搜档网
当前位置:搜档网 › 射频开关基础知识详细讲解

射频开关基础知识详细讲解

射频开关基础知识详细讲解
射频开关基础知识详细讲解

射频开关基础知识详细讲解

射频和微波开关可在传输路径内高效发送信号。此类开关的功能可由四个基本电气参数加以表征。

虽然多个参数与射频和微波开关的性能相关,然而以下四个由于其相互间较强的相关性而被视为至关重要的参数:隔离度,插入损耗,开关时间,功率处理能力。

隔离度即电路输入端和输出端之间的衰减度,是衡量开关截止有效性的指标。插入损耗(也称传输损耗)为开关处于导通状态下时损耗的总功率。由于插入损耗可直接导致系统噪声系数的增大,因此对于设计者而言,插入损耗是最为关键的参数。

开关时间是指开关从“导通”状态转变为“截止”状态以及从“截止”状态转变为“导通”状态所需要的时间。该时间上可达高功率开关的数微秒级,下可至低功率高速开关的数纳秒级。开关时间的最常见定义为自输入控制电压达到其50%至最终射频输出功率达到其90%所需的时间。此外,功率处理能力定义为开关在不发生任何永久性电气性能劣化的前提下所能承受的最大射频输入功率。

图示为使用12个不同SMA母同轴连接器的单刀十二掷机电式开关一

射频和微波开关可分为机电式继电器开关以及固态开关两大类。这些开关可设计为多种不同构型——从单刀单掷到可将单个输入转换成16种不同输出状态的单刀十六掷,或更多掷的构型。切换开关为一种双刀双掷构型的开关。此类开关具有四个端口以及两种可能的开关状态,从而可将负载在两个源之间切换。

机电式继电器开关的插入损耗较低(《0.1dB),隔离度较高(》

85dB),且可以毫秒级的速度切换信号。此类开关的主要优点在于,其可在直流~毫米波(》50 GHz)频率范围内工作,而且对静电放电不敏感。此外,机电式继电器开关可处理较高的功率水平(达数千瓦的峰值功率)且不发生视频泄漏。

然而,在机电式射频开关的操作中,有一些问题值得我们注意。此类开关的标准使用寿命大约只有100万次,而且其组件对振动较为敏感。使用寿命是指机电式开关在满足射频及重复性要求的情况下所能完成的总开关次数。高质量或高可靠性机电式开关适用于需要更长使用寿命的应用场合。此类开关的可靠性和其他性能极其优越,而且使用寿命长达1000万次。上述较长使用寿命源自于设计更为牢固的致动器以及在磁效率和机械刚性方面更为优化的传动连杆。此外,此类开关还设计为可承受更为严酷的环境条件,并满足MIL-STD-2002标准在正弦和随机振动以及机械冲击方面的要求。

举例而言,Pasternack提供使用寿命为100万次的标准机电式射频开关,以及使用寿命为250万~1000万次的可靠性机电式射频开关。该公司型号为PE71S6064的单刀双掷可靠性开关即为上述产品中的一种,其工作频率范围为DC~40GHz,且保证使用寿命达1000万次。

作为可靠性机电式射频开关的一例,图示为Pasternack的

PE71S6064单刀双掷机电式开关,其工作频率范围为DC~40GHz,保证使用寿命达1000万次

相比之下,由于固态射频开关的电路装配较为平坦且不包含较大的元器件,因此其封装厚度较小且物理尺寸通常小于机电式开关。固态射频开关使用的开关元件为高速硅PIN二极管或场效应晶体管(FET),或者为集成硅或FET单片微波集成电路。这些开关元件与电容器,电感器和电阻器等其他芯片组件分立集成于同一电路板上。

使用PIN二极管电路的开关产品具有更高的功率处理能力,而FET类型的开关产品通常具有更快的开关速度。当然,由于固态开关不包含活动部件,因此其使用寿命是无限的。此外,固态开关的隔离度较高

(>60~80dB),开关速度极快(<100纳秒),电路的耐冲击/振动性较好。

固态射频开关的其他值得注意的性能包括其插入损耗。固态射频开关在插入损耗方面劣于机电式开关。此外,固态射频开关在低频应用中具有局限性。这是因为其工作频率下限只能到千赫级,而非直流。这一局限源于其所使用半导体二极管固有的载流子寿命特性。

作为PIN二极管开关的一例,图示为Pasternack的PE7167单刀四掷开关,其工作频率为500MHz~40GHz,最大开关速度为100纳秒。在固态开关中,PIN二极管基本上作为可变电阻器使用,其电阻值可通过直流偏置电流调节。

此外,固态射频开关对静电放电更为敏感,且其功率处理能力取决于开关构型、连接器类型、工作频率以及环境温度。某些构型的PIN二极管开关虽然可处理峰值为数千瓦的功率,但是同时需以更低的开关速度为代价。PIN二极管开关的一例为Pasternack的PE7167单刀四掷开关,该产品的工作频率为500MHz~40GHz,最大开关速度为100纳秒,输入功率处理能力最高可达+20dBm。

总体而言,与机电式开关相比,固态射频开关的可靠性更高,使用寿命更长,开关速度更快。因此,在对开关速度和可靠性要求更高的应用中,应该优先选择固态射频开关;在需要宽频段覆盖低至直流以及低插入

损耗的应用中,优先选择机电式开关;在以长使用寿命为绝对要求的应用中,优先选择高可靠性开关。

如以上示意图所示,Pasternack的PE71S6064单刀双掷开关使用机电式射频开关的数种典型构件,包括直流28V闭锁致动器,连接开关状态指示灯的数个独立触片,以及设于闲置端口的50欧姆终端匹配电阻设计人员应该了解上述各种开关产品的其他特征,例如50欧姆电阻性负载。开关电路中,任何闲置的开路传输线路都有可能在微波范围内的频率下发生共振。这种共振可将电能反射回处于工作状态下的射频源,从而对其造成损害。对于工作频率为26 GHz或更高的系统而言,由于隔离度大大下降,上述损害将更为严重。因此,多数传输线路都设计有50欧姆的阻抗,从而使得射频开关在内置50欧姆电阻性负载后,反射能量极少。

机电式射频开关分为端接型和非端接型两类。在端接型开关中,当所有通道均端接50欧姆负载时,则关闭选定的通道,从而将所有电流截止或隔离。如此,入射信号的能量将由端接电阻吸收,而不反射回射频源。非端接型开关内不设置50欧姆负载,因此必须由系统的其他部分实现可降低能量反射的阻抗匹配。非端接型开关的优点在于其插入损耗较小。

图示为单刀双掷射频开关一例,其使用PIN二极管作为开关元件以及作为隔断射频通道与直流偏置信号通道的无源器件。在典型应用中,所示公共射频端可连接系统天线,而射频端1和2分别连接发射器和接收器。所述PIN二极管用作射频电阻器,其电阻值由该二极管的正向直流偏置电流调节。一般情况下,对于典型PIN二极管而言,直流偏置电流可在三个或更多数量级范围内调节其射频电阻值。当上述二极管处于偏置截止状态时,其阻抗高至接近断路电路的阻抗。

机电式射频开关的另一个重要特征在于其电枢继电器机制。线圈通电时,感应磁场将使电枢线圈发生移动,从而打开或关闭触点。非闭锁开关

内设有弹簧或磁铁,其可在电流不流通时,将开关保持于一初始常闭状态。此类开关适用于电源中断时须使开关恢复至某一已知状态的应用中。

闭锁开关内设有闭锁机构,而且无缺省位置,因此其保持断电前的最后状态。由于闭锁继电器开关的触点线圈只有在继电器断开的一瞬间消耗电能,因此其适用于对功率的耗散成问题的应用场合。

此外,某些其他类型的开关具有故障安全工作模式。在该模式下,一旦线圈上所施加电压消失后,射频通道即恢复至断电状态。然而,由于此模式下只有在线圈上持续施加电压才能保持通电状态,因此与闭锁开关相比,使用此模式的开关的平均故障间隔时间较短。

机电式射频开关的另一个值得注意的特征为与射频通道切换线圈相连接的一组辅助直流触点。通常状态下,这些辅助触点用于控制指示灯或信号灯,使其表示射频通道的状态。此外,这些触点还可用于为外部控制系统提供状态信息。

开关详细信息

固态射频开关可分为吸收型和反射型两种。吸收型开关在其每个输出端口设置50欧姆终端匹配电阻,从而在通止两态皆实现较低的电压驻波比(VSWR)。设置于上述输出端口的终端电阻可吸收入射信号能,而未接终端匹配电阻的端口将反射信号。当输入端信号必须在开关内传播而过时,上述开放端口即与终端匹配电阻断开,从而允许该信号的能量可完整

地自该开关传播而出。吸收型开关适用于需最大限度减小射频源所受回波反射的应用场合。

相比之下,反射型开关内不设终端电阻,以达到降低开放端口的插入损耗的目的。反射型开关适用于对端口之外的高电压驻波比不敏感的应用场合。此外,在反射型开关内,阻抗匹配由除端口之外的其他构件实现。

固态开关的另一个值得注意的重要特征为其驱动电路。某些类型的固态开关内集成有输入控制电压驱动器,这些驱动器的输入控制电压逻辑状态可实现特定的控制功能——为保证二极管可获得反向或正向偏置电压提供必要电流。

机电式和固态射频开关可制成多种具有不同封装规格和连接器类型的产品——大多数工作频率高达26GHz的同轴开关产品使用SMA连接器;高达40GHz的使用2.92mm或K型连接器;达50GHz的使用2.4mm 连接器;达65GHz的使用1.85mm连接器。

带波导端口的开关所具有的插入损耗最低,因此被广泛用于微波和毫米波频段内的高功率通信信号。使用大的N型或TNC连接器的同轴开关产品具有更高的功率处理能力(可处理高达数百瓦的连续波功率)。此外,不同用途的产品可采用不同的封装形式——从不与环境隔离密封的“商用级”封装,到可承受恶劣环境条件的严格密封“高可靠级”封装。

4高低压开关柜基础知识--注册电气工程师发输变电专业基础考试

西安华瑞网电设备有限公司培训教材高压电器及成套装置 2009.

高压电器及成套装置 (一)开关电器:主要用来关合于分断正常电路及事故电路或用来隔离高压电源,根据其功能的不同又分为: 1)高压断路器:它能分断正常情况下的各种负载电路,又能在事故情况下关合与分断短路电流,而且能实现自动重合闸的要求。它是高压电路中一种功能最为全面的电器。 2)高压熔断器:俗称保险,当线路中电流超过一定限度或出现短路故情时能自动断开电路,电路断开后,熔断器必须人工更换部件后才能再次使用。 3)高压负荷开关:只能在正常工作情况下关合与开断各种负载电路但不能开断短路电流。 4)高压隔离开关:用来隔离电源或电路,隔离开关只能开断很小的电流,容量不大的变压器空载电流等。 5:接地开关:高压与超高压线路检修电器设备时为确保人身安全,可用接地开关进行接地,接地开关也可采用人为造成电力系统的接地短路以达到控制和保护的目的。 (二)测量电器:主要包括电流互感器和电压互感器。 1)电流互感器:用来配合测量高压线路的电流供计量和继电保护用。

2)电压互感器:用来配合测量高压线路的电压供计量和继电保护用。 (三)限流与限压电器:主要包括避雷器,电抗器。 1)避雷器:用来限制过电压,使电力系统种相关的各电器设备免受大气过电压和内部过电压的危害。 2)电抗器:实质上就是一个电感线圈,用来限制故障时短路电流。 对高压电器的基本要求是什么:性能参数有哪些?高压电器的主要要求包括:一般电器性能方面要求,自然环境方面的要求,和其它方面的要求。 (一)一般电器性能方面的要求:电力系统中的高压电器应能长期的承受各种电压电流作用而不致损坏。 1)电压方面:额定电压一定高压电器,其绝缘部分能长期承受的最大工作电压,而且能承受相应程度的大气过电压和内部过电压的作用。标志这方面性能参数是:最大工作电压,工频试验电压,全波和载波冲击电压,操作波试验电压。 2电流方面:高压电器的导电部分长期通过工作电流时各部分的温升不超过允许值。通过短路电流时不应因电动力作用而受到损坏,各部分的温升不应超过短路时的温度允许值,触头不应发生熔焊或损坏。这些性能都与电流大小有关,标志这方面的参数是:额定电流、动稳定电流、热稳定电流等。 自然环境方面的要求:高压电器应能在周围各种环境

射频和微波开关测试系统基础 (1)

射频和微波开关测试系统基础 绪论 无线通信产业的巨大成长意味着对于无线设备的元器件和组件的测试迎来了大爆发,包括对组成通信系统的各种RF IC 和微波单片集成电路的测试。这些测试通常需要很高的频率,普遍都在GHz范围。本文讨论了射频和微波开关测试系统中的关键问题,包括不同的开关种类,RF开关卡规格,和有助于测试工程师提高测试吞吐量并降低测试成本的RF开关设计中需要考虑的问题。 射频开关和低频开关的区别 将一个信号从一个频点转换到另一个频点看起来挺容易的,但要达成极低的信号损耗该如何实现呢?设计低频和直流(DC)信号的开关系统都需要考虑它们特有的参数,包括接触电位、建立时间、偏置电流和隔离特性等。 高频信号,与低频信号类似,需要考虑其特有的参数,它们会影响开关过程中的信号性能,这些参数包括VSWR(电压驻波比)、插入损耗、带宽和通道隔离等等。另外,硬件因素,比如端接、连接器类型、继电器类型,也会极大的影响这些参数。 开关种类和构造 继电器内的容性是限制开关的信号频率的常见因素。继电器的材料和物理特性决定了其构成的内部电容。比如,在超过40GHz的射频和微波开关中,在机电继电器中采用了特殊的接触架构来获得更好的性能。图1显示了一个典型的构造,共同端接位于两个开关端接之间。所有信号的连接线路都是同轴线,来保证最佳的信号完整性(SI)。在这种情况下,连接器是SMA母头。对于更加复杂的开关结构,共同端接被各个开关端接以放射状围绕。 一系列复杂的开关拓扑在RF开关中得以采用。矩阵式开关可以实现每个输入与每个输出的连接。有两种类型的矩阵在微波开关架构中得以采用——blocking和non-blocking架构。一个blocking矩阵可将任意一个输入和任意一个输出进行连接,因此其他的输入和输出就不能同时连接。这对只需在一个时刻切换到一个信号频率的应用是一个有效的低成本方案,信号完整性也更好,因为有更少的继电器路径,特别是避免了相位延迟的问题。而 non-blocking矩阵允许多个路径的同时连接,这种架构具有更多的继电器和线缆,因此灵活性更强,不过价格也更高。

开关电源基础知识简介

1、输出纹波噪声的测量及输出电路的处理 PWM 开关电源的输出的纹波噪声与开产频率有关。其纹波噪声分为两大部分:纹波(包括开关频率的纹波和周期及随机性漂移)和噪声(开关过程中产生)。 周期及随机性漂移 在纹波与噪声的测量过程中,如果不使用正确的测量方法将无法正确地测量出真出的输出纹波噪声。下面是推荐的测量方法: 平行线测量法:输出管脚接平行线后接电容,在电容两端使用20MHz C 为瓷片电容,负载与模块之间的距离在51mm 和76mm(2in.和3in)之间。 在大多数电路中, 2、多路输出的交互调节及其应用 交互调节的优点。图中lo1路负载电流、Vo2为辅助路输出电压。由图可见,20% 100% Io2 在主路负载从20%~100%变化时,辅助路输出电压随 辅助路负载电流的变化曲线中,辅助路输出电压始终在±4%范围之内。即使在最坏的情况,即主路空载、辅助路江载,主路满载、辅助路空载时其输出电压也能保证在标称电压的±10%范围之内。由此,对于输出稳压精度要求不太高的情况下,这种不稳压的辅助输出不仅能够满足供电的条件,而且相对成本低、器件少、可靠性高。建议用户首先考虑不稳压的辅助输出的电源模块。 开关电源基础知识简介

3、容性负载能力与电源输出保护 建议用户对电源模块的阻性负载取大于10%额定负载,这样模块工作比较稳定。 电容作为电源去耦及抗干扰的手段,在现代电子线路中必不可少,本公司的电源模块考虑此因素,都有相当的容性负载能力。但由于考虑到电源的综合保护能力,尤其是输出过载保护, 容性负载能力不可能太大,否则保护特性将变差。因此用户在使用过程中负载电容总量不应 超过最大容性负载能力。 Vo 输出电流保护一般有四种方式: ●恒流式:当到达电流保护点时,输出电流随负载的 进一步的加重,略有增加,输出电压不断下降。 ●回折式:当到达电流保护点时,输出电流随负载的 的加重,输出电压不断下降,同时输出电流也不断下降。 ●恒流-截止式:当到达电流保护点时,首先是恒流式 ●精确自恢复截止式:输出电流到达保护点,电源模块输出被禁止,负载减轻电路自恢复。 在大部分电路中使用恒流式与截止式较多,比较理想的保护方式是精确自恢复截止式,或者恒流-截止式保护。其中恒流式、回折式保护本质上就是自恢复的,但输出短路时的功耗较大, 尤其是恒流式。而截止式、恒流-截止式保护的自恢复特性须加辅助复位电路来完成自恢复,其 输出过载时的功耗可以通过复位电路的周期进行调整,即调整间歇启动的时间间隔。一般电流 保护1.2~2倍标称输出电流。精确自恢复截止式电流保护点设定为标称输出电流1.2倍或1.3倍。 一般输出有过压嵌位保护。 4、负载瞬态响应 当输出的负载迅速发生变化时,输出的电压会出现 上冲或下跌。电源模块经过调整恢复原输出电压。这个 响应过程中有两个重要的指标:过冲电压( Vo)和恢复 时间(tr)。过冲越小,恢复时间越短,系统响应速度 越快。一般在25%的标称负载阶跃变化,输出电压的 过冲为4%VO,恢复时间为500μS左右。 5、外围推荐电路 1)输出电压的调节: 本公司产品中有TRIM输出管脚的产品,可以通过电阻或电位器对输出电压进行一定范围内的调节。将电位器的中心与TRIM相连,在有+S,-S管脚的模块中,其他两端分别接+S、-S,没有相应主路的输出正负极(+S接Vo1,-S接GND上,调节电位器即可。辅路跟随主路调节。电位器阻值根据输出电压的大小选用5~20K?比较合适。一般微调范围为±10%。

射频开关基础知识

同轴开关基础知识 定义:同轴开关可通过电压或计算机编程自动控制,在微波电路中做切换用。分类:按照实现方式可分为三类 同轴开关,又称电磁开关、射频开关、机电开关 PIN开关,又称电子开关 MEMS开关,又称微电子开关 同轴开关和PIN开关有什么不同? 同轴开关操作原理是供电实现机械动作,而PIN开关则不需要。 同轴开关实物较大,PIN开关可以做的很小 同轴开关开关时间慢,隔离度、插损、驻波性能好,耐受功率高 PIN开关开关时间快,隔离度、插损、驻波性能差,耐受功率低

Qualwave Inc main products: Amplifiers:9kHz-110GHz,Power amplifiers,Low noise amplifiers Cables/Assemblies:DC-110GHz,Ultra Low Loss&Phase Stable Coaxial Adapters:DC-110GHz,Low VSWR Fixed Attenuators:DC-67GHz,0.5W-500W Terminations:DC-67GHz,0.5W-500W Coaxial Switches:DC-67GHz,SPDT-SP20T,DPDT,2P3T DC Blocks:0.01-67GHz Detectors:0.01-110GHz Couplers:100KHz-67GHz,90°/180°Hybrid Couplers,Directinal Couplers,Dual Directional Couplers Power Dividers/Combiners:DC-67GHz,2,3,4,6,8,16Ways Circulators/Isolators:56MHz-40GHz,Octave&Multi-Octave Filters:DC-67GHz,Low Pass Filters,High Pass Filters,Band Pass Filters,Band Reject Filters Frequency Sources:DC-40GHz Phase Shifters:DC-40GHz Horn Antennas:up to112GHz Etc. 开关主要系列: Part Number Frequency (GHz) Switch Type Switching Time (mS,max.) Operation Life (cycles) Connectors Lead Time (weeks) QMS2V DC~67GHz SPDT201M 1.85mm2~4 QMS62DC~50GHz SP4T201M 2.4mm2~4 QMSD22DC~40GHz DPDT201M 2.4mm2~4 QMS2K DC~40GHz SPDT155M 2.92mm2~4 QMS2KT DC~40GHz SPDT(Terminated)155M 2.92mm2~4 QMS6K DC~40GHz SP3T~SP6T153M 2.92mm2~4

射频和微波开关测试系统基础

射频和微波开关测试系统基础 无线通信产业的巨大成长意味着对于无线设备的元器件和组件的测试迎来了大爆发,包括对组成通信系统的各种RF IC 和微波单片集成电路的测试。这些测试通常需要很高的频率,普遍都在GHz范围。本文讨论了射频和微波开关测试系统中的关键问题,包括不同的开关种类,RF开关卡规格,和有助于测试工程师提高测试吞吐量并降低测试成本的RF开关设 计中需要考虑的问题。 射频开关和低频开关的区别 将一个信号从一个频点转换到另一个频点看起来挺容易的,但要达成极低的信号损耗该如何实现呢?设计低频和直流(DC)信号的开关系统都需要考虑它们特有的参数,包括接触电位、 建立时间、偏置电流和隔离特性等。 高频信号,与低频信号类似,需要考虑其特有的参数,它们会影响开关过程中的信号性能,这些参数包括VSWR(电压驻波比)、插入损耗、带宽和通道隔离等等。另外,硬件因素,比如端接、连接器类型、继电器类型,也会极大的影响这些参数。 开关种类和构造 继电器内的容性是限制开关的信号频率的常见因素。继电器的材料和物理特性决定了其构成的内部电容。比如,在超过40GHz的射频和微波开关中,在机电继电器中采用了特殊的接触架构来获得更好的性能。图1显示了一个典型的构造,共同端接位于两个开关端接之间。所有信号的连接线路都是同轴线,来保证最佳的信号完整性(SI)。在这种情况下,连接器是SMA母头。对于更加复杂的开关结构,共同端接被各个开关端接以放射状围绕。 一系列复杂的开关拓扑在RF开关中得以采用。矩阵式开关可以实现每个输入与每个输出的连接。有两种类型的矩阵在微波开关架构中得以采用——blocking和non-blocking架构。一个blocking矩阵可将任意一个输入和任意一个输出进行连接,因此其他的输入和输出就不能同时连接。这对只需在一个时刻切换到一个信号频率的应用是一个有效的低成本方案,信号完整性也更好,因为有更少的继电器路径,特别是避免了相位延迟的问题。而non-blocking 矩阵允许多个路径的同时连接,这种架构具有更多的继电器和线缆,因此灵活性更强,不过 价格也更高。 层叠开关架构是多位置开关的一种替代形式。它采用多个继电器将一个输入连接到多个输出。路径长度(同时决定了相位延迟)是由信号经过的继电器的数量决定的。 树形架构是层叠开关架构的一种替代。相比层叠架构,对于同等规格的系统,树形技术需要更多的继电器,然而,选定的路经和其他不用的路经之间的隔离会更好,这样降低了继电器和通道之间的crosstalk。树形架构具备一些优势,包括无端接残余(unterminated stubs),各个通道特性也会相似。然而,在选定路经上具有多个继电器意味着损耗会更大,信号完整性 也令人堪忧。 RF开关卡架构 在测试仪器主机上的RF开关卡应用中,为保证信号完整性,需要理解许多电性能指标。

开关电源基础学习知识原理及各功能电路详解

开关电源原理及各功能电路详解 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下: 开关电源电路方框图 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理:

输入滤波、整流回路原理图 ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的

电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

低压开关柜的类型汇总.

目前市场上流行的开关柜型号很多,归纳起来有以下几种型号,现把 各种型号的开关柜型号及其优缺点列举如下,供大家参考: 一.型号GGD,GCK,GCS,MNS,MCS介绍 GGD系列: 用途 GGD型交流低压配电柜适用于变电站,发电厂,厂矿企业等电力用户的交流50Hz,额定工作电压380V,额定工作电流1000-3150A的配电系统,作为动力,照明及发配电设备的电能转换,分配与控制之用. GGD型交流低压配电柜是根据能源部,广大电力用户及设计部门的要求,按照安全,经济,合理,可靠的原则设计的新型低压配电柜.产品具有分断能力高,动热稳定性好,电气方案灵活,组合方便,系列性,实用性强,结构新颖,防护等级高等特点.可作为低压成套开关设备的更新换代产品使用. 产品型号及含义 结构特点 ■GGD型交流低压配电柜的柜体采用通用柜形式,构架用8MF冷弯型钢局部焊接组装而成,并有20模的安装孔,通用系数高. ■GGD柜充分考虑散热问题.在柜体上下两端均有不同数量的散热槽孔,当柜内电器元件发热后,热量上升,通过上端槽孔排出,而冷风不 断地由下端槽孔补充进柜,使密封的柜体自下而上形成一个自然通风道,达到散热的目的. ■GGD柜按照现代化工业产品造型设计的要求,采用黄金分割比的方

法设计柜体外形和各部分的分割尺寸,使整柜美观大方,面目一新 ■柜体的顶盖在需要时可拆除,便于现场主母线的装配和调整,柜顶 的四角装有吊环,用于起吊和装运. ■柜体的防护等级为IP30,用户也可根据环境的要求在IP20―IP40 之间选择. GCK系列 产品型号及含义 GCKG是封闭式开关柜C是抽出式K是控制中心 GCK低压抽出式开关柜(以下简称开关柜)由动力配电中心(PC)柜和电动机控制中心(MCC)两部分组成.该装置适用于交流50(60)HZ,额定工作电压小于等于660V,额定电流4000A及以下的控配电系统,作为动力配电,电动机控制及照明等配电设备. GCK开关柜符合IEC60439-1《低压成套开关设备和控制设 备》,GB7251.1-1997《低压成套开关设备和控制设 备》,GB/T14048.1-93《低压开关设备和控制设备总则》等标准.且具有分断能力高,动热稳定性好,结构先进合理,电气方案灵活,系列性,通用性强,各种方案单元任意组合,一台柜体. 所容纳的回路数较多,节省占地面积,防护等级高,安全可靠,维修方 便等优点. 结构特点 1,整柜采用拼装式组合结构,模数孔安装,零部件通用性强,适用性好,标准化程度高

开关电源变压器基础知识

开关电源变压器基础知识 开关电源变压器现代电子设备对电源的工作效率、体积 以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁 通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用 ,周围的物体也都会被感应产生磁通。现代磁学研究表明: 切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在

磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。 在电磁场理论中,磁场强度H 的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F 跟电流I 和导线长度的乘积I 的比值,称为通电直导线所在处的磁场强度。或:在真空中垂直于磁场方向的1 米长的导线,通过1 安培的电流,受到磁场的作用力为1 牛顿时,通过导线所在处的磁场强度就是1 奥斯特(Oersted) 。电磁感应强度一般也称为磁感应强度。由于在真空中磁感应强度与磁场强度在数

单控开关等开关基本知识介绍

单控开关等开关基本知识介绍 单控开关:普通的按键开关。 单控开关: 单控开关在家庭电路中是最常见的,也就是一个开关控制一件或多件电器,根据所联电器的数量又可以分为单控单联、单控双联、单控三联、单控四联等多种形式。如:厨房使用单控单联的开关,一个开关控制一组照明灯光;在客厅可能会安装三个射灯,那么可以用一个单控三联的开关来控制。 速度控制开关: 调整风扇的转速。功率:100W 调光开关: 这个开关主要用于调节亮度的白炽灯(普通白炽灯泡),节约能源。 产品性能指标: 工作电压:AC 220V(+ / - )10%,50HZ 总负载功率:小于或等于500W 负载:白炽灯 注:不能被用于控制的荧光灯或荧光灯 双向换向开关: 也被称为半路上交换机,三层交换机,多控开关。中间的两个双控开关,三个开关控制一盏灯。 报警开关: 适用于智能小区,酒店,写字楼等场所,并通知控制中心,发生紧急情况时,按下面板上的红色紧急按钮,以达到报警的目的。 主要参数: 对无源触点输出:1A 250V 适用环境温度:-10至50摄氏度 适用环境湿度:小于或等于92%的 调光/速度控制开关 调光开关,一盏灯纯阻性负载。一般来说,最常见的是改变亮度的灯市场调光开关调光器开关机功能,但现在越来越多,不仅可以控制灯泡的亮度和开启关闭,一些调光,也可以自由改变照射光源的方向上,这是有用的日常生活。例如:您可以也可以让灯,当灯光逐渐变亮,关灯时,灯光慢慢变暗,直到关闭。 调速开关,主要由感性负载。一般使用的风扇调速开关,可以安装速度控制开关来改变风扇速度。 速度控制开关奇胜E1000旋钮 奇胜E1000旋钮调光器开关 延时/定时开关

射频基础知识培训

射频基础知识培训 1、无线通信基本概念 利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。 目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下),以至光波。无线通信使用的频率范围和波段见下表1-1 表1-1 无线通信使用的电磁波的频率范围和波段

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体如表1 - 2所示 表1-2 无线通信使用的电磁波的频率范围和波段

无线通信中的电磁波按照其波长的不同具有不同的传播特点,下面按波长分述如下: 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波。理论研究表明,这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。 1.2超长波(超低频SLF)传播 超长波是指波长1千公里至1万公里(频率为30~300Hz)的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m)对海水穿透能力很强,可深达100m以上。 甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz,该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。 长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHz)的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。 中波(中频MF)传播 中波是指波长100米~1000米(频率为300~3000kHz)的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。 短波(高频HF)传播 短波是指波长为10米~100米(频率为3~30MHz)的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播(天波)。 超短波(甚高频VHF)传播

射频电源知识

什么是射频电源? ?全固态射频电源的功放采用RF?MOFET为元器件,主要由功放模块,功率检测模块,控制模块和AC/DC电源模块; ?功放模块的功能是通过多级射频功率放大将晶振产生的特定频率的小信号放大到所需要的射频功率。功率检测模块的功能是检测出功放的输出功率,性能的好坏直接影响到输出功率的精确度和稳定度。 ?控制模块的主要功能是控制射频电源的输出功率为设定值,处理工作中的异常比如VSWR保护,过温保护等等。 ?AC/DC模块将输入的220V交流电转换成功放,控制模块功率检测模块所需的直流电压。 一、主要技术 性能射频源: 1.?板极电压:200~1500V连续可调。 2.?板极电流:≦0.36A? 3.?板极直流消耗功率:≦0.58KW。? 4.?输出功率:6~500W连续可调。 5.?频率:13.56MHz? 匹配箱: ?1.?阻抗匹配范围:(2.7~45)Ω~j(0~70)?Ω ?2.?具有手动调节网络参数达到匹配之功能。 ?3.?网络参数由耦合和调谐旋钮刻度读出。 二、使用方法

?1.?逆时针调节“Ua调节”电位器到最低位置(因没开电源,没有指示,以调不动为止),功率计开关置于2?kW档。 ?2.?插上电源插头,打开电源开关预热5分钟左右,红色灯应该亮。 ?3.?按下“Ua—ON”开关,绿指示灯应该亮,缓缓调节“Ua调节”到500V左右,Ia、功率计应有指示,然后反复调节耦合和调谐旋钮,直至反映室起辉。起辉后自偏压应有指示。 ?4.?反复调节耦合和调谐旋钮使反射功率减到最小。 Ia约为100mA(在Ua为500V时)。切忌反射功率太大,否则易损坏机件。 ?5.?调节Ua至所需功率,注意随时调节匹配网络使反射功率接近0。 ?6.?自偏压的大小和反应室及工艺条件有关,仅供参考。 ?7.?重复工作时,只要负载不变,每次只要关断和接通Ua即可。 ?8.?工作完毕后,Ua调到最低,关断电源开关。 三、安装与调试 ?1.?电子管的安装 ?打开机箱上盖,将电子管垂直向下插入管座,插到底,然后顺时针旋转大约60度(有限位),套上接线卡子,将螺钉旋紧一些,再盖上机箱的上盖,注意用手拿电子管时,不能碰陶瓷部位,以免手上汗迹沾在陶瓷部位降低管子的耐压。 ?2.?接线 ?注意射频电缆接头要旋紧,电缆弯曲尽量自然一些。 ?3.?电源的检查 ?在未正式与设备连调之前,或在工作过程中有异常,比如不起辉、不稳定、反向功率大等,可单独检查电源。

最新开关电源基础知识

开关电源基础知识

?开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!成本很低.如果不将50Hz变为高频那开关电源就没有意义 ? ?开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有. ? ? ? ?开关电源的工作原理是: ? ? ? ? 1.交流电源输入经整流滤波成直流; ? ? 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; ? ? 3.开关变压器次级感应出高频电压,经整流滤波供给负载; ? ? 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. ? ? ?

?交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; ? ?在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; ? ?开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出; ? ?一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源 ? ? ? ? ? ?ATX电源的主要组成部分 ? ?EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。 ? ? ? ?一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,

DC-DC开关电源基础知识

开关电源基础知识介绍 1、输出纹波噪声的测量及输出电路的处理 PWM 开关电源的输出的纹波噪声与开产频率有关。其纹波噪声分为两大部分:纹波(包括 开关频率的纹波和周期及随机性漂移)和噪声(开关过程中产生)。 周期及随机性漂移 在纹波与噪声的测量过程中,如果不使用正确的测量方法将无法正确地测量出真出的输出 纹波噪声。下面是推荐的测量方法: 平行线测量法:输出管脚接平行线 后接电容,在电容两端使用20MHz 示波器探头测量。具体要求见右图, 负载 C 为瓷片电容,负载与模块之间的 距离在51mm 和76mm(2in.和3in) 之间。 在大多数电路中,本公司模块的输出纹波噪声都能满足要求。对于输出纹波有较为严格要求的 电源系统可以在输出增加差模滤波器来进一步降低纹波,但在设计过程中应注意尽量选择较小的 电感和较大的电容。如果需要消除进一步喊小噪声,需要加共模滤波器。 输入与输出及外壳之间加高压隔离电容(一般为1~2.2nF )也可以减小共模噪声。 2、多路输出的交互调节及其应用 对于多路输出的电源模块,用户比较关心输出 负载发生变化时不同输出路的相互间的影响。例如, 当主路输出空载时,辅助输出路的负载能力,一般电源100% 由于主路负载太轻,而使辅助路输出的能力极低。本 公司产品采用了集成磁路的概念,或采取双路同步控制96% 使输出电压之间的交互调节特性大大改善。下图显示了 交互调节的优点。图中lo1为主路负载电流、lo2为辅助 0 路负载电流、Vo2为辅助路输出电压。由图可见, 20% 100% Io2 在主路负载从20%~100%变化时,辅助路输出电压随 辅助路负载电流的变化曲线中,辅助路输出电压始终在±4%范围之内。即使在最坏的情况,即主路 空载、辅助路江载,主路满载、辅助路空载时其输出电压也能保证在标称电压的±10%范围之内。 由此,对于输出稳压精度要求不太高的情况下,这种不稳压的辅助输出不仅能够满足供电的条件, 而且相对成本低、器件少、可靠性高。建议用户首先考虑不稳压的辅助输出的电源模块。

开关基础知识

开关的基础知识①:开关的定义和分类 开关是我们非常熟悉的电气部件之一,从制造车间到日常生活,都离不开开关的使用。开关受外力作用以机械方式来切换电信号。具体来说,开关的作用就是进行电路的“ON”“OFF”操作以及电路自身的切换等。 例如图1中所示,在电源和电灯之间连接一个开关,当受到按压开关的外力作用时,就会进行使电灯点亮的“ON”操作或使电灯熄灭的“OFF”操作。图2是电路切换的应用例。在开关未按下时,L1电路的灯亮起,按下开关后,电路发生切换,L2电路的灯亮起。 根据接触规格分类开关的接触规格可分为以下三类:(1)a触点、(2)b触点、(3)c触点。触点规格是指操作状况和触点状态之间的关系,如“按下开关触点闭合”等。需要根据用途选择触点规格合适的开关。下面对各类触点规格的开关进行简单介绍。

(1)a触点 a触点是指不操作开关时两个触点端子呈分离状态(OFF),操作开关后则闭合(ON)的触点。希望通过操作开关来启动负载的情况下可以使用a触点。上面图1中介绍的电路就是使用a触点的电路,未操作开关(按下)时灯不亮,操作开关后灯点亮(图3)。 (2)b触点 b触点的接触规格与a触点相反。即,不操作开关时两个触点端子呈闭合状态(ON),操作开关后则分离(OFF)。在图4所示的电路中,操作开关(按下)时灯熄灭,不操作时灯亮起。希望通过操作开关停止负载运行时可以使用b触点。

(3)c触点 c触点是a触点和b触点组合成一个开关形成的。c触点的端子有公共端子(COM:公共)、常闭端子(NC:常闭)、常开端子(NO:常开)(图5)。未操作开关(按下)时,公共端子和常闭端子接触,操作开关(按下)时,公共端子和常开端子接触。希望通过开关操作进行两个电路的切换时使用c触点。 开关的种类和分类根据应用对象及目的,开关可以分成很多种类。根据应用对象来分类,有用于大型工业机械及设备的限位开关、按钮开关。这类开关的特点是尺寸大、结构坚固(图6)。此外,微动开关、小型检测开关、轻触开关、扭子开关、按键开关、船形开关、拨码开关、DIP开关则用于中小型业务设备及民用设备。这类开关小巧、低矮的特点可以使设备更小、更薄、更轻。

开关电源基础知识

开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!成本很低.如果不将50Hz变为高频那开关电源就没有意义 开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有. 开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; 在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; 开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;

一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源 ATX电源的主要组成部分 EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。 一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,同时也将电源内部的干扰信号屏蔽起来,构成了电源抗电磁干扰的第一道防线。 二级EMI电路:市电进入电源板后先通过电源保险丝,然后再次经过由电感和电容组成的第二道EMI电路以充分滤除高频杂波,然后再经过限流电阻进入高压整流滤波电路。保险丝能在电源功率太大或元件出现短路时熔断以保护电源内部的元件,而限流电阻含有金属氧化物成分,能限制瞬间的大电流,减少电源对内部元件的电流冲击。 桥式整流器和高压滤波:经过EMI滤波后的市电,再经过全桥整流和电容滤波后就变成了高压的直流电。将输入端的交流电转变为脉冲直流电,目前有两种形式,一种是全桥就是把四个二极管封装在一起,一种是用4个分立的二极管组成桥式整流电路,作用相同,效果也一样。

射频微波(知识点)

一、射频/微波技术及其基础 1、射频/微波技术的基础 ? 什么是微波技术 研究微波的产生、放大、传输、辐射、接收和测量的科学。射频/微波技术是研究射频/微波信号的产生、调制、混频、驱动放大、功率放大、发射、空间传输、接收、低噪声放大、中频放大、解调、检测、滤波、衰减、移相、开关等各个电路及器件模块的设计和生产的技术,利用不同的电路和器件可以组合成相应的射频/微波设备。微波技术主要是指通信设备和系统的研究、设计、生产和应用。 ? 微波技术的基本理论是以麦克斯韦方程为核心的场与波的理论 2、射频/微波的基本特性 ? 频率高、穿透性、量子性、分析方法的独特性 射频频段为30 ~ 300MHz ,微波频段为300MHz ~ 3000GHz ,相对应波长为1m ~0.1mm ,照射于介质物体时能深入到该物质的内部。根据量子理论,电磁辐射能量不是连续的,而是由一个个的“光量子”组成,单个量子的能量与其频率的关系为e = h ·f 式中,h = 4×10-15电子伏·秒 (eV ·S) 成为普朗克常数 3、射频/微波技术在工程里的应用 ? 无线通信的工作方式 1、单向通信方式 通信双方中的一方只能接收信号,另一方只能发送信号,不能互逆,收信方不能对 发信方直接进行信息反馈 2、双向单工通信方式 3、双向半双工通信方式 通信双方中的一方使用双频双工方式,可同时收发;另一方则使用双频单工方式, 发信时要按下“送话”开关。 4、双向全双工通信方式 通信双方可以通信进行发信和收信,这时收信与发信一般采用不同的工作频率,通 -讲 开关按-讲 按-讲 受话器受话器

二、电磁波频谱1 2、射频/

开关电源的基础知识

开关电源的基础知识 一、电源的重要性 随着高科技的电脑及相关产品逐渐进入平常百姓家,人们对电脑及相关产品的认识不断深入。对于电脑来讲,最重要的硬件主要有两个:一个是CPU,其作用相当于人的大脑,是电脑的核心;二是电源,其作用相当于人的心脏。如果没有高品质的电源,再好的CPU及其它电脑部件都无法充分稳定的发挥作用,甚至可能对电脑主机造成伤害。 然而在DIY市场,长期以来人们强调的是CPU、主板、显卡等硬件,对电源不太重视,忽略了开关电源的质量对电脑的可靠性、稳定性以及对使用者健康的影响。其实,国际知名品牌电脑厂商对电源非常重视,如IBM等世界名牌电脑的电源采购价高达每台18-25美元,正是源于他们对电源品质的高标准要求。根据统计,电脑故障的40%~60%是由于电源引起,而一台电源只占电脑整机价值的2%--3%,电源选用不当,不但可能烧毁CPU、主板、硬盘,还可能给使用者健康和生命财产安全造成损失,因而有必要重新认识电源的重要性。 二、电源的工作原理 市电进入电源,首先要经过扼流圈和电容,滤除高频杂波和同相干扰信号。然后再经过电感线圈和电容,进一步滤除高频杂波。接下来再经过由4个二极管组成的全桥电路整流,和大容量的滤波电容滤波后,电流才由高压交流电转换为高压直流电。 经过了交直转换后,电流就进入了整个电源最核心的部分--开关电路。开关电路主要由两个开关管组成,通过它们的轮流导通和截止,便将直流电转换为高频率的脉动直流电。接下来,再送到高频开关变压器上进行降压。 经过高频开关变压器降压后的脉动电压,同样要使用二极管和滤波电容进行整流和滤波,此外还会有1、2个电感线圈与滤波电容一起滤除高频交流成分。 经过上面一系列工序后,输出的的电流,才算真正完成电脑所需要的较为纯净的低压直流电。 三、有关性能参数说明 1、 PG ( POWER GOOD ) 信号 从电源开通那一瞬间起,到电源输出稳定电压需要一定的时间,+5V的爬升时间通常为2ms~20ms。当电源开通后,电源首先会自行检查输出电压是否正常,如果正常,即向CPU发出一个POWER GOOD 信号,意即“我准备好了,您可以开始工作了”。为了保证相互间的衔接,CPU厂商推出CPU时,就PG信号作出了规定,要求电源发出PG信号的时间是在开机后的100~500ms时间内,如果CPU在这个范围内得不到PG 信号,就意味着开机失败。 2、 PF( POWER FAIL) 信号 PF信号是指当电源的交流输入电压切断,电源首先给CPU一个持续时间约1ms的POWER FAIL信号,通知CPU电源将马上关闭。PF时间不够容易造成相关设置数据丢失。 3、保持时间(HOLD UP TIME ) 指在输入电压切断后,电源能继续保持输出的时间,一般为20ms左右,通常不小于16ms,这段时间很重要,一方面使CPU在得到PF信号后有足够时间保存系统设置,使系统下次能正常开机,另一方面使UPS有足够的时间启动,并开始工作。

(完整)高低压开关柜基本知识问答211题

高低压配电知识问答 1.电是什么? 答:有负荷存在和电荷变化的现象。电是一种和重要的能源。 2.什么叫电场? 答:带电体形成的场,能传递带电体之间的相互作用。 3.什么叫电荷? 答:物体或构成物体的质点所带的正电或负电。 4.什么叫电位? 答:单位正电荷在某点具有的能量,叫做该点的电位。 5.:什么叫电压?它的基本单位和常用单位是什么? 答:电路中两点之间的电位差称为电压。它的基本单位是伏特。简称伏,符号v,常用单位千伏(kv),毫伏(mv) 。 6.什么叫电流? 答:电荷在电场力作用下的定向运动叫作电流。 7.什么叫电阻? 它的基本单位和常用单位是什么? 答:电流在导体中流动时,要受到一定的阻力,,这种阻力称之为导体的电阻。 它的基本单位是欧姆,简称欧,符号表示为?,常用的单位还有千欧( k? ),兆欧(m? ) 8.什么是导体?绝缘体和半导体? 答:很容易传导电流的物体称为导体。在常态下几乎不能传导电流的物体称之为绝缘体。导电能力介于导体和绝缘体之间的物体称之为半导体。 9.什么叫电容? 它的基本单位和常用单位是什么? 答:电容器在一定电压下储存电荷能力的大小叫做电容。它的基本单位是法拉,符号为F,常用符号还有微法(MF),微微法拉(PF),1F=106MF=1012MMf(PF) 。 10.什么叫电容器? 答: 储存电荷和电能(电位能)的容器的电路元件。 11.什么是电感? 它的基本单位和常用单位是什么? 答:在通过一定数量变化电流的情况下,线圈产生自感电势的能力,称为线圈的电感量。简称为电感。它的常用单位为毫利,符号表示为H,常用单位还有毫亨(MH) 。1H=103MH 12.电感有什么作用? 答:电感在直流电路中不起什么作用,对突变负载和交流电路起抗拒电流变化的作用。 13.什么是容抗?什么是感抗?什么是电抗?什么是阻抗?他们的基本单位是什么? 答:电容在电路中对交流电所起的阻碍作用称为容抗。 电感在电路中对交流电所起的阻碍作用称为感抗。 电容和电感在电路中对交流电引起的阻碍作用总称为电抗。 电阻, 电容和电感在电路中对交流电引起的阻碍作用阻抗。 他们的基本单位都是欧姆( ? ) 。 14.什么叫电路? 答:电流在电器装置中的通路。电路通常由电源,开关,负载和直接导线四部分组成。 15.什么叫直流电路和交流电路? 答:含有直流电源的电路称为直流电路。 含有交流电源的电路称为交流电路。 16.什么叫电路备? 答:表示由各种元件,器件,装置组成的电流通路的备。或者说用国家规定的文字和

相关主题