搜档网
当前位置:搜档网 › 微分方程与微分方程建模法

微分方程与微分方程建模法

微分方程与微分方程建模法
微分方程与微分方程建模法

第三章微分方程模型

3.1微分方程与微分方程建模法

微分方程知识简介

我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方 程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系: (1)初等积分法(一阶方程及几类可降阶为一阶的方程)

一阶线性微分方程组(常系数线性微分方程组的解法) (3)高阶线性微分方程 (高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理

0.常数变易法: 常数变易法在上面的(1) (2) (3)三部分中都出现过,它是

由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次 方程或方程组的解的一种方法。

1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法, 掌握全微

分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参 数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。

dx f(x)g(y);

M(x)N(y)dx P(x)Q(y)dy 0;

常数变易法:(1)线性方程,y p (x )y f (x ),

(2)伯努里方程,y p(x)y f (x)y n ,

积分因子法:化为全微分方程,按全微分方程求解。

对于一阶隐式微分方程F (x,y, y ) 0,有

参数法:(1)不含x 或y 的方程:F (x,y ) 0,F (y,y ) 0;

对于高阶方程,有

分离变量法:(1)可分离变量方程: (2)齐次方程: dy dx dy dx f(ax by C ); ux vy w

⑵可解出x或y的方程:y f(x,y),x f ( y, y );

降阶法:F(x,y(k),y(k 1), ,y(n))

F(y,y,y) 0;

恰当导数方程

一阶方程的应用问题(即建模问题)

2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本

理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。

3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次

微分方程的通解结构,刘维尔公式等);

n 阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特殊型非齐次常系数线性方程解的待定系数法;(4)求解初值问题的拉普拉斯变换法;(5)求二阶线性方程的幂级数解法。

4.常微分方程的基本定理:常微分方程的几何解释(线素场),初值问题解的存在与唯一性定理(条件与结论),求方程的近似解(欧拉折线法与毕卡逐次逼近法),解的延展定理与比较定理、唯一性定理证明解的存在区间(如为左右无穷大),奇解与包络线,克莱罗方程。

5.常微分方程的稳定性理论:掌握稳定性的一些基本概念,以及运用特征根法判断常系数线性方程(组)的解的稳定性,运用李雅普诺夫函数法判断一般方程(组)的解的稳定性。

6.常微分方程的定性理论:掌握定性理论的一些基本概念,运用特征根法判断奇点类型,极限环。

7.差分方程。

8.偏微分方程。

二、数学建模的微分方程方法

微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现

实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比

较广,利用它可建立纯数学(特别是几何)模型,物理学(如动力学、电学、核物理学等)模型,航空航天(火箭、宇宙飞船技术)模型,考古(鉴定文物年代)模型,交通(如电路信号,特别是红绿灯亮的时间)模型,生态(人口、种群数量)模型,环境(污染)模型,资源利用(人力资源、水资源、矿藏资源、运输调度、工业生产管理)模型,生物(遗传问题、神经网络问题、动植物循环系统)模型,医学(流行病、传染病问题)模型,经济(商业销售、财富分布、资本主义经济周期性危机)模型,战争(正规战、游击战)模型等。其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。下面,我们给出如何利用方程知识建立数学模型的几种方法。

1 ?利用题目本身给出的或隐含的等量关系建立微分方程模型。这就需要我们

仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。

例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的

条件一一入射角等于反射角来建立微分方程模型的[5]。又如在天文学、气象学中常用到的等角轨线,已知曲线或曲线族(C),求曲线l (等角轨线或正交轨线),使丨与

(C)中每条曲线相交成给定的角度(这是题目中明确给出的条件,即曲线的切线相交成给定的角度,这样,就在它们的导数之间建立了联系),又题目中隐

含的条件是:在I与(c)中曲线相交点处,它们的函数值相等;这样,我们只要求出已知曲线或曲线族的微分方程,根据它们之间的联系,就可以建立等角轨线的微分方程模型,从而求出等角轨线的方程[5]0

2 ?从一些已知的基本定律或基本公式出发建立微分方程模型。我们要熟悉一些

常用的基本定律、基本公式。例如从几何观点看,曲线y=y(x)上某点的切线斜率即函数y=y(x)在该点的导数;力学中的牛顿第二运动定律:f=ma,其中加速度a

就是位移对时间的二阶导数,也是速度对时间的一阶导数;电学中的基尔霍夫定律等。从这些知识出发我们可以建立相应的微分方程模型。

例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体,我们可以利用牛顿第二运动定律建立其微分方程模型,设物体质量为m,空气阻

力系数为k,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时

刻t时物体的下落速度为v,初始条件:v(o)0。由牛顿第二运动定律建立其微

分方程模型:

dv , 2

m mg kv

dt

求解模型可得:

^mg(exp[2^J kg] 1)

\ m

v J—

、k(exp[2t、kg] 1) 勺m

由上式可知,当t时,物体具有极限速度:

.. mg

v1 t imv \ k,

其中,阻力系数k s , 为与物体形状有关的常数, 为介质密度,s 为物 体在地面上的投影面积。根据极限速度求解式子,在m,, 一定时,要求落地速 度W 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的 直径大小来。 3?利用导数的定义建立微分方程模型。 定义

商式 丄表示单位自变量的改变量对应的函数改变量,就是函数的瞬时平均变化

x

率,因而其极限值就是函数的变化率。 函数在某点的导数,就是函数在该点的变 化率。由于一切事物都在不停地发展变化, 变化就必然有变化率,也就是变化率 是普遍存在

的,因而导数也是普遍存在的。这就很容易将导数与实际联系起来, 建立描述研究对象变化规律的微分方程模型。

例如在考古学中,为了测定某种文物的绝对年龄,我们可以考察其中的放射 性物质(如镭、铀等),已经证明其裂变速度(单位时间裂变的质量,即其变化 率)与其存余量成正比。我们假设时刻t 时该放射性物质的存余量R 是t 的函数, 由裂变规律,我们可以建立微分方程模型: 期中k 是一正的比例常数,与放射性物质本身有关。求解该模型,我们解得:

R Ce kt ,其中c 是由初始条件确定的常数。从这个关系式出发,我们就可以测

定某文物的绝对年龄。(参考碳定年代法)

另外,在经济学领域中,导数概念有着广泛的应用,将各种函数的导函数(即 函数变化率)称为该函数的边际函数,从而得到经济学中的边际分析理论。

4?利用微元法建立微分方程模型。 一般的,如果某一实际问题中所求的变量 p 符合下列条件:p 是与一个变量t 的变化区间[a, b ]有关的量;p 对于区间[a, b ] 具有可加性;部分量 P i 的近似值可表示为f ( J 1。那么就可以考虑利用微元

法来建立微分方程模型,其步骤是:首先根据问题的具体情况,选取一个变量例 如t 为自变量,并确定其变化区间[a, b ];在区间[a, b ]中随便选取一个任意小的区 间并记作[t,t dt ],求出相应于这个区间的部分量 p 的近似值。如果 p 能近似

的标示为[a, b ]上的一个连续函数在t 处的值f (t )与dt 的乘积,我们就把f (t )dt 称 为量p 的微元且记作dp 。这样,我们就可以建立起该问题的微分方程模型:

dp f (t )dt 。对于比较简单的模型,两边积分就可以求解该模型

例如在几何上求曲线的弧长、平面图形的面积、旋转曲面的面积、旋转体 体积、空间立体体积⑶;代数方面求近似值⑻以及流体混合问题⑷;物理上求变 力做功、压力、平均值、静力矩与重心 ⑶;这些问题都可以先建立他们的微分方 程模型,然后求解其模型。

在2005年的全国大学生数学建模竞赛 A 题(原题见竞赛试题)中,对于长 江流域

导数是微积分中的一个重要概念,其 f (x)

lim f(x X ) f(x) X dR

dt kR

的三类主要污染物----溶解氧,高锰酸盐指数与氨氮污染,我们运用微元法,建立了其含参数的微分方程模型,并用平均值法估计出了其参数,具体求出

了他们的解,之后,我们又给出了他们统一的微分方程模型及其求解公式。

5 ?熟悉一些经典的微分方程模型,对一些类似的问题,经过稍加改进或直接套用这些模型。多年来,在各种领域里,人们已经建立起了一些经典的微分方程

模型,熟悉这些模型对我们是大有裨益的。下面,我们仅以人口问题为例,说明用常微分方程、偏微分方程和差分方程建立的人口问题模型。

1)常微分方程模型

设N(t)为时刻t人口总数,r m n为人口的增长率,其中m, n分别为出生率

与死亡率,他们可以是t的函数。1798年,英国神父Malthus建立了最简单的人口增长模型为

N (t) rN(t)

得出了人口按几何级数增长的结论。此结论在短时期内与人口的实际增长吻合得比较好,时间越长误差越大。经过对一些地区具体人口资料的分析,发现在人口

基数较少时,人口的繁衍增长起重要作用,人口的自然增长率r基本为常数,但

随着人口基数的增加,人口增长将越来越受自然资源、环境条件等的限制。此时人口的自然增长率是变化的,即人口的自然增长率与人口数量有关。

1837 (8)年,荷兰生物学家P。F。Verhulst修改了上述模型,引入本地区自然资源

和环境条件允许下的最大人口数目为P。,给出了类似于电感器产生阻抗的

生物反馈因子(1 也),将Malthus模型中的假设条件“,人口自然增长率r为P。

常数”修正为人口自然增长率为r(1 四)汀0 ,得出上述模型的修正模

P。

N (t) rN (t)(1 学)

P。

该模型为著名的Logistic(逻辑斯谛)模型,方程为变量分离方程,带入初始条

件N(t。) N o,可以求出其解。

上述模型对单种群群体规模的变化规律是很好地描述。

2)差分方程模型

上面考虑的是人口群体变化的规律问题,该模型没有考虑种群的年龄结构,

种群的数量主要由总量的固有增长率决定。但不同年龄的人的繁殖率和死亡率有

着明显的不同。考虑按年龄分组的种群增长模型,我们介绍Leslie在20世纪

40年代建立的一个具有年龄结构的人口离散模型。

我们将人口按年龄划分成m个年龄组,即1, 2,…,m组。此处还隐含假定所有人的年龄不能超过m组的年龄。现将时间也离散为时段t k,k 1,2,3,,,并且t k 的间隔与年龄区间大

小相等。记时段t k第i年龄组的种群数量为X i(k),记t k时段种群各年龄组的分布向量为

X i (k)

x2 (k) X(k) 2')

X m(k)

则我们可以建立人口增长的差分方程模型为

X(k 1) LX(k), k 0,1,

此处L为已知矩阵。当t o时段各年龄组的人数已知时,即X(0)已知时,可以求得t k时段的按年龄组的分布向量X (k)为

X(k) L k X(0),k 1,2,3,

由此可以算出各时段的种群总量⑹。

3) 偏微分方程模型

当我们要考察的量同时与两个变量有关时,要想描述其变化率的关系,则

通常要用偏微分方程模型来描述。下面介绍考虑人口年龄的连续模型。设x表示年龄,t表示时间,N(x,t)表示t时刻年龄小于x的人口总数,记a m为人类寿命的上限,N(t)为t时的总人口数,设P(x,t) N(x,t)为人口密度,(x,t)为死亡

x

率函数。另外,我们给出初始条件和边界条件,记最近一次人口普查的时间为

t 0,从而P(x,0) P o(x)为已知,记P(0,t) (t)为t时刻单位时间内出生的人

口数,则可得到如下的连续人口发展的偏微分方程模型

(x,t)P(x,t)

x t

P(x,0) P°(x),P(0,t) (t)

由偏微分方程理论,我们可以求出人口密度函数P(x,t)

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模 型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型

我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线 y y(x)上某点的切线斜率即函数y y(x)在该点的导数;力学中的牛顿第二运 动定律:F ma ,其中加速度a 就是位移对时间的二阶导数,也是速度对时间 的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体, 我们可以利用牛顿第二运动定律建立其微分方程模型, 设物体质量为m ,空气阻 力 系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时 刻t 时物体的下落速度为v ,初始条件:v (o ) 0.由牛顿第二运动定律建立其微 分方程模型: 求解模型可得: 体在地面上的投影面积。根据极限速度求解式子,在m,, 一定时,要求落地速 度w 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的 直径大小来 3?利用导数的定义建立微分方程模型 dv m 一 dt mg kv 2 ? k(exp[2t 由上式可知,当t 其中,阻力系数k 1) 时,物体具有极限速度: lim v t mg :k , s , 为与物体形状有关的常数, 为介质密度,s 为物 、mg(exp[2t 1)

3.1 微分方程模型的建模步骤

第3章微分方程模型 3.1 微分方程模型的建模步骤 在自然科学以及工程、经济、医学、体育、生物、社会等学科中的许多系统,有时很难找到该系统有关变量之间的直接关系——函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统——即建立微分方程模型。我们以一个例子来说明建立微分方程模型的基本步骤。 例1 某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。在健身训练中,他所消耗的热量大约是69(焦/公斤?天)乘以他的体重(公斤)。假设以脂肪形式贮藏的热量100%地有效,而1公斤脂肪含热量41868(焦)。试研究此人的体重随时间变化的规律。 模型分析 在问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重(记为W )关于时间t 的 函数。如果我们把体重W 看作是时间t 的连续可微函数,我们就能找到一个含有的dt dW 微分方程。 模型假设 1.以)(t W 表示t 时刻某人的体重,并设一天开始时人的体重为0W 。 2.体重的变化是一个渐变的过程。因此可认为 )(t W 是关于t 连续而且充分光滑的。 3.体重的变化等于输入与输出之差,其中输入是指扣除了基本新陈代谢之后的净食量吸收;输出就是进行健身训练时的消耗。 模型建立 问题中所涉及的时间仅仅是“每天”,由此,对于“每天” 体重的变化=输入-输出。 由于考虑的是体重随时间的变化情况,因此,可得 体重的变化/天=输入/天—输出/天。 代入具体的数值,得 输入/天 = 10467(焦/天)—5038(焦/天)=5429(焦/天), 输出/天 = 69(焦/公斤?天)×W (公斤)= 69W (焦/天)。 体重的变化/天=t W ??(公斤/天)dt dW t =→?0 考虑单位的匹配,利用 “公斤/天=公斤焦天 焦/41868 /”, 可建立如下微分方程模型

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下 ①当12i = 时di dt 达到最大值m di dt ?? ???,这时101ln 1m t i λ-??=- ???

微分方程模型建模实例

微分方程模型建模实例 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变) (2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐? 7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落 伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8. 1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常 数,()

最新31微分方程与微分方程建模法汇总

31微分方程与微分方 程建模法

第三章微分方程模型 3.1微分方程与微分方程建模法 一、微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程) ?Skip Record If...?(2)一阶线性微分方程组(常系数线性微分方程组的解法) ?Skip Record If...?(3)高阶线性微分方程(高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理。 0.常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 分离变量法:(1)可分离变量方程: ?Skip Record If...? (2) 齐次方程:?Skip Record If...? 常数变易法:(1) 线性方程,?Skip Record If...??Skip Record If...?

(2) 伯努里方程,?Skip Record If...??Skip Record If...? 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程?Skip Record If...?有 参数法:(1) 不含x或y的方程:?Skip Record If...? (2) 可解出x或y的方程:?Skip Record If...? 对于高阶方程,有 降阶法:?Skip Record If...? 恰当导数方程 一阶方程的应用问题(即建模问题)。 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次微分方程的通解结构,刘维尔公式等); n阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

最新微分方程建模简介

微分方程建模简介

第三章微分方程模型 3.1微分方程与微分方程建模法 一、微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程) ?Skip Record If...?(2)一阶线性微分方程组(常系数线性微分方程组的解法) ?Skip Record If...?(3)高阶线性微分方程(高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理。 0.常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 分离变量法:(1)可分离变量方程: ?Skip Record If...? (2) 齐次方程:?Skip Record If...? 常数变易法:(1) 线性方程,?Skip Record If...??Skip Record If...?

(2) 伯努里方程,?Skip Record If...??Skip Record If...? 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程?Skip Record If...?有 参数法:(1) 不含x或y的方程:?Skip Record If...? (2) 可解出x或y的方程:?Skip Record If...? 对于高阶方程,有 降阶法:?Skip Record If...? 恰当导数方程 一阶方程的应用问题(即建模问题)。 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次微分方程的通解结构,刘维尔公式等); n阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时) (第5章 微分方程模型) 1.(验证)传染病模型2(SI 模型)p136~138 传染病模型2(SI 模型): 0(1),(0)di k i i i i dt =-= 其中, i (t )是第t 天病人在总人数中所占的比例。 k 是每个病人每天有效接触的平均人数(日接触率)。 i 0是初始时刻(t =0)病人的比例。 1.1 画~di i dt 曲线图p136~138 取k =0.1,画出i dt di ~的曲线图,求i 为何值时dt di 达到最大值,并在曲线图上标注。 参考程序:

提示:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图 用fplot函数,调用格式如下: fplot(fun,lims) fun必须为一个M文件的函数名或对变量x的可执行字符串。 若lims取[xmin xmax],则x轴被限制在此区间上。 若lims取[xmin xmax ymin ymax],则y轴也被限制。 本题可用 fplot('0.1*x*(1-x)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2) fun必须为一个M文件的函数名或对变量x的可执行字符串。 返回自变量x在区间x1

微分方程建模学习

微分方程建模 一般说来,微分方程建模的方法大致可以分为以下的几个步骤: 1.根据实际问题的要求确定要研究的量,包括自变量、未知函数、必要的参数等以及它们各自的变化区间; 2.列方程。可以在合理假设的前提下,利用导数表示斜率、速度、变化率的实际意义,根据一些基本定理(几何的、物理的、化学的或生物学的等等)或规律,找出未知函数的导数(或微分)与相关各量之间的等量关系式,建立微分方程并确定定解条件(注:如果没有现成的定理可供利用,也可以用微元分析法与模拟近似法列出微分方程); 3.解微分方程; 4.对模型的适用性作出评价,即用已知的数据检验微分方程的解是否与实际相符。若结果与实际存在一定的差距,则还要对方程进行修正和调整,直到得出较满意的结果为止。 下面,我们就通过一些实例说明微分方程建模的具体步骤。 一.增长模型 在自然界和社会的经济活动中,许多量的变化都遵循着一个基本的规律:任一单位时间的增量都与该量自身当时的大小成正比。运用这一基本规律,就可以建立起各种各样的增长模型。 1.马尔萨斯人口模型 严格地讲,讨论人口问题所建立的模型应属于离散型模型。但在人口基数很大的情况下,突然增加或减少的只是单一的个体或少数几个个体,相对于全体数量而言,这种改变量是极其微小的,因此,我们可以近似地假设人口随时间连续变化甚至是可微的。这样,我们就可以采用微分方程的工具来研究这一问题。 最早研究人口问题的是英国的经济系家马尔萨斯(Malthus )(1766—1834)。他根据百余年的人口资料,经过潜心研究,在1798年发表的《人口论》中首先提出了人口增长模型。他的基本假设是:任一单位时刻人口的增长量与当时的人口总数成正比,且比例系数为常数。于是,设t 时刻的人口总数为)(t y ,则单位时间人口的增长量即为 t t y t t y ?-?+)()( 根据基本假设,有 t t y t t y ?-?+)()()(t y r ?= (r 为比例系数) 令0→?t ,可得微分方程

常微分方程的建模训练

常微分方程的建模训练 各位同学: 欢迎大家开始《高等数学》课程的第二阶段的学习。本次辅导材料是关于建立微分方程的模型,主要目的有2个。一是开阔大家的视野,二是练习如何将一个实际问题用数学语言描述出来,也就是平时讲的建模,这是一个理工科学生的最重要的基本功之一。希望大家努力掌握之。 建立微分方程的途径主要有: 1)根据问题的性质,利用相应学科已经知道的客观规律,比如研究物体的运动,在已知外力的情况下,可运用著名的牛顿第二定律;研究热力学问题,可以用热力学定律,研究电路问题就可以用电路的基尔霍夫定律等。 2)对于一些没有明显规律可用时,可以考虑应用微元法(上学期学习积分时已经学习过),这时,需要考虑的是在自变量[,d] +的微段d x中,函数的增 x x x 量的微分表达式。 本次材料包括的题目不少,你可能没有太多的时间做。没有关系,可以边学边做,或有空时做,拳不离手,曲不离口,功夫是逐渐炼成的。要注意的是,对一个确定的问题,仅仅列出微分方程是不够的,还要有一组初始条件或边界条件,才能使微分方程的通解具体化,称为一个对应与问题本身的特解!如何列出这样的条件,也需要训练你的观察能力,因为很多题目中,这些条件常隐含在题目的叙述中。 本次练习不要求你去求解这些方程,但随着我们课堂的进度,当你学会微分方程的求解后,你再去求解它们。 好,开始吧! 1. 有一类物质具有放射性,根据观察,放射性元素的质量随时间推移而逐渐减少,这种现象称为衰变。由实验测定,每一时刻放射性元素镭的衰变率(即质量减少的速率)与该时刻 λ>。求镭的衰变规律。 的镭的质量成正比,比例系数0 又由经验判断,镭经过1600年后,只剩下原始量的一半,求镭的质量R与时间t的函数关系。 2. 物理上把已知物体质量和外力的条件下,求物体的运动规律的问题称为动力学问题。物 s t来表示。 体的运动可用它的位移量() 已知物体质量为m的物体在外力F的作用下沿外力的方向作直线运动。试根据下列提供的外力特点,求物体的运动规律: 1)外力为地球重力; 2)外力为与其速度的平方成反比的阻力; 3)外力为与其位移成正比,但方向相反的弹性恢复力;

微分方程与微分方程建模法

第三章微分方程模型 3.1微分方程与微分方程建模法 微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方 程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系: (1)初等积分法(一阶方程及几类可降阶为一阶的方程) 一阶线性微分方程组(常系数线性微分方程组的解法) (3)高阶线性微分方程 (高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理 0.常数变易法: 常数变易法在上面的(1) (2) (3)三部分中都出现过,它是 由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次 方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法, 掌握全微 分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参 数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 dx f(x)g(y); M(x)N(y)dx P(x)Q(y)dy 0; 常数变易法:(1)线性方程,y p (x )y f (x ), (2)伯努里方程,y p(x)y f (x)y n , 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程F (x,y, y ) 0,有 参数法:(1)不含x 或y 的方程:F (x,y ) 0,F (y,y ) 0; 对于高阶方程,有 分离变量法:(1)可分离变量方程: (2)齐次方程: dy dx dy dx f(ax by C ); ux vy w

⑵可解出x或y的方程:y f(x,y),x f ( y, y ); 降阶法:F(x,y(k),y(k 1), ,y(n)) F(y,y,y) 0; 恰当导数方程 一阶方程的应用问题(即建模问题) 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本 理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。 3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次 微分方程的通解结构,刘维尔公式等); n 阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特殊型非齐次常系数线性方程解的待定系数法;(4)求解初值问题的拉普拉斯变换法;(5)求二阶线性方程的幂级数解法。 4.常微分方程的基本定理:常微分方程的几何解释(线素场),初值问题解的存在与唯一性定理(条件与结论),求方程的近似解(欧拉折线法与毕卡逐次逼近法),解的延展定理与比较定理、唯一性定理证明解的存在区间(如为左右无穷大),奇解与包络线,克莱罗方程。 5.常微分方程的稳定性理论:掌握稳定性的一些基本概念,以及运用特征根法判断常系数线性方程(组)的解的稳定性,运用李雅普诺夫函数法判断一般方程(组)的解的稳定性。 6.常微分方程的定性理论:掌握定性理论的一些基本概念,运用特征根法判断奇点类型,极限环。 7.差分方程。 8.偏微分方程。 二、数学建模的微分方程方法 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现

微分方程型建模实例题

一个数学问题都可以用不同的方法来求解的,不同的方法做出来效果不同,效率也不同。下面就微分方程模型建模展开建模。下面给出些微分方程建立模型的实例,供大家参考。 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变)(2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8.1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常数,() 10.实验证明,当速度远低于音速时,空气阻力正比与速度,阻力系数大约为0.005。现有一包裹从离地150米高的飞机上落下,(1)求其落地时的速度(2)如果飞机高度更大些,结果会如何,包裹的速度会随高度而任意增大吗? 11.生态学家估计人的内禀增长率约为0.029,已知1961年世界人口数为30.6亿(3.06×)而当时的人口增长率则为0.02。试根据Logistic模型计算:(1)世界人口数的上限约为多少(2)何时将是世界人口增长最快的时候? 12.早期肿瘤的体积增长满足Malthus模型(=λV,其中λ为常数),(1)求肿瘤的增倍时间σ。根据统计资料,一般有σ (7,465)(单位为天),肺部恶性肿瘤的增倍时间大多大于70天而小于465天(发展太快与太慢一般都不是恶性肿瘤),故σ是确定肿瘤性质的重要参数之一(2)为方便起见,医生通常用肿瘤直径来表示肿瘤的大小,试推出医生用来预测病人肿瘤直径增大速度的公式 D = 13.正常人身上也有癌细胞,一个癌细胞直径约为10μm,重约0.001μg.,(1)当患者被查出患有癌症时,通常直径已有1cm以上(即已增大1000倍),由此容易算出癌细胞转入活动期已有30σ天,故如何在早期发现癌症是攻克癌症的关键之一(2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于个时即可凭借体内免疫系统杀灭。 14.设药物吸收系数(k为药物的分解系数),对口服或肌注治疗求体内药物浓度的峰值(峰浓度)级达峰时间。 15.医生给病人开药时需告诉病人服药的剂量和两次服药的间隔时间,服用的剂量过大会

扩散问题的偏微分方程模型_数学建模

实验一SDH网元基本配置 一、实验目的: 通过本实验,了解SDH光传输的原理和系统组成,了解ZXMP S325设备的硬件构成和单板功能,学习ZXONM 300 网管软件的使用方法,掌握SDH 网元配置的基本操作。 二、实验器材: 1、SDH 设备:3 套ZXMP 325; 2、实验用维护终端。 三、实验原理 1、SDH 原理 同步数字体制(SDH)是为高速同步通信网络制定的一个国际标准,其基础在于直接同步复用。按照SDH 组建的网络是一个高度统一的、标准化的、智能化的网络,采用全球统一的接口以实现多环境的兼容,管理操作协调一致,组网与业务调度灵活方便,并且具有网络自愈功能,能够传输所有常见的支路信号,应用于多种领域(如光纤传输,微波和卫星传输等)。 SDH 具有以下特点: (1)接口:接口的规范化是设备互联的关键。SDH对网络节点接口(NNI)作了统一的规范,内容包括数字信号数率等级、帧结构、复接方法、线路接口、监控管理等。 电接口:STM-1是SDH的第一个等级,又叫基本同步传送模块,比特率为155.520Mb/s;STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N 倍(N=4n=1,4,16,- - -)。 光接口:采用国际统一标准规范。SDH仅对电信号扰码,光口信号码型是加扰的NRZ 码,信号数率与SDH 电口标准信号数率相一致。 (2)复用方式 a)低速SDH----高速SDH,字节间插; b) 低速PDH-----SDH,同步复用和灵活的映射。 (3)运行维护:用于运行维护(OAM)的开销多,OAM功能强——这也是线路编码不用加冗余的原因. (4)兼容性:SDH 具有很强的兼容性,可传送PDH 业务,异步转移模式信号(ATM)及其他体制的信号。 (5)SDH 复用映射示意图

(整理)微分方程建模简介教程文件

(整理)微分方程建模 简介

第三章 微分方程模型 3.1微分方程与微分方程建模法 一、 微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程)→(2)一阶线性微分方程组(常系数线性微分方程组的解法)→(3)高阶线性微分方程(高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理。 0.常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它 是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解 法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 分离变量法:(1)可分离变量方程: ; 0)()()()();()(=+=dy y Q x P dx y N x M y g x f dx dy (2) 齐次方程:);();(w vy ux c by ax f dx dy x y f dx dy ++++==

常数变易法:(1) 线性方程,),()(x f y x p y =+' (2) 伯努里方程,,)()(n y x f y x p y =+' 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程,0),,(='y y x F 有 参数法:(1) 不含x 或y 的方程:;0),(,0),(='='y y F y x F (2) 可解出x 或y 的方程:);,(),,(y y f x y x f y '='= 对于高阶方程,有 降阶法:; 0),,(;0),,,,()()1()(='''=+y y y F y y y x F n k k Λ 恰当导数方程 一阶方程的应用问题(即建模问题)。 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。 3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次 微分方程的通解结构,刘维尔公式等);

(完整版)扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,2 2 2 ,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

微分方程建模学习

微分方程建模 一般说来,微分方程建模的方法大致可以分为以下的几个步骤: 1?根据实际问题的要求确定要研究的量,包括自变量、未知函数、必要的参数等以及它 们各自的变化区间; 2?列方程。可以在合理假设的前提下,禾U 用导数表示斜率、速度、变化率的实际意义, 根据一些基本定理(几何的、物理的、化学的或生物学的等等)或规律,找出未知函数的导 数(或微分)与相关各量之间的等量关系式,建立微分方程并确定定解条件(注:如果没有 现成的定理可供利用,也可以用微元分析法与模拟近似法列出微分方程) ; 3.解微分方程; 4?对模型的适用性作出评价,即用已知的数据检验微分方程的解是否与实际相符。若结 果与实际存在一定的差距,则还要对方程进行修正和调整,直到得出较满意的结果为止。 下面,我们就通过一些实例说明微分方程建模的具体步骤。 一. 增长模型 在自然界和社会的经济活动中,许多量的变化都遵循着一个基本的规律: 任一单位时间 的增量都与该量自身当时的大小成正比。 运用这一基本规律,就可以建立起各种各样的增长 模型。 1. 马尔萨斯人口模型 严格地讲,讨论人口问题所建立的模型应属于离散型模型。 但在人口基数很大的情况下, 突然增加或减少的只是单一的个体或少数几个个体, 相对于全体数量而言, 这种改变量是极 其微小的,因此,我们可以近似地假设人口随时间连续变化甚至是可微的。 这样,我们就可 以采用微分方程的工具来研究这一问题。 最早研究人口问题的是英国的经济系家马尔萨斯 (Malthus ) ( 1766—1834)。他根据百余 年的人口资料,经过潜心研究,在 1798年发表的《人口论》中首先提出了人口增长模型。 他的基本假设是:任一单位时刻人口的增长量与当时的人口总数成正比, 且比例系数为常数。 于是,设t 时刻的人口总数为 y (t ),则单位时间人口的增长量即为 y(t t) y(t) t 令t 0 ,可得微分方程 根据基本假设,有 y(t t) y(t) r y(t) (r 为比例系数)

相关主题