搜档网
当前位置:搜档网 › 最新浙江大学数学分析试题及解答汇总

最新浙江大学数学分析试题及解答汇总

最新浙江大学数学分析试题及解答汇总
最新浙江大学数学分析试题及解答汇总

2005年浙江大学数学分析试题及解答

浙江大学2005年数学分析解答

一 (10分)计算定积分20

sin x e xdx π

?

解:2

sin x

e xdx π

?

=()011cos 22x e x dx π??-????? ()01x e dx e ππ=-? 由分部积分法0cos 2x

e xdx π

=?()1e π

-+20sin 2x e xdx π

=?()1e π

-0

4cos 2x e xdx π

-?

所以0

cos 2x e xdx π

=

?()115e π-,所以20sin x e xdx π?=()215

e π- 解毕 二 (10分)设()

f x 在[0,1]上Riemann

可积,且1

()2f x dx =?

,计算 1

1lim 4ln[1()]n

n i i

f n n →∞=+∑

解:因为()f x 在[0,1]上Riemann 可积,所以0,()M f x M ?>≤,所以

1()0i

f n n

→ 因为0ln(1)

lim 1x x x →+=,所以114ln[1()]n i i f n n =+∑与1

14()n

i i f n n =∑等价且极限值相等

由Riemann 积分的定义:

1

1lim 4ln[1()]n

n i i

f n n →∞=+∑

=410()f x dx =?解毕

三 (15分)设,,a b c 为实数,且1,0b c >-≠试确定,,a b c 的值,使得30sin lim

ln(1)x x b ax x

c t dt

t →-=+?

解:若0b ≠,显然30sin lim

0ln(1)x x b ax x

t dt

t →-=+?,这与0c ≠矛盾,所以0b =

计算300sin lim

ln(1)x x ax x

t dt

t →-+?,利用洛必达法则:

33000sin cos lim lim ln(1)ln(1)x x x ax x a x

t x dt t x

→→--=++?,易有30ln(1)lim

0x x x

→+=,若1a ≠, 33000sin cos lim

lim ln(1)ln(1)x x x ax x a x t x dt t x →→--==∞++?,矛盾,所以1

a =.计算301cos lim ln(1)x x

x x

→-+,继续利用洛必达法则:

330

01cos cos lim

lim ln(1)ln(1)x x x x x x x x x →→--=++240

03321cos sin 2sin cos lim lim 3631(1)x x x x x x x x x x x x x →→-++==-++

332243

34

3cos sin 1

lim

(612)(1)6(63)(1)2

(1)x x x x c x x x x x x x →-===-+--++ 解毕 四 (15分)设()f x 在[,]a b 上连续,且对每一个[],x a b ∈,存在[],y a b ∈,使得1

()()2

f y f x ≤,证明:

在存在[,],a b ξ∈使得()0f ξ=

证明:反证法,由于()f x 在[,]a b 上连续,由闭区间上连续函数的性质,不妨假设0()m f x M <<<

对于任选的一点1x ,存在2,x 使得211

()()2

f x f x ≤

, 存在3,x 使得321211

()()()22f x f x f x ≤≤

所以1111[,],()()0,()22

n n n n M

x a b f x f x n --∈≤≤→→∞

即lim ()0n n f x →∞

=,但对所有的x, 0()m f x M <<<,矛盾.

所以[,]a b 存在零点 证毕

五 (20分)(1)设()f x 在[,)a +∞上连续,且()a

f x dx +∞?收敛。证明存在数列{}n x [,)a ?+∞满足

条件lim n n x →∞

=∞

lim ()0n n f x →∞

=(2)设()f x 在[,)a +∞上连续,()0,f x ≥且()a

f x dx +∞

?

收敛,问是否必有

lim ()0x f x →∞

=?为什么?

证明:(1)因为()a

f x dx +∞

?收敛,所以对于任意的0ε>,存在120,,G x x G >>当时

2

1

()x x f x dx ε

考虑1()n n

f x dx +?

,由积分中值定理,存在(,1)n n ξ∈+,使得1()()n n

f x dx f ξ+=?

将ξ记做n x ,易见lim n n x →∞

=∞

当n G >时,

1

()()n n n

f x dx f x ε+=

,即lim ()0n n f x →∞

= 证毕

(2)不一定有.举一个例子:()f x 是这样一个函数:112()[,)221()2()1[,]20n

n n n n x n x n n f x x n x n n ?-+∈-??

?

=--+∈+??

≥?

??

其它,x 0 1,2.3......n =

显然函数()0,

f x ≥0

()f x dx +∞

?

=1

211

12

=-,但lim ()0x f x →∞≠(因为在整点处函数值为1) 解毕

六(20分)设()f x 在[0,)+∞上具有二阶连续导数,且已知(){}0sup ();0,M f x x =∈+∞和

(){}2sup ''();0,M f x x =∈+∞均为有限数。证明: (1)022'()2

M t

f t M t ≤

+对任何0,(0,)t x >∈+∞均成立. (2)(){}1sup '();0,M f x x =∈+∞

也是有限数,并且满足不等式1M ≤ 证明:(1) 考虑()f t t +在t 处Talyor 展开: ()f t t +=2

''()()'()2

f f t f t t t ξ++,t>0,整理一下有: (2)()''()

'()2

f t f t f f t t t ξ-=

-,,所以()(2)''()'()2f t f t f f t t t ξ+≤

+ 所以 022'()2

M t

f t M t ≤+ 证毕 (2) 因为022'()2M t

f t M t ≤

+对任何0,(0,)t x >∈+∞均成立.

取t =所以

'()f t ≤所以

(){}1sup '();0,M f x x =∈+∞

也是有限数,并且满足不等式1M ≤ 证毕

七 (10分)()f x 在任何有限区间上Riemann 可积,且()f x dx +∞

-∞

?

收敛,证明:

lim ()sin()0n f x nx dx +∞

-∞

→∞=?

证明: 因为()f x dx +∞-∞

?收敛,所以0,0,G ε?>?>使得()()2

G

G

f x dx f x dx ε

+∞

--∞

+<

?

?

在[,]G G -上因为()f x Riemann 可积,

由Riemann Lebesgue -引理lim ()sin()0G

G

n f x nx dx -→∞=?

即 : 0,,N ε?>?当n N ≥时

()sin()2

G

G

f x nx dx ε

-<

?

所以0,,N ε?>?当n N ≥时,

()sin()f x nx dx +∞

-∞

?

()sin()()()G

G

G

G

f x nx dx f x dx f x dx +∞

---∞

++?

?

?

ε<

即:lim ()sin()0n f x nx dx +∞

-∞

→∞=?

证毕

八 (15分)(1)将arctan x 展开为幂级数,求收敛半径.

(2)利用(1)证明:444

4......(1) (3521)

n n π=-+-+-++.

(3)利用(2)中公式近似计算π的值,需要用多少项求和,误差会不超过10m -(m 为自然数)

解:(1)由幂级数理论

arctan x =()

21

121

n

n n x n +∞

=-+∑

由收敛半径的求法

收敛半径:____

11

11

n ρ=

=

==

(2)在级数()

21

121

n

n n x n +∞

=-+∑

中,令1x =,由莱布尼茨对交错级数的判别法,级数收敛,所以

444

4arctan14......(1) (3521)

n n π==-+-+-++

(3)对于误差的计算,取决于余项,不妨近似地用

4

21

n +代替余项, 41021

m

n -≤+,所以410121410,2m m n n ?-+≥?≥

所以至少计算410112m ??

?-+????

项,这里[]y x =是取整函数. 解毕 九 (15分)设(,)u x y 是()2\{0,0}R 上2C 径向函数,即存在一元函数()f x

使得

(,)(),u x y f r r ==

若22220u u

x y

??+=??,求f 满足的方程及函数(,)u x y .

解:

'(u f r x ?=?

,'(u f r y ?=? 所以()

22

2

3

222

2

22

''()'()u x y f r f r x x y

x

y

?=+?++ ()

22

2

3

2222

22

''()'()u y x f r f r y x y

x

y

?=+?++

由22220u u x y ??+=??1''()'()0f r f r r ?+= 所以

''()1'()f r f r r =-,所以1

ln '()ln f r C r

=+ 所以1121

'(),()ln f r C f r C r C r

=∴=+ 这里12,,C C C 均为常数。

所以(,)u x

y 12C C =+ 解毕

十 (25分)(1)设f 是1R 上1

C ,周期为L 的函数(0L >),且0

()0L

f x dx =?。利用f 的Fourier 级数展

开证明: 2

2

2

2

4'()()L

L

f x dx f x dx L

π≥?

?

,等号成立当且仅当存在常数11,a a -,使得2211()t t i

i

L

L

f t a e

a e

ππ--=+

(2)设Ω是2R 上具有1C 光滑边界的连通区域,设()A Ω是Ω的面积,则

2()A div rdxdy r v ds →

→→

Ω

Ω==

???

其中向量场12(,)(,)(,)r x y r x y i r x y j →

=+,12(,),(,)r x y x r x y y ==,,i j 是x 轴和y 轴的单位向量.,

v →

是边界?Ω的单位外法向量,ds 是边界?Ω的弧长微分.

(3)设Ω同上,()l ?Ω是Ω的边界?Ω的长度,利用(1),(2)证明:2()4()l A π?Ω≥Ω等号成立当且仅当Ω是圆盘.

证明:(1)因为f 是1R 上1C ,所以,'f f 均是连续函数,所以满足Passeval 等式,又注意到

()0L

f x dx =?

所以()2

22

01

2()L n n n f x dx a b L ∞==+∑? 这里,n n a b 均为f 的Fourier 系数,由Fourier 级数理论可得:

'f 的Fourier 系数为

22,n n na nb L L

ππ

,由Passeval 等式: ()2

2

22

22201

24'()L n

n

n f x dx n a n b

L L

π∞

==+∑?,显然2

2

2

2

4'()()L

L

f x dx f x dx L

π≥?

?

如若等号成立,说明,0,2n n a b n =≥,由f 的Fourier 级的复数形式:

存在常数11,a a -,使得2211()t t i

i

L

L

f t a e

a e

ππ--=+ 证毕

(2)证明:div r →

=

12

2r r x y ??+=??,所以2div rdxdy dxdy →ΩΩ

==?? 2()A Ω 将第一类曲线积分向第二类曲线积分转化:

r v ds xdy ydx →→

?=

-?

?2Green dxdy Ω

????→??由公式

=2()A Ω 证毕

(3) 将坐标(,)x y 看作是弧长s 的函数((),())x s y s ,因为有:222()()()dx dy ds += 所以:

22

1dx dy ds ds ????+= ? ?????

,令()l L ?Ω=,(),()x s y s 是周期为L 的1

C 函数 由格林公式和(2)的结果。可以得到下面的结论:

0()()'()L

A x s y s ds Ω=?

考虑:0

44()()'()L

A x s y s ds L L

ππ

Ω=

?

04()'()L s s ds L π???=?????????

? 22

00142()'()22L L L x s ds y s ds L L πππ??≤+????

?? *** 由(1)的结论:2

2

22

()'()4L

L

L x s ds x s ds π≤

?

?

代入***,有4()A L πΩ≤222

200142'()'()242L L L L x s ds y s ds L L ππππ??+????

?? 220

('())('())()L

x s y s ds L l =+==?Ω?

即:

44()()()()

A A l L l ππ

Ω=Ω≤?Ω?Ω,即2()4()l A π?Ω≥Ω 证毕

解析几何-浙江大学数学系

空间解析几何简介 课程号:06110210 课程名称:空间解析几何英文名称:Analytic Geometry 周学时:2-1 学分:2.5 预修要求: 内容简介: 解析几何学是几何学的一个分支,是一门阐述用代数方法(坐标法和向量运算)研究空间几何问题的课程。本课程介绍空间向量代数、平面与直线、二次曲面、正交变换与仿射变换等,使学生掌握必要的几何直观方面分析和洞察问题的能力。 选用教材或参考书: 教材: 吕林根许子道等编《解析几何》(高教版) 参考书: 苏步青等编《空间解析几何》(上海科技出版社) 丘维声编《解析几何》(北大版) 孟道骥著《高等数学与解析几何》(上下)(科学版)

《解析几何》教学大纲 一、课程的教学目的和基本要求 解析几何学是几何学的一个分支,在高等数学的发展史上占有重要地位,是沟通几何形式与数量关系的一座桥梁,在代数,分析等各个数学分支和力学,物理等许多科学技术领域及某些社会科学领域中有着广泛的应用。《解析几何》课程是大学数学系的主要基础课程之一, 这门课程的学习质量对其它专业课程的学习和今后的工作有重要的影响,并且它本身的内容对于解决一些实际问题也是有用的。 《解析几何》是一门阐述用代数方法(坐标法和向量运算)研究几何问题的课程,因此要能较好的解决有关的问题,一方面要注意培养从几何直观方面分析和洞察问题的能力,另一方面要注意掌握必要的代数方法和计算技巧,能准确地进行计算。此外,本课程以空间解析几何为主,并阐述了两种不同性质的几何----欧氏几何和仿射几何,这是与中学解析几何的主要区别。 二、相关教学环节安排 1.每周布置作业, 周作业量2~3小时。 2.每章结束,安排一次习题课,1~2学时。 三、课程主要内容及学时分配(打▲号为重点讲授部分,打*为选用部分) 每周3学时(共16周),或每周6学时(共8周),共48学时。 主要内容: (一)矢量与坐标(共计12学时) 1. 向量及其线性运算 2. 仿射坐标系与直角坐标系 3. 向量的内积 4. 向量的外积 5. 向量的混合积 6. 习题课 (二)平面与直线(12学时) 1. 曲面的方程和空间曲线的方程 2. 平面的方程 3. 平面与点的相关位置 4. 两平面的相关位置 5. 空间直线的方程 6. 直线与平面的相关位置 7. 空间两直线的相关位置 8. 直线与点的相关位置 9. 平面束 10. 习题课 (三)曲面与曲线(12学时) 1.图形与方程(图形与方程,柱面,锥面) 2.坐标变换(坐标变换,欧拉角*)

数学分析试题

(六)一年级《数学分析》考试题 一 判断题:(满分10分,每小题2分) 1、设数列{}n a 递增且a a n n =∞ →lim (有限),则有{}n a a sup =; ( ) 2、设数列)(x f 在点0x 的某领域)(0x U 内有定义,若对)(00x U x n ∈?,当0x x n →时, 数列{})(n x f 都收敛于同一极限,则函数)(x f 在带点0x 连续;( ) 3、设数列)(x f y =在点0x 的某领域内有定义,若存在实数A ,使0→?x 时,)()()(00x o x A x f x x f ?=?--?+,则)(0'x f 存在且A x f =)(0';( ) 4、若0)()(2'1'==x f x f ,)(0)(2''1''x f x f ,则有)()(21x f x f ;( ) 5、设?+=c x F dx x f )()(,?+=c x G dx x g )()(,则当)()(x G x F ≠时,有)()(x g x f ≠; ( ) 二 填空题:(满分15分,每小题3分) 1、∑+=+=1 61291n k n k n a , =∞ →n n a lim ; 2、函数3 ln 3)(--=x x x f 全部间断点是 ; 3、)1ln()(2x x f +=,已知56)2()(lim 000=--→h h x f x f h ,=0x ; 4、函数193)(23+--=x x x x f 的既递减又下凸的区间是 ; 5、?+=c x dx x f 2sin )(,?=dx x xf )(' ; 三 计算题:(满分36分,每小题6分) 1、111 1lim 30-+-+→x x x ; 2、求函数54 )15(4)(+-=x x x f 的极值; 3、?+12x x dx ; 4、?++dx x x )1ln(2 ;

2006年浙江大学427数学分析考研真题【圣才出品】

1 / 3 2006年浙江大学427数学分析考研真题 浙江大学2006年攻读硕士学位研究生入学试题 考试科目:数学分析(427) 考生注意: 1.本试卷满分为150 分,全部考试时间总计180 分钟; 2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。 一、(20分) ()i 证明:数列 1111ln (1,2,3,)23n x n n n =++++-=收敛; ()ii 计算:1111lim()1232n n n n n →∞ +++++++. 二、(15分) 设()f x 是闭区间 [],a b 上的连续函数,对任一点(),x a b ∈,存在趋于零的数列,使得 2()()2()lim 0k k k k f x r f x r f x r →∞++--=. 证明:函数()f x 为一线性函数. 三、(15分) 设()h x 是 (),-∞+∞上的无处可导的连续函数,试以此构造连续函数()f x ,在 (),-∞+∞上仅在两点可导,并且说明理由.

2 / 3 四、(15分) 设22222221()sin ,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=?. ()i 求(,)f x y x ??以及(,)f x y y ??; ()ii 问(,),(,)f f x y x y x y ????在原点是否连续?(,)f x y 在原点是否可微?试说明理由. 五、(20分) 设()f x 在()0,+∞的任何闭子区间[],αβ上黎曼可积,且0()f x dx +∞ ?收敛, 证明:对于常数 1a >,成立 000lim ()()xy y a f x dx f x dx ++∞+∞-→=??. 六、(15分) 计算曲面积分 32222()S xdydz ydzdx zdxdy I ax by cz ++=++?? 其中 {}2222(,,)S x y z x y z r =++=,常数0,0,0,0a b c r >>>>. 七、(15分) 设V 为单位球: 2221x y z ++≤,又设,,a b c 为不全为零的常数,计算: cos()V I ax by cz dxdydz =++???. 八、(20分) 设函数21()12f x x x =--,证明级数 ()0!(0)n n n f ∞=∑收敛. 九、(15分) 设()f x 在)0,+∞??上可微,(0)0f =.若有常数0A >,使得对任意 ) 0,x ∈+∞??,有

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

东南大学 2002 年数学分析试题解答

东南大学2002年数学分析试题解答 一、叙述定义(5分+5分=10分) 1.()+∞=?∞ →x f x lim . 解:M x f E x E M >??>?)( , ,0 ,0. 2.当+→a x 时,)(x f 不以A 为极限. 解: 二、计算(9分×7=63分) 1.求曲线210 ),1ln(2≤ ≤?=x x y 的弧长. 解:dx x f s ∫+=βα 2)]('[1 ∫∫∫?=?++?=?+=??+=21 0 21 0 222 1 0 22 213ln )11111(11)12(1dx x x dx x x dx x x . 2.设x y z e x g z y x f u y sin ,0),,( ),,,(2===,g f ,具有一阶连续偏导数, 0≠??z g ,求dx du . 解:由0),,(2=z e x g y 得02321=++dz g dy g e dx xg y ,从而 x z z f x y y f x f dx du ?????+?????+??==32121)cos 2(cos f g e x xg f x f y ?++?+. 3.求∫dx x x 2ln ( 解:令dt e dx e x x t t t === , ,ln , ∫=dx x x 2)ln (∫?dt e e t t t 22 =∫ =?dt e t t 2t t te e t ????22C e t +??2 C x x x +++?=2ln 2)(ln 2. 4.求()2 0lim x a x a x x x ?+→()0>a . 解:()2 0lim x a x a x x x ?+→

数学分析试题集锦

June21,2006 2002 1.(10) lim x→0( sin x1?cos x . 2.(10)a≥0x1=√2+x n n=1,2,... lim n→∞ x n 3.(10)f(x)[a,a+α]x∈[a,a+α]f(x+α)?f(x)= 1 1?x2+arcsin x f′(x). 5.(10)u(x,y)u ?2u ?x?y + ?2u x2+y2dx dy dz,?z=

x2+y2+z2=az(a>0) 8.(10) ∞ n=1ln cos1 ln(1+x2) 2 √ (2).{n . ?x (4). L(e y+x)dx+(xe y?2y)dy.L O(0,0),A(0,1),B(1,2) O B OAB. √ 2.(15)f(x)=3

4. 15 f (x )[0,1] sup 01 | n ?1 i =0 f (i n ? 1 f (x )dx |≤ M a n 6.(15 ) θ θ(x )= +∞ n =?∞ e n 2 x x >0 7.(15 ) F (α)= +∞ 1 arctan αx x 2?1 dx ?∞<α>+∞ 8.(21 ) R r r 2004 1.( 6 30 ) (1).lim n →?∞ ( 1 n +2 +...+ 1 f (x ) ) 1 3 sin(y 1+n

(5).e x=1+x+x2 n1 4≤e x+y?2. 5.(12)F(x)= Γf(xyz)dxdydy,f V={(x,y,z)|0≤x≤t,0≤y≤t,0≤z≤t}(t>0), F′(t)=3 a+n √ 2 n(a>0,b>0) (2).lim n→∞ 10x n√ 2 0dx 3 . (5).F(t)= x2+y2+z2=t2f(x,y,z)dS, f(x,y,z)= x2+y2,z≥ x2+y2

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

浙江大学数学与应用数学专业培养方案

浙江大学数学与应用数学专业培养方案 培养目标 本专业培养学生具有数学科学的基本理论与基本方法,具有扎实的数学基础。具有良好的数学基础和数学思维能力。本专业部分课程将为基地班的学生提供独立教学优势,为培养研究人才打下坚实的基础。该专业毕业生除攻读研究生继续深造外,也可到高校、科研机构、高新技术企业、金融、电信等部门从事数学研究工作与教育、图形图像及信号处理、自动控制、统计分析,信息管理、科学计算和计算机应用等工作。 培养要求 主要学习数学与应用数学的基本理论、基本方法,受到计算机和数学软件,数学建模等方面的基本训练。本专业分为数学与应用数学专业基地班、普通班、运筹学方向三个专业方向,基地班采取滚动制,优秀学生通过选拔可进入基地班,其它两个方向学生可自由选择某一个方向就读。 毕业生应获得以下几方面的的知识和能力: 1、掌握数学分析、代数、几何及其应用的基本理论、基本方法。 2、掌握计算机和数学软件及数学建模方面的基本训练。熟练掌握一门外语。 3、了解数学与应用数学科学的理论前沿、应用前景和最新发展动态。 4、掌握数学与应用数学资料的查询、文献检索及运用现代信息技术来撰写论文,参加学 术交流。 专业核心课程 数学分析,高等代数,几何学,常微分方程,实变函数,概率论,科学计算 教学特色课程 外语教学课程:同调代数、整体微分几何、黎曼几何、现代偏微分方程、同调代数、 最优化、动态规划、搏弈论 自学或讨论的课程:前沿数学专题讨论 研究型课程:前沿数学专题讲座 计划学制4年 最低毕业学分160+4+5 授予学位理学学士 辅修专业说明 辅修专业:23学分,修读带*号的课程; 双学位:修读全部专业课程,完成毕业论文。 课程设置与学分分布 1.通识课程48学分+5学分 见理科试验班类通识类课程

专升本数学分析精选三试卷及答案

《数学分析》――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-='++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 目标函数: 222S rh r ππ=+表, ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

2001年浙江大学436数学分析考研真题【圣才出品】

2001年浙江大学436数学分析考研真题 浙江大学2001年攻读硕士学位研究生入学试题 考试科目:数学分析(436) 一、(30分) ()i 用“εδ-语言”证明2211lim 3233n n n n n →∞-+=+-; ()ii 求极限tan 21lim(2)x x x π→-; ()iii 设101(ln )1x f x x x <≤?'=?>?,且(0)0f =,求()f x . 二、(10分) 设()y y x =是可微函数,求(0)y ',其中 2sin 7x y y ye e x x =-+-. 三、(10分) 在极坐标变换cos ,sin x r y r θθ==之下,变换方程2222(,)z z f x y x y ??+=??. 四、(20分) ()i 求由半径为a 的球面与顶点在球心,顶角为2α的圆锥面所围成区域的体积; ()ii 求曲面积分222()()()s I y x dydz z y dzdx x z dxdy =-+-+-??,其中S 是曲面 222(12)z x y z =--≤≤的上侧.

五、(15分) 设二元函数(,)f x y 在正方形区域 [][]0,10,1?上连续,记[]0,1J =. ()i 试比较inf sup (,)y J y J f x y ∈∈与supinf (,)y J y J f x y ∈∈的大小并证明之; ()ii 给出一个使等式inf sup (,)supinf (,)y J y J y J y J f x y f x y ∈∈∈∈=成立的充分条件并证明之. 六、(15分) 设()f x 是在 []1,1-上可积且在0x =处连续的函数,记 (1)01()10n n nx x x x e x ??-≤≤?=?-≤≤?? . 证明:11lim ()()(0)2n n n f x x dx f ?-→∞=?.

数学分析习题

《数学分析Ⅱ》期中考试题 一、选择题(每小题3分,共30分) 1、曲线2x 2 +3y 2 + z 2 =9, z 2 =3x 2 + y 2 在点 ( 1, -1, 2 )的法平面方程是( 1 ) A 、8x+10y+7z-12=0; B 、8x+10y+7z+12=0; C 、8x -10y+7z-12=0; D 、8x+10y+7z+12=0 2、L 为单位圆周,则 L y ds =? ( 4 ) A 、1 B 、2 C 、3 D 、4 3、L 为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则 L zdx xdz +? = ( 3 ) A 、3 B 、5 C 、7 D 、9 4、 ()1 3x y x y dxdy +≤+?? =( 2 ) A 、2 B 、4 C 、6 D 、8 5、 02 11(,)y dy f x y dx --? ? ,改变积分顺序得( 1 ) A 、2 110 (,)x dx f x y dy -?? B 、2 111(,)x dx f x y dy --?? C 、 2 11 (,)x dx f x y dy +? ? D 、2 11 1 (,)x dx f x y dy +-?? 6、V=[-2, 5]?[-3, 3]?[0,1],则 2()V xy z dv +??? =( 3 ) A 、1 B 、7 C 、14 D 、21 7、密度为1的均匀单位圆盘对于它的直径的转动惯量为( 4 ) A 、π B 、 π/2 C 、π/3 D 、π/4 8、曲面S 为上半单位球面z =S yzdxdz ?? =( 2 ) A 、π/2 B 、 π/4 C 、π/6 D 、π/8 9、函数2 3 u x y xz =++的梯度场在(1,1,1)的旋度为( 2 ) A 、(1,1,1) B 、(0,0,0) C 、(1,0,1) D 、(0,1,1) 10、下面反常积分收敛的有( 3 )个。 0cos x e xdx -∞ ? ,10 ? ,3cos ln x dx x +∞?,20?,1+∞? A 、2 B 、3 C 、4 D 、5 二、填空题(28分,每空4分) 1、区域Ω由1z =与22 z x y =+围成的有界闭区域,则 (,,)f x y z dv Ω ??? 在直角坐标下的三 次积分为 柱坐标下三次积分

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 .计算题(共8题,每题9分,共72分)。 因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在, x 0 y x y 0 y x 故二次极限均不存在。 4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中 目标函数:S 表2 rh 2 r 2, 1. 解: 1 1 求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y x f (x, y) Vxs in 丄 羽 si n 丄 y x |3X |3y|,因此二重极限为0.……(4分) (9分) 2. 解: 设y y(x),是由方程组z xf(x z z(x) F(x, y,z) 具有连续的导数和偏导数,求空. dx 对两方程分别关于x 求偏导: y 0'所确定的隐函数’其中f 和F 分别 dz 丁 f (x dx F F 矽 x y dx y) xf (x y)(dX 1 ), 解此方程组并整理得竺 dx F z dz 0 dx F y f(x y) xf (x y)(F y F x ) (4分) 3. 取,为新自变量及 2 z x y x y 2 解: 2 z 2 x x y J 2 z 看成是 w z y F y xf (x y)F z w( ,v)为新函数,变换方程 ze y (假设出现的导数皆连续) x, y 的复合函数如下: / 、 x y w w(,), , 2 代人原方程,并将x, y, z 变换为,,w 2 2 w W c 2 2w 。 x y 。 2 整理得: (9分) (4分) (9分)

整体微分几何 - 浙江大学数学系

整体微分几何简介 课程号:06191440 课程名称:整体微分几何英文名称:Global Differential Geometry 周学时:3-0 学分:3 预修要求:微分几何(局部理论) 内容简介: 《整体微分几何》主要介绍曲线与曲面的大范围整体几何性质,包括某些拓扑性质。内容分四章:第一章介绍活动标架法,它是研究整体微分几何和几何分析的有力工具。第二章介绍3维欧氏空间中闭曲线的整体微分几何性质。第三章介绍3维欧氏空间中曲面的整体微分几何性质。第四章介绍曲面的内蕴几何。通过本课程学习,使学生掌握整体微分几何的基本概念和重要思想方法,了解数学各方向之间相互交织、相互渗透的现代数学概貌。 选用教材或参考书: 《整体微分几何初步》沈一兵编着浙江大学(原杭州大学)出版社 1998

《整体微分几何》教学大纲 一、课程的教学目的和基本要求 随着现代数学的发展,整体微分几何已成为核心数学的一个重要组成部分。为了使数学专业的大学生具备较高的数学素质,有必要让他们了解这方面的基本内容和思想方法。 通过对《整体微分几何》的学习,使学生初步掌握整体微分几何的基本概念和重要思想方法,学会简单的外微分计算和活动标架法,了解有关整体曲线和整体曲面的著名定理和重要公式,以及它们的证明主要思路。要求学生通过本课程学习,了解数学各方向之间相互交织、相互渗透的现代数学概貌,为今后进一步深造打下扎实基础。 二、相关教学环节安排 1.采用课堂讲授和课外作业,强调启发式教学。 2.每周讲课3学时。每周布置作业,作业量1-2学时。主要针对基本概念和解问题的思路。 三、课程主要内容及学时分配(打▲号为重点讲授部分) 每周3学时,共17周。 主要内容: (一)外微分与活动标架法10学时1.幺正标架3学时 2.外微分形式▲3学时 3.可积系统2学时 4.曲面论的活动标架法2学时(二)曲线的整体微分几何 14 学时1.平面曲线的某些整体性质▲ 7学时 2.空间曲线的某些整体性质▲ 7学时

数学分析试题及答案解析

2014 —--2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ) . 2.若()()x g x f ,为连续函数,则()()()[]()[] ????= dx x g dx x f dx x g x f ( ). 3. 若()? +∞a dx x f 绝对收敛,()? +∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( )。 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I上内闭一致收敛( )。 6。 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发 散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C .可微 D 。不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不

相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C 。 ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D 。 ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D . 不确定 4。设∑n u 为任一项级数,则下列说法正确的是( ) A .若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B 。 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C . 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D 。 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A 。 ∑n n x a 在收敛区间上各点是绝对收敛的; B . ∑n n x a 在收敛域上各点是绝对收敛的; C . ∑n n x a 的和函数在收敛域上各点存在各阶导数;

浙江大学数学与应用数学专业(基地班)

浙江大学数学与应用数学(基地班)专业 指导性教学计划 培养目标: 本专业培养掌握数学学科的基本理论与基本方法,具有扎实的数学基础,受到科学研究训练,并能攻读高一级学位的高级基础数学人才。 培养要求: 本专业毕业生应获得以下几方面的知识和能力: 1.数学基本理论、基本方法 2.在数学理论及其应用两方面都受到良好的教育,具有较高的科学素养和较强的创新意识;3.具备科学研究、教学、解决实际问题及软件开发方面的基本能力和较强的更新知识的能力。4.受到计算机和数学软件等方面的基本训练; 主要课程: 数学分析、高等代数、抽象代数、解析几何、复变函数、实变函数、点集拓扑、微分几何、常微分方程、偏微分方程、泛函分析、概率论。 特色课程: 自学或讨论的课程:前沿数学专题讨论。 研究型课程:测度论、环论、黎曼几何、现代偏微分方程、点集拓扑、代数几何引论. 微分几何 采用外语教材的课程:点集拓扑、现代偏微分方程、黎曼几何。 采用外语教学课程:点集拓扑。 计划学制:四年 授予学位:理学学士。 毕业最低学分:167.5+4。 浙江大学统计学专业指导性教学计划 培养目标:

本专业主要包括数理统计和经济统计两类专业方向,培养具有统计学所需要的良好的数学基础,具有经济学或其他相关学科的专门知识,掌握统计学的基本理论和方法,能熟练地运用计算机分析数据。本专业毕业生除可报考研究生继续深造外,可到高校、科研机构、金融、证券、保险、医约、电信、国家机关等企事业单位,从事统计调查、统计信息管理、数据分析等开发、应用和管理工作。 培养要求: 本专业学生主要学习统计学的基本理论和方法,打好数学基础,掌握经济学或其他领域的必要知识,具有较好的科学素养和较强的创新意识,受到理论研究、应用技能和使用计算机的基本训练,具有数据处理和统计分析的基本能力和较强的更新知识的能力。 主要课程: 数学分析、高等代数、解析几何、复变函数、常微分方程、概率论、数理统计、回归分析、抽样调查、时间序列分析。 特色课程: 自学或讨论的课程:前沿数学专题讨论。 研究型课程:现代概率论、应用统计分析。 采用外语教材的课程:现代概率论。 采用外语教学课程:现代概率论。 计划学制:四年 授予学位:理学或经济学学士。 毕业最低学分:167.5+4 浙江大学信息与计算科学专业指导性教学计划 培养目标: 本专业由信息科学、计算科学、运筹与控制科学等交叉渗透而形成的一个新的理科专业,培养具有良好的数学基础和数学思维能力,掌握信息与计算科学的基本理论、方法和技能,受到科学研究的训练,能解决科研单位、工程建设部门、商业公司、金融证券、软件行业、网络电信等诸多领域的实际工作中遇到的信息处理和问题。毕业生能在科技、教育和经济金融等部门从事研究、教学、应用开发和管理工作,成绩优秀的学生可继续攻读硕士学位。

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

最新2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析试题及答案4

(十四) 《数学分析Ⅱ》考试题 一 填空(共15分,每题5分): 1 设=∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 2 设 =--='→5 ) 5()(lim ,2)5(5 x f x f f x 则54; 3 设?? ?>++≤=0 , )1ln(,0, sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。 二 计算下列极限:(共20分,每题5分) 1 n n n 1 )1 31211(lim ++++ ∞→ ; 解: 由于,n n n n 1 1)131211(1≤++++≤ 又,1lim =∞→n n n 故 。1)131211(lim 1 =++++∞→n n n 2 3 )(21lim n n n ++∞→; 解: 由stolz 定理, 3 )(21lim n n n ++∞→33)1()(lim --=∞→n n n n ) 1)1()(1(lim -+-+ -- =∞ →n n n n n n n n ) 1)1(2))(1(() 1(lim --+---+=∞→n n n n n n n n n .3 2)1)11(21 11lim 2=-- +- + =∞ →n n n n 3 a x a x a x --→sin sin lim ;

解: a x a x a x --→sin sin lim a x a x a x a x --+=→2sin 2cos 2lim .cos 2 2sin 2 cos lim a a x a x a x a x =--+=→ 4 x x x 10 ) 21(lim + →。 解: x x x 10 )21(lim +→.)21(lim 2 2 210e x x x =?? ??? ?+=→ 三 计算导数(共15分,每题5分): 1 );(),1ln(1)(22x f x x x x f '++-+= 求 解: 。 1 11 11 1 1221122)(2 2 2 22 2+-= +- +=++++ - +='x x x x x x x x x x x x f 2 解: 3 设。 求)100(2 ,2sin )23(y x x y -= 解: 由Leibniz 公式 )23()2(sin )23()2(sin )23()2(sin 2)98(2 1002)99(11002)100(0100)100(' '-+'-+-=x x C x x C x x C y 6)2sin(26)2sin(2100)23)(2sin(22 98982991002999922100100?+++?+-+=?πππx x x x x x x x x x 2sin 2297002cos 26002sin )23(298992100?-?--= 。 ]2cos 12002sin )22970812[(2298x x x x --= 四 (12分)设0>a ,}{n x 满足: ,00>x ,2,1,0),(211 =+= +n x a x x n n n ;sin cos 33 表示的函数的二阶导数求由方程???==t a y t a x , tan sin cos 3cos sin 3)cos ()sin (22 33t t t a t t a t a t a dx dy -=-=''=。t t a t t a t dx y d sin cos 3sec )cos (sec 223222='-=

相关主题