)().a b a b ab a a b b b a a b a b +-+=-+-=-- 因为a ≥b >0,所以a b -≥0,22

32a b ->0, 从而22

(32)()a b a b --≥0, 即3332a b +≥22

32a b ab +.

6.(2008安徽高考)设数列{}n a 满足3

*110,1,,n n

a a ca c c N c +==+-∈其中为实数 (Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈; (Ⅱ)设103

c <<,证明:1*1(3),n n

a c n N --∈;

(Ⅲ)设103c <<,证明:22

2*12

21,13n a a a n n N c

++>+-

∈- 【解析】(Ⅰ)必要性:∵120,1a a c ==-,又∵2[0,1]a ∈,∴011c -,即[0,1]c ∈. 充分性:设[0,1]c ∈,对任意*n N ∈用数学归纳法证明[0,1]n a ∈.

当1n =时,10[01]

a =∈,.

假设当n k =时,[0,1](1)k a k

∈,则3

1111k k a ca c

c c +=+-+-=,且

3

1110k k a ca c

c

+=+--,1[0,1]k a +∈.

由数学归纳法知,[0,1]n a ∈对任意*n N ∈成立. (Ⅱ) 设103c <<,当1n =时,10a =,结论成立;

当2n

时,∵311n n a ca c -=+-,∴32

11111(1)(1)(1)n n n n n a c a c a a a -----=-=-++.

∵103

c <<,由(Ⅰ)知1[0,1]n a -∈,∴2

11

13n n a a --++且10n

a -,

∴21112113(1)

(3)(1)(3)(1)(3)n n n n n a c a c a c a c --------=,

∴()

1

13,*n n

a c n N --∈.

(Ⅲ)设103c <<,当1n =时,2120213a c =>--,结论成立;

当2n

时,由(Ⅱ)知()

1

130n n

a c -->,

∴2

1212(1)1[1(3)]12(3)(3)12(3)n n n n n a c c c c ---->-=-+>-.

∴2222

2

2112212[(3)(3)(3)]n n n a a a a a n c c c -+++=++>--++

+

2[1(3)]

2111313n c n n c c -=+->+---.

一、选择题

1.已知p 是q 的充分不必要条件,则q ?是p ?的( ) (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 2.设a 、b 、c 都是正数,则1a b +

,1b c +,1

c a

+三个数( ) A 、都大于2 B 、至少有一个大于2 C 、至少有一个不大于2 D 、至少有一个不小于2 3.在△ABC 中,,,A B C 所对的边分别为,,a b c ,且cos cos a b

A B

=,则△ABC 一定是( )

(A) 等腰三角形 (B) 直角三角形 (C)等边三角形 (D) 等腰直角三角形 4. 5.已知函数()y f x =的定义域为D ,若对于任意的1212,()x x D x x ∈≠,都有

1212()()

(

)22

x x f x f x f ++<

,则称()y f x =为D 上的凹函数.由此可得下列函数中的凹函数为 ( ) (A)2log y x = (B ) y x =

(C )2y x = (D )3

y x =

5.给定正整数n(n ≥2)按下图方式构成三角形数表;第一行依次写上数1,2,3,…,n ,在下面一行的每相邻两个数的正中间上方写上这两个数之和,得到上面一行的数(比下一行少一个数),依次类推,最后一行(第n 行)只有一个数.例如n=6时数表如图所示,则当n=2 007时最后一行的数是( )

(A)251×22 007 (B)2 007×22 006 (C)251×22 008 (D)2 007×22 005 6.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a 2 009+a 2 010+a 2 011等于( )

(A)1 003

(B)1 005 (C)1 006

(D)2 011

二、填空题

7.对于等差数列{}n a 有如下命题:“若{}n a 是等差数列,01=a ,t s 、是互不相等的正

整数,则有

011=---s t a t a s )()(”。类比此命题,给出等比数列{}n b 相应的一个正确命题是:“___________________________________________________”。

8.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 1B 1C 1是

三角形,△A 2B 2C 2是 三角形.(用“锐角”、“钝角”或“直角”填空) 9.(2010汉沽模拟)在直角三角形ABC 中,两直角边分别为a b 、,设h 为斜边上的高,则

222

111

h a b

=+,由此类比:三棱锥S ABC -的三个侧棱SB SC SA 、、两两垂直,且长分别为a b 、、c ,设棱锥底面ABC 上的高为h ,则 . 三、解答题 10.观察下表: 1, 2,3 4,5,6,7

8,9,10,11,12,13,14,15, ……

问:(1)此表第n 行的最后一个数是多少? (2)此表第n 行的各个数之和是多少? (3)2010是第几行的第几个数?

(4)是否存在n ∈N *,使得第n 行起的连续10行的所有数之和为227-213-120?若存在,求出n 的值;若不存在,请说明理由.

11.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :

11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记112233n n n T b a b a b a b a =+++

+.

(1)若1231264a a a a +++

+=,求r 的值;

(2)求证:当n 是正整数时,124n T n =-;

(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +,

,1212m T +中有4项为100.求

r 的值,并指出哪4项为100.

12.已知数列{}n a ,0≥n a ,01=a ,)(12

12

1?++∈=-+N n a a a n n n .记

n n a a a S +++= 21.)

1()1)(1(1

)1)(1(11121211n n a a a a a a T +++++++++=

. 求证:当?

∈N n 时, (Ⅰ)1+

(Ⅱ)2->n S n ;

(Ⅲ)3

1.【解析】选A.反证法的原理:“原命题”与“逆否命题”同真假,即:若p q ?则

q p ?

??.

2.【解析】选D. 3.【解析】选A.

cos cos a b A B =,sin sin cos cos A B

A B

∴=,tan tan A B ∴=,

又因为(),0,A B π∈,A B ∴=;

4.【解析】选C.可以根据图像直观观察;对于(C )证明如下:欲证

1212()()()22x x f x f x f ++<,即证2

22

121222x x x x ++??

< ???

,即证()222121222x x x x +<+,即证()2

120x x ->,显然,这个不等式是成立的,且每一步可

逆,故原不等式得证;

5.【解析】选C.由题意知,112=7×24,48=6×23,20=5×22,故n 行时,最后一行数为(n+1)·2n-2,

所以当n=2 007时,最后一行数为2 008×22 005=251×22 008. 二、填空题

6.【解析】选B.观察点坐标的规律可知,偶数项的值等于其序号的一半.a 4n-3=n,a 4n-1=-n, 又2 009=4×503-3,2 011=4×503-1,∴a 2 009=503,a 2 011=-503,a 2 010=1 005, ∴a 2 009+a 2 010+a 2 011=1 005.

7.【解析】这是一个从等差数列到等比数列的平行类比,等差数列中÷?-+、、、类比到等比数列经常

是n

n ()、、()、÷?,类比方法的关键在于善于发现不同对象之间的“相似”,“相似”是

类比的基础。

()

()1

11

11

111

1s t s t

t t s s b q b b b q ------?==?.

答案:若{}n b 是等比数列,11=b ,t s 、是互不相等的正整数,则有11

1=--t s

s t b b 。

8.答案:锐角 钝角 9.答案:2222

1111

h a b c

=++ 三、解答题

10.【解析】(1)∵第n+1行的第1个数是2n ,∴第n 行的最后一个数是2n -1.

(2)2n-1+(2n-1+1)+(2n-1+2)+…+(2n -1)

=3·22n-3-2n-2.

(3)∵210=1 024,211=2 048,1 024<2 010<2 048,

∴2 010在第11行,该行第1个数是210=1 024,由 2 010-1024+1=987,知2 010是第11行的第987个数.

(4)设第n 行的所有数之和为a n ,第n 行起连续10行的所有数之和为S n .

则a n =3·22n-3-2n-2,a n+1=3·22n-1-2n-1,a n+2=3·22n+1-2n ,…,a n+9=3·22n+15-2n+7, ∴

S n =3(22n-3+22n-1+

+22n+15)-(2n-2+2n-1+

+2n+7)

=22n+17-22n-3-2n+8+2n-2,n=5时,S 5=227-128-213+8=227-213-120. ∴存在n=5使得第5行起的连续10行的所有数之和为227-213-120.

11.【解析】(1)12312...a a a a ++++()()()12342564786r r r r =++++++++++++++

484.r =+ ∵ 48464, 4.r r +=∴=

(2)用数学归纳法证明:当12,4.n n Z T n +∈=-时

① 当n=1时,1213579114,T a a a a a a =-+-+-=-等式成立 ② 假设n=k 时等式成立,即124,k T k =- 那么当1n k =+时,

()121211231251271291211121k k k k k k k k T T a a a a a a +++++++=+-+-+-

()()()()()()481884858488k k k r k k k r k =-++-+++-++++-+

()4441,k k =--=-+等式也成立.

根据①和②可以断定:当12,4.n n Z T n +∈=-时 (3)()1241.m T m m =-≥

121,12241;123,12441;125,12645;127,1284;129,121044;n n n n n n m m T m n m m T m r n m m T m r n m m T m r n m m T m =++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时, 1211,1212,4 4.n n m m T m =++=--当时…

∵ 4m+1是奇数,41,4,44m r m r m -+-----均为负数,∴ 这些项均不可能取到100. 此时,293294297298,,,T T T T 为100.

12.【解析】(Ⅰ)证明:用数学归纳法证明.

①当1n =时,因为2a 是方程2

10x x +-=的正根,所以12a a <. ②假设当*

()n k k =∈N 时,1k k a a +<,

因为221k k a a +-22

2211(1)(1)k k k k a a a a ++++=+--+-2121()(1)k k k k a a a a ++++=-++,

所以12k k a a ++<.即当1n k =+时,12k k a a ++<也成立.

根据①和②,可知1n n a a +<对任何*

n ∈N 都成立.

(Ⅱ)证明:由22

111k k k a a a +++-=,121k n =-,,,(2n ≥),得22231()(1)n n a a a a n a +++

+--=.

因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <, 所

以2n S n >-.

(Ⅲ)证明:由22

1112k k k k a a a a +++=+≥,得

111

(2313)12k k k

a k n n a a ++=-+≤,,,,≥

所以

2342

1

(3)(1)(1)

(1)

2n n n a a a a a a -+++≤

≥,

于是

22

22

23221

1

(3)(1)(1)

(1)

2()22n n n n n n a a n a a a a a ---=<++++≤

≥, 故当3n ≥时,2

111132

2

n n T -<++++

<,又因为123T T T <<, 所以3n T <.

例1(09浙江文)设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T , , ,

16

12

T T 成等比数列. 答案.

812

48

,T T T T 【解析】对于等比数列,通过类比,有等比数列{}n b 的前n 项积为n T ,则4T ,81248,T T T T ,16

12

T T 成等比数列.

高中数学推理与证明.doc

高中数学推理与证明 高中数学推理知识点 1、归纳推理:顾名思义,一个归纳的过程。比如,一个篮子里有苹果梨葡萄草莓等等,那么你发现苹果是水果、梨是水果、葡萄是水果、草莓是水果,然后你猜想:篮子里装的是水果。这个推理是由特殊推到一般的过程,可能正确也可能不正确,如果篮子里确实都是水果,那么你就猜对了;如果篮子里有一根胡萝卜,那你就猜错了。所以才会有证明。 2、类比推理:同样顾名思义,一个类比的过程。例如,你知道苹果水分多又甜、梨水分多又甜、葡萄水分多又甜,所以你推理出同样作为水果,香蕉水分多又甜,那这个结论显然是不对的,香蕉并没有什么水分。但如果你推导出荔枝水分多又甜,这就是正确的。(这个例子中指的都是正常水果)显然,这个推理方式是一个由特殊推特殊的过程,也不一定正确。 3、演绎推理:一般推特殊,一定对。例如,f(x)=1,那么f(1)=1 高中数学证明知识点 1、综合法:即我们正常的证明过程,由条件一直往下推。 例如,1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量,证明:2菠萝重量=160葡萄重量。 证明:因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量 ____________所以1菠萝的重量=4*20葡萄重量=80葡萄重量 ____________所以2菠萝重量=160葡萄重量。 2、分析法:由结论推出等价结论,去证明这个等价结论成立。

同样上面的例子的证明:要证明2菠萝重量=160葡萄重量,即证明2*1菠萝重量=2*80葡萄重量,即证明1菠萝重量=80葡萄重量。 因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量 所以1菠萝的重量=4*20葡萄重量=80葡萄重量,原式即证。 3、反证法:先假设结论相反,然后根据已知推导,最后发现和已知不符,收!这是一个战胜自己的过程! 4、数学归纳法: 解题过程: A.命题在n=1(或n0)时成立,这是递推的基础; B.假设在n=k时命题成立; C.证明n=k+1时命题也成立 高中数学推理与证明 一、公理、定理、推论、逆定理: 1.公认的真命题叫做公理。 2.其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。 3.由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。 4.如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。 二、类比推理: 一道数学题是由已知条件、解决办法、欲证结论三个要素组成,这此要求可以看作是数学试题的属性。如果两道数学题是在一系列属性上相似,或一道是由另一道题来的,这时,就可以运用类比推理的方法,推测其中一道题的属性在另一道题中也存在相同或相似的属性。

高中数学选修2-2推理与证明 直接证明与间接证明

2.2.1综合法和分析法 [学习目标] 1.了解直接证明的两种基本方法:分析法与综合法.2.了解分析法和综合法的思维过程和特点.3.会用分析法、综合法证明实际问题. 知识点一综合法 1.定义 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 2.基本模式 综合法的证明过程如下: 已知条件?…?…?结论 即用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法用框图可表示为: P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q 3.综合法的证明格式 因为…,所以…,所以…,…,所以…成立. 思考综合法的推理过程是合情推理还是演绎推理? 答案演绎推理. 知识点二分析法 1.分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. 2.基本模式

用Q 表示要证明的结论,P 表示条件,则分析法可用框图表示为: Q ?P 1→P 1?P 2→P 2?P 3→…→得到一个明显成立的条件 3.分析法的证明格式 要证…,只需证…,只需证…,…,因为…成立,所以…成立. 思考 分析法与综合法有哪些异同点? 答案 相同点:两者都是直接利用原命题的条件(或结论),逐步推得命题成立的证明方法——直接证明法.不同点:证法1,由因导果,使用综合法;证法2,执果索因,使用分析法. 题型一 综合法的应用 例1 已知a ,b 是正数,且a +b =1,求证:1a +1 b ≥4. 证明 方法一 ∵a ,b 是正数,且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1 ab ≥4. 方法二 ∵a ,b 是正数,∴a +b ≥2ab >0, 1a +1 b ≥2 1 ab >0, ∴(a +b )???? 1a +1b ≥4. 又a +b =1,∴1a +1b ≥4. 方法三 1a +1b =a +b a +a +b b =1+b a +a b +1≥2+2 b a ·a b =4.当且仅当a =b 时,取“=”号. 反思与感悟 利用综合法证明问题的步骤: (1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法. (2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路. (3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结优化解法. 跟踪训练1 已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2. 证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等. ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.

高二数学 归纳推理演绎推理

3月5日 高二理科数学测试题 1.由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是 ( ) A .归纳推理 B .演绎推理 C .类比推理 D .传递性推理 2.下列正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是由特殊到一般的推理 C .归纳推理是由个别到一般的推理 D .合情推理可以作为证明的步骤 3.下面几种推理中是演绎推理.... 的序号为( ) A .半径为r 圆的面积2S r π=,则单位圆的面积S π=; B .由金、银、铜、铁可导电,猜想:金属都可导电; C .由平面三角形的性质,推测空间四面体性质; D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= . 4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等”,补充以上推理的大前提是 ( ) A .正方形都是对角线相等的四边形 B .矩形都是对角线相等的四边形 C .等腰梯形都是对角线相等的四边形 D .矩形都是对边平行且相等的四边形 5.设 f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x)=f ′1(x ),…,f n (x )=f ′n -1(x ),n ∈N ,则f 2009(x )=( ) A .sin x B .-sin x C .cos x D .-cos x 6.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命 题,推理错误的原因是( ) A .使用了归纳推理 B .使用了类比推理 C .使用了“三段论”,但大前提使用错误 D .使用了“三段论”,但小前提使用错误 7.观察下列等式: 1- ; 1- ;1- ...... 据此规律,第n 个等式可为______________________. 8.观察下列等式:,……,根据上述规律, 第五个等式为 ______________________. 1122=1111123434+-=+1111111123456456+-+-=++332123,+=3332 1236,++=33332123410+++=

高考数学压轴专题(易错题)备战高考《推理与证明》知识点总复习

新数学《推理与证明》高考知识点 一、选择题 1.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是() A.甲B.乙C.丙D.丁 【答案】C 【解析】 【分析】 分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案. 【详解】 ①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲; ②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙; ③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙; ④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙. 综上所述,年纪最大的是丙 故选:C. 【点睛】 本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题. 2.在平面几何中,与三角形的三条边所在直线的距离相等的点有4个,类似的,在立体几何中,与四面体的四个面所在平面的距离相等的点有() A.1个B.5个C.7个D.9个 【答案】B 【解析】 【分析】 根据平面图形的结论,通过想象类比得出立体图形对应的结论. 【详解】 根据三角形的内切圆和旁切圆可得 与三角形的三条边所在直线的距离相等的点有且只有4个, 由此类比到四面体中, 四面体的内切球的球心到四个面所在的平面的距离相等, 还有四个旁切球的球心到四个面所在的平面的距离相等,

新课标高中数学《推理与证明》知识归纳总结

《推理与证明》知识归纳总结 第一部分 合情推理 学习目标: 了解合情推理的含义(易混点) 理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点) 了解合情推理在数学发展中的作用(难点) 一、知识归纳: 合情推理可分为归纳推理和类比推理两类: 归纳推理: 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理. 2.归纳推理的一般步骤: 第一步,通过观察个别情况发现某些相同的性质; 第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想). 思考探究: 1.归纳推理的结论一定正确吗? 2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? 题型1 用归纳推理发现规律 1、观察 < < ;….对于任意正实数,a b , ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a

2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律,以 ()f n 表示第n 幅图的蜂巢总数.则(4)f =_____;()f n =___________. 【解题思路】找出)1()(--n f n f 的关系式 [解析],1261)3(,61)2(,1)1(++=+==f f f 37181261)4(=+++=∴f 133)1(6181261)(2+-=-+++++=∴n n n n f 总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系 类比推理 1.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理. 2.类比推理的一般步骤: 第一步:找出两类对象之间可以确切表述的相似特征; 第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想. 思考探究: 1.类比推理的结论能作为定理应用吗? 2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体? (2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论? 题型2 用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的 13,把这个结论推广到空间正四面体,类似的结论是______. 【解题思路】从方法的类比入手 [解析]原问题的解法为等面积法,即h r ar ah S 3121321=??== ,类比问题的解法应为等体积法, h r Sr Sh V 4131431=??==即正四面体的内切球的半径是高4 1 总结:(1)不仅要注意形式的类比,还要注意方法的类比 (2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等

高中数学证明方法高中数学证明

高中数学证明方法高中数学证明 一、 现在正在学数学选修4-1《几何证明选讲》,做几何大题的时候,总是想不出来该怎么画辅助线,所以总是不会写,我数学不算差,可是面对这种证明题就老是蒙。求练习方法,要怎么办 首先你要熟知的几何中的所有定理!在做几何题的时候你就会熟练地运用!对于怎么画辅助线,当你看到一个几何题目的时候,自己要把题目中的已知摆出来!这样有助于你利用定理解决问题!的那个你确定用哪个定理时,你就判断还需要什么,这个时候画辅助线就变得简单啦!比如题目中有告诉你中点,你就会联想到中位线,30°所对直角边是斜边的一半,想到梯形,等等! 总之做这种几何题目时,要善于将已知信息联系定理,在看定理缺什么,然后就画辅助线使定理能使用!!! 直角三角形ABC中,∠ACB=45°,∠BAC=90°,AB=AC,D是AB中点,AF⊥CD于H,交BC于F,BE∥AC,交AF延长线于E,求证BC垂直平分DE。 ∵BE∥AC,∠BAC=90° ∴∠ABE=∠BAC=90° 由AF⊥CD易证 ∠ACD=∠BAE 由题AB=AC 得三角形ABE,CAD全等 易证BD=BE ∵∠ABE=90° ∴BDE为等腰Rt 易证BC为∠ABE角平分线 等腰三角形三线合一 ∴BC垂直平分DE 二、

遇到较难的,应该怎么入手哦, 我证明的不太好,有什么办法可以提高点吗? 或者提供几道证明题,最好附答案, 谢谢啦! 答案:可以利用反证法数学证明题的常用做法 定义:证明定理的一种方法,先提出和定理中的结论相反的假定,然后从这个假定 中得出和已知条件相矛盾的结果来,这样就否定了原来的假定而肯定了定理。也叫归谬法。事实上,反证法就是去证明一个命题的逆否命题是正确的,这与直接证明是等价的,但是 可能其逆否命题比较容易证明。上述的得出了矛盾,事实上就是得出了“假设与题设不相融”这个结论,所以我们不能接受这个假设,所以这个假设的反面就是正确的,从而命题 得证。适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而否定则比较浅显。证明:素数有无穷多个。这个古老的命题最初是由古希腊数学家欧几里德Euclid of Alexandria,生活在亚历山大城,约前330~约前275,是古希腊最享有盛名的数 学家在他的不朽著作《几何原本》里给出的一个反证法:假设命题不真,则只有有限多个 素数,设所有的素数是2=a1aii=1,2……n.无论是哪种情况,都将和假设矛盾。这个矛盾 就完成了我们的证明,所以确实有无穷多个素数。 感谢您的阅读,祝您生活愉快。

高中数学四大推理方法巧解证明题

高中数学四大推理方法巧解证明题 高中数学四大推理方法巧解证明题 高中数学是数学各种基础知识的总结和归纳,同时也是以前所学到的数学知识的深化和检验。针对高中数学的这一特性,可以通过四大推理方法来进行证明题的解答,不但可以掌握数学知识脉络,也可以把所学到的知识上升到思维层面,使自己可以综合运用数学知识,达到学以致用的目的。 一、合情推理法 在高中数学证明题的解答过程中使用合情推理,有着比较重要的作用以及影响。比较常用的合情推理法就是类比推理法,这是一种从特殊转向特殊的推理方法,两种类似对象间的推理,一个对象有着某个性质,而另一个对象同时也有类似性质。进行类比时,对已知对象性质推理的过程进行充分的考虑,之后类比推导出类比对象性质。高中数学知识的结构很复杂,难度也比其他学科大,而通过合情推理法,并结合多种的思维方法,使学生可以进行思考和分析,也培养了学生对于数学学习的兴趣,提高了学生数学的学习能力。所以,合情推理法是一种很好的解答高中数学证明题的方法。 二、演绎推理法 对于演绎推理法来说,这是一种从一般转向特殊的推理方法,高中数学证明题的证明过程大都是通过演绎推理来证明的,保证演绎推理的前提以及形式正确,就能保证结论是正确的,同时要注意推理的过程具有正确性以及完备性。

三、间接和直接证明法 (一)直接证明法 直接证明法比较常见的就是综合法以及分析法。其中,综合法就是利用已知的条件以及数学定理和公理等,进行推理论证,之后推导出结论成立。综合法也被称作为顺推证法或者由因导果法。而分析法是从结论出发,对结论充分成立的条件进行逐步的寻求,把结论归纳总结成明显成立的一个条件。 (二)间接证明法 间接证明法比较常用的就是反证法,其证明步骤为首先反设,之后归谬,最后存真。首先假设结论不成立,就是把结论反面假设为真,之后的归谬就是在己知条件和反设背景下推理,得出同假设命题相矛盾的结论,最后的存真就是由归谬得出的结果进行反设命题不真的断定,来说明原先结论是成立的。 四、归纳推理法 同上述的推理方法相比较来说,归纳推理法注重对高中数学知识总体的规划,总结和归纳所学到知识。我们都知道,高中数学的知识点比较多,每个知识点之间都有着一定的关系,一道证明题中,可能存在几个知识点,如果同学们不能归纳知识的话,短时间内就不能看出题目中知识点之间的联系,就会严重影响题目的解答。 在高中数学的证明题目中,虽然有限的研究对象比较常见,但是,更为常见的是研究对象众多,一些特定的情况下研究对象可能是无穷的,同学们很难找到突破口。如果同学们把研究对象根据形成的情况

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

高二数学推理与证明知识点与习题.doc

推理与证明 一、推理 1.推理:前提、结论 2.合情推理: 合情推理可分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推岀该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。简言Z,归纳推理是市部分到整体、rh个别到一般的推理 (2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是山特殊到特殊的推理。 3.演绎推理: 从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。 重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明 题型1用归纳推理发现规律 1、观察:77 + ^5 <2A/H; V55 + V165 < 2VH: j3"+J19 + V^v2VH;….对于任意正实数a,b,试写出使丽+v&<2vn成立的一个条件可以是 ___________________________________ . 点拨:前面所列式子的共同特征特征是被开方数之和为22,故ci + b = 22 2、蜜蜂被认为是自然界中最杰出的婕筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面 图.其中第一个图有1个蜂巢,第二个图o 有7个蜂巢,第三个图有19个蜂巢,按此规律,以/(?)表示 第〃帕图的蜂巢总数.则/(4) = --- ; f (〃) = ? 【解题思路】找出/(〃)—.f(n — 1)的关系式 [解析]/(1) = 1,/(2) = 14- 6,/(3) = 14- 6 4-12,??? /'(4) = 1 + 6 + 12 + 18 = 37 /. /(n) = 1 + 6 + 12 + 18 + —F 6(/7 -1) = 3n2 - 3〃+1 【名师指引】处理“递推型”问题的方法Z—是寻找相邻两组数据的关系题型2用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的丄,把这个结论推广到空间止四血体,类似的结论是________ ? 3 【解题思路】从方法的类比入手 [解析]原问题的解法为等而积法,即5=丄必=3乂丄妙二>厂=丄/7 ,类比问题的解法应为等体积法, 2 2 3 V =-Sh = 4x-Sr=>r = -h即止四血体的内切球的半径是高一 3 3 4 4 【名师指引】(1)不仅要注意形式的类比,还要注意方法的类比 (2)类比推理常见的情形有:平而向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集 的性质类比;圆锥曲线间的类比等 二.直接证明与间接证明 三种证明方法: 综合法、分析法、反证法 反证法:它是一种间接的证明方法?川这种方法证明一个命题的一般步骤: (1)假设命题的结论不成立; (2)根据假设进行推理,直到推理中导出矛盾为止

高中数学选修2-2推理与证明教(学)案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

(推荐)高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

高中数学推理与证明知识点归纳

高中数学推理与证明知识点归纳高中数学推理与证明知识点归纳 数学推理与证明知识点总结: 1.知识方法梳理 一、考纲解读: 本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势。新课标考试大纲将抽象概括作为一种能力提出,进一步强化了合情推理与演绎推理的要求,因此在复习中要重视合情推理与演绎推理。高考对直接证明与间接证明的考查主要以直接证明中的综合法为主,结合不等式进行考查。 二、要点梳理: 1.归纳推理的一般步骤:(1)通过观察个别事物,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般性命题。 2.类比推理的一般步骤: (1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。 3.演绎推理 三段论及其一般模式:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出判断。 4.直接证明与间接证明

①综合法:利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。综合法的 思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论。 ②分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否 具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原 不等式成立,这种方法通常叫做分析法。分析法的思维特点是:执 果索因。 ③反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的,即为反证法。一般地,结论中出现“至多”“至少”“唯一”等词语,或结 论以否定语句出现,或要讨论的情况复杂时,常考虑使用反证法。 ④数学归纳法: 教学目标: 一、通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义。初步获得一些简单的推理经验。 二、能借助连线、列表等方式整理信息,并按一定的方法进行推理。 三、在简单的推理过程中,培养学生初步的观察、分析、推理和有有条理的进行数学表达的能力。 教学重点: 理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单的推理经验。 教学难点: 初步培养学生有序的,全面的思考问题及数学表达的能力。 教学过程:

苏教版数学高二- 选修2-2试题 《合情推理—归纳推理》(1)

2.1.1 合情推理—归纳推理 同步检测 一、基础过关 1.数列5,9,17,33,x ,…中的x 等于________ 2.f(n)=1+12+13+…+1n (n ∈N *),计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>7 2, 推测当n≥2时,有________. 3.已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=3 2. 通过观察上述两等 式的规律,请你写出一个一般性的命题:____________________. 4.已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33=________. 5.数列-3,7,-11,15,…的通项公式是________. 二、能力提升 6.设x ∈R ,且x≠0,若x +x - 1=3,猜想x2n +x -2n (n ∈N *)的个位数字是________. 7.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________. 8.如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________. 9.如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题. (1)按照要求填表:

n 1 2 3 4 … S n 1 3 6 … (2)S 10=________.(3)S n 10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数: 将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测: (1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=________.(用k 表示) 11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1 S n +2=0(n≥2),计算S 1,S 2,S 3,S 4, 并猜想S n 的表达式. 12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分. (1)3条直线最多将平面分成多少部分? (2)设n 条直线最多将平面分成f(n)部分,归纳出f(n +1)与f(n)的关系; (3)求出f(n). 三、探究与拓展 13.在一容器内装有浓度r%的溶液a 升,注入浓度为p%的溶液1 4a 升,搅匀后再倒出溶 液1 4a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式.

2020年高考理科数学《推理与证明》题型归纳与训练

福利:本教程由捡漏优惠券(https://www.sodocs.net/doc/74524985.html, )整理提供 领红包:支付宝首页搜索“527608834”即可领取支付宝红包哟 领下面余额宝红包才是大红包,一般都是5-10元 支付的时候把选择余额宝就行呢 每天都可以领取早餐钱哟! 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

2019-2020年高中数学选修1-2合情推理

2019-2020年高中数学选修1-2合情推理 教学目标: 结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用 教学重点: 了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用 教学过程 一、引入新课 1归纳推理 (一)什么是归纳推理 归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。 拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。这里就有着归纳推理的运用。 (二)归纳推理与演绎推理的区别和联系 归纳推理与演绎推理的主要区别是:首先,从思维运动过程的方向来看,演绎推理是从一般性的知识的前提推出一个特殊性的知识的结论,即从一般过渡到特殊;而归纳推理则是从一些特殊性的知识的前提推出一个一般性的知识的结论,即从特殊过渡到一般。其实,从前提与结论联系的性质来看,演绎推理的结论不超出前提所断定的范围,其前提和结论之间的联系是必然的,即其前提真而结论假是不可能的。一个演绎推理只要前提真实并且推理形式正确,那么,其结论就必然真实。而归纳推理(完全归纳推理除外)的结论却超出了前提所断定的范围,其前提和结论之间的联系不是必然的,而只具有或然性,即其前提真而结论假是有可能的。也就是说,即使其前提都真也并不能保证结论是必然真实的。 归纳推理与演绎推理虽有上述区别,但它们在人们的认识过程中是紧密的联系着的,两者互相依赖、互为补充,比如说,演绎推理的一般性知识的大前提必须借助于归纳推理从具体的经验中概括出来,从这个意义上我们可以说,没有归纳推理也就没有演绎推理。当然,归纳推理也离不开演绎推理。比如,归纳活动的目的、任务和方向是归纳过程本身所不能解决和提供的,这只有借助于理论思维,依靠人们先前积累的一般性理论知识的指导,而这本身就是一种演绎活动。而且,单靠归纳推理是不能证明必然性的,因此,在归纳推理的过程中,人们常常需要应用演绎推理对某些归纳的前提或者结论加以论证。从这个意义上我们也可以说,没有演绎推理也就不可能有归纳推理。 (三)观察与实验 归纳推理是一种由特殊性知识的前提得出一般性知识的结论的推理。当然,人们在进行归纳推理的时候,总是先要搜集到一定的事实材料,有了个别性的、特殊性的知识作为前提,

归纳推理-高中数学知识点讲解

归纳推理 1.归纳推理 【知识点的认识】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别 事实概括出一般结论的推理. 推理形式:设S={A1,A2,A3,…,A n,…}, ?1具有属性? 具有属性?} ? ? ??类事物中的每一个对象都可能具有属性? ? 2.特点: (1)归纳推理的前提是几个已知的特殊现象,归纳得出的结论是尚属未知的一般现象,该结论超越了前提所包容 的范围; (2)归纳推理得到的结论具有猜测性质,结论是否真实,需要通过逻辑证明和实践检验,不能作为数学证明的工具; (3)归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现 问题和提出问题. 3.作用: (1)获取新知,发现真理; (2)说明和论证问题. 【解题技巧点拨】 归纳推理一般步骤: (1)对有限的资料进行观察、分析、归纳、整理; (2)提出带有规律性的结论,即猜想; (3)检验猜想. 【命题方向】 归纳推理主要以填空、选择题的形式出现,比较基础,考查对归纳推理的理解,会运用归纳推理得出一般性结论. 1/ 4

(1)考查对归纳推理理解 掌握归纳推理的定义与特点,注意区分与类比推理、演绎推理的不同. 例 1:下列表述正确的是() ①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A.①②③B.②③④C.②④⑤D.①③⑤ 分析:本题考查的知识点是归纳推理、类比推理和演绎推理的定义,根据定义对 5 个命题逐一判断即可得到答案.解答:归纳推理是由部分到整体的推理, 演绎推理是由一般到特殊的推理, 类比推理是由特殊到特殊的推理. 故①③⑤是正确的 故选D 点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一 个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到 特殊的推理过程. 例 2:下列推理是归纳推理的是() A.A,B 为定点,动点P 满足||PA|﹣|PB||=2a<|AB|(a>0),则动点P 的轨迹是以A,B 为焦点的双曲线 B.由a1=2,a n=3n﹣1 求出S1,S2,S3,猜想出数列{a n}的前n 项和S n 的表达式 ?2 ?2 C.由圆x2+y2=r2 的面积S=πr2,猜想出椭圆+ ?2 ?2 =1的面积 S=πab D.科学家利用鱼的沉浮原理制造潜水艇 分析:根据归纳推理的定义,对各个选项进行判断. 2/ 4

相关主题