搜档网
当前位置:搜档网 › 增韧改性POE 在塑料中的应用与发展前景

增韧改性POE 在塑料中的应用与发展前景

增韧改性POE 在塑料中的应用与发展前景
增韧改性POE 在塑料中的应用与发展前景

增韧改性POE 在塑料中的应用与发展前景

POE是美国DuPont Dow 化学公司于1994年采用限定几何构型茂金属催化剂技术推出的乙烯/ 辛烯共聚物。POE 单体辛烯的质量分数在20 %~30 %之间,商品名为Engage ,其中聚乙烯链结晶区起物理交联点的作用,一定量辛烯的引入降低了聚乙烯链的结晶度,形成了呈现橡胶弹性的无定型区,其分子结构可人为地进行控制。POE 独特的分子结构决定了其综合性能优异,其弹性卓越、流动性良好、机械性能高、耐腐蚀性、透气性、电性能优异以及突出的耐低温性和耐热、耐臭氧、耐紫外线和耐水性,使其在通用和工程塑料的增韧和抗低温的改性中倍受关注。

1 POE 对通用塑料的改性

POE 对通用塑料的改性主要是研究其作为增韧剂改性刚性通用塑料,提高刚性通用塑料的韧性。

1. 1 PE/ POE 体系

近年来,木塑复合材料因其成本低、质量轻、机械性能好等优点受到普遍关注。但热塑性塑料在填充木粉后复合材料变脆,限制了木塑复合材料的应用和推广。李兰杰等采用废木粉填充高密度聚乙烯( HDPE) 制备木塑复合材料,并用茂金属聚乙烯(mPE SP1520) 和POE 分别对复合材料进行改性。在两者用量小于12 份时,两者的增韧效果相差不大; 但在用量大于12 份以后,用POE 增韧的复合材料的冲击强度和断裂伸长率增加十分迅速,而用mPE SP1520 时增加幅度比较平缓;用POE 改性能得到较好的增韧效果,扩大了材料的应用范围。

M J O C Guimaraes等研究了HDPE 与POE 共混物的力学性能和热性能,热分析结果表明HDPE 和POE 有一定的相互作用;材料的拉伸强度和断裂伸长率得到了提高,当POE 质量分数不小于5 %时,材料在室温下超韧。

POE 改性PE 制备的发泡材料具有良好的弹性和强度,可用于制作粘合胶带。将30 份含离子结构的PE 和6. 5 份偶氮二甲酰胺加入到100 份质量分数为30 %的POE 和70 %的1845 烯2辛烯(质量分数小于20 %) 聚合物]组成的混合物中,挤出成片材,辐射交联,在250 ℃下发泡,所得1 mm 厚的泡沫片材具有良好的韧性;横、纵方向的弯曲强度分别为30. 2 MPa 和24. 3 MPa。

1. 2 聚丙烯(PP) / POE 体系

众所周知,作为大宗的通用塑料品种, PP 存在低温韧性差和缺口敏感性大的缺点,因此,为了改善PP 性能上的不足,弹性体增韧改性一直被视为最有效的途径。虽然三元乙丙胶( EPDM) 对PP 有良好的增韧效果,但目前EPDM 价格高,商品原料多为块状,碎胶有一定困难,流动性也不太理想;同时由于EPDM 本身有颜色,产品很难获得色彩鲜艳的外观。POE 的问世,使其在用于PP 的增韧改性方面具有传统弹性体无法比拟的优势。POE 增韧PP 不仅可以克服EPDM 增韧PP 的不足,而且还赋予PP 更高的冲击性能、高透明性、高的热稳定、高性能/ 价格比等特点。

张金柱研究指出,POE 对PP 有更好的增韧作用,在相同的条件下混炼和注塑的样品,无论PP 的熔融流动速率(MFR) 如何变化,其低温( - 30 ℃)冲击能均是POE > EPDM > EPR (二元乙丙橡胶) ,特别是当使用高MFR ( ≥20) 的PP 时, EP2DM 改性的PP 均已变脆,而POE 改性的PP 仍保持相当的韧性。这样避免了以前增韧剂使用高流动性材料时降低体系韧性的缺陷,从而在生产上可使用高流动性PP 体系,可以缩短成型周期,降低生产成本。

商品化的POE 本身呈颗粒状,可以直接加入到颗粒状PP 等其它材料中实行改性。因此POE比EPDM 加工操作上更为简便,这样可大大降低生产成本[6 ] 。

Da Silvi研究了PP/ POE 共混体系并与PP/ EPDM 共混体系进行了比较。结果表明,两种共混体系具有相似的结晶行为,其力学性能相似,但PP/ POE 共混物具有更低的转矩,加工性能较好。

冯予星、郭红革等研究了PP/ POE 共混体系的相态结构、增韧机理以及共混体系的力学性能。研究结果表明,在相同条件下, POE 加入量比EPDM 少, POE 用量为20 份时就可使PP获得高的低温冲击强度,减少了因加入弹性体而引起的刚性和强度损失。在PP/ POE 共混体系中, POE 在PP 连续相中形成均匀的“海2岛”结构; POE 对PP 改性符合银纹剪切机理,可有效提高PP 的常温、低温冲击强度。通过PP 与弹性体交联的方法可以得到热塑性硫化胶( TPV) , TPV 在实际生产中有很高的应用价值。

Fritz 等将POE 接枝乙烯基硅烷并分散于PP 中,共混物经水解水交联得到TPV ;所得TPV 易于加工成制品,并具有优秀的表面性能。制品具有高断裂强度和断裂伸长率,宽范围的邵氏硬度,非常低的雾度,使用了POE 而无、气味,可以广泛应用于汽车领域。

1. 3 聚苯乙烯(PS) / POE 体系

PS 由于质硬性脆、耐热性差,因此其应用仍受到限制。为改进其缺点,人们采用共聚或共混等方法开发了一系列聚苯乙烯系改性树脂,如苯乙烯与橡胶进行接枝共聚合制得了耐高冲聚苯乙烯( HIPS) 树脂,虽然引入橡胶后提高了聚苯乙烯树脂的抗冲击性能,但却丧失了透明性。而POE具有良好的透明性和柔软性,苯乙烯基树脂/ POE复合材料则可用于食品容器和包装材料等对产品外观要求严格的领域。用POE 改性苯乙烯基树脂提高其冲击强度和表观性能,经共混、造粒、注射成型,样品具有良好的抗冲击性能,可用于制备电气制品。

1. 4 通用塑料/ POE/ 无机填料体系

如何减少增韧剂POE 的用量来降低成本又不影响到增韧效果,这是通用塑料/ POE 体系研究开发的热点与方向。在共混物中添加无机或有机填料可使制品的原料成本降低达到增量的目的,或使制品的性能有明显的改善,近年来可见在通用塑料/ POE 共混体系中加入无机填料报道。

王雄刚等针对回收高密度聚乙烯(RHDPE) 制得的管材环刚度不足的缺点,采用滑石粉和自制的改性POE (MPOE) 对RHDPE 进行了改性。随着MPOE 用量的增加,三元体系的冲击强度大幅度上升,当质量分数为10 %时体系的冲击强度从9. 3 MPa 上升到15. 2 MPa ,但拉伸强度和弯曲模量下降较多。而滑石粉的加入使体系刚性大幅增加,在滑石粉质量分数为40 %时,制得的RHDPE 管材的环刚度增加了54 %,达到了工业生产的要求。

同时他们还研究PVC/MPOE/ 无机填料体系的力学性能,结果表明,当填充母料中滑石粉或碳酸钙的质量分数为70 %时,三元复合体系的综合性能最好。

顾圆春等采用合金化技术和填充复合工艺,制得高性能的[ 纳米( SiO2 ) ]/ POE/ 纳米高岭土三元复合材料。纳米高岭土和弹性体对PP 增韧具有协同作用,呈现的并不是二者独立增韧作用的简单加和; 纳米高岭土的最佳质量分数为 5 % ,用扫描电子显微镜( SEM) 观察PP/ POE(质量分数为20 %) / 纳米高岭土(质量分数为5 %) 的冲击断面,可以看到高岭土粒子被基体所包覆以层状结构分散于共混物基体中,界面结合牢固,这种界面的牢固结合以及独特的分散形态导致该体系具有较高的拉伸强度和突出的冲击韧性。

江涛等研究PP/ POE/ 纳米SiO2 复合材料后得出结论:熔融共混法使POE 与SiO2 均匀分散在PP 基体中,虽然纳米SiO2 粒子在PP 中的分散呈微粒团聚体分布,但与其本身的二次粒子粒径相当且小于临界粒径,因此在受到冲击时起到了吸收能量阻碍裂纹扩展的作用,从而提高了材料的韧性。通用塑料/ POE 的改性研究复合体系具有优异的综合性能,现已开发出多种产品,特别是汽车保险杠具有广阔的市场前景。

申欣等人以PP为基础树脂, POE 为增韧剂,用硬脂酸铝表面处理的滑石粉为增强填料,采用双螺杆挤出机制得性能符合要求的汽车保险杠专用料。改性过的PP 缺口冲击强度高达723 J / m ,且具有增强的柔软性、优良的耐热、耐低温及耐老化性能。

刘喜军以PP 为基料, 通过与共聚丙烯( PPB) 、POE、硅灰石以及其它助剂共混改性,制得保险杠、门板汽车专用料。检测分析表明,当m ( PP)∶m(PPB) ∶m ( POE) ∶m (硅灰石) 为(45~48)∶(26~29) ∶(19~22) ∶(4~6) 时,共混料完全可以满足汽车保险杠性能要求; 当m ( PP) ∶m ( PPB) ∶m(POE) ∶m(硅灰石) 为(45~50) ∶(27~29) ∶(3~6) ∶(17~20) 时,共混料完全可以满足汽车门板性能要求。研究中还发现,硅灰石也有一定的增韧功能,部分起到了玻璃短纤维的作用。

2 POE 对工程塑料的改性

POE 的非极性限制了其进一步的应用,采用溶液聚合或熔融挤出赋予聚烯烃一定的极性和反应活性,是改善聚烯烃与工程塑料之间界面亲和性的常用方法。POE 功能化的方法主要是通过接枝的手段实现的,接枝POE 直接与工程塑料共混表现出良好的增韧效果,是一种很好的增韧剂;在复合材料中则既具有增韧效果,也具有增容的作用。

2. 1 聚酯/ POE 体系

聚对苯二甲酸乙二醇酯( PET) 作为工程塑料使用时,其缺点是加工中熔体粘度低,在通常的塑加工温度下结晶速度慢、冲击性能差等,限制了它作为工程塑料的广泛应用。用接枝POE 改性PET 的复合材料表现出良好的耐热、抗冲击性能,这种材料由60 %~90 %的回收热塑性PET 和10 %~40 %的用甲基丙烯酸缩水硅油醚改性的POE 经熔融共混制得。

孙东成等利用SEM、力学性能测试等方法研究了POE 接枝甲基丙烯酸缩水甘油酯(POE2g2GMA) 增韧PET 的形态结构与性能的关系。PET/ POE2g2GMA 共混物的韧性随POE-g-GMA 用量的增加而显著提高,当POE-g-GMA质量分数达到20 %时, PET/ POE2g2GMA 共混物的冲击强度达到873 J / m ;结果表明,POE 接枝物与PET 末端羧基或羟基“原位”反应形成的共聚物改善了PET 与POE 的相容性,显著地提高了共混物的力学性能。

未接枝的POE 对聚对苯二甲酸丁二酯(PB T) 增韧作用不大,而官能化的POE 对PB T增韧显著,共混体系的脆韧转变在较低POE 接枝马来酸酐POE-g-MA H 质量分数(10 %) 下发生,意味着在保证增韧效果的前提下可以减少增韧剂的用量,从而既降低了材料成本又减少了因加入低模量POE-g-MA H 组分而引起材料强度和弹性模量的损失。POE-g-MA H 与PB T 在挤出过程中原位生成了POE2g2PB T 共聚物,增大了两相界面相互作用,共混体系具有更加均衡的强度和韧性, 综合性能较好。SEM 显示, POE2g2MA H/ PB T 共混体系中分散相具有更细微的分散,有效地诱导PBT 基体产生银纹和剪切屈服,消耗大量的冲击能。

2. 2 PA/ POE 体系

最近几年来,POE 的应用范围已开始渗透到尼龙工程塑料领域, POE 作为尼龙( PA) 的新型改性剂正引起人们的特别关注。与传统EPDM相比,在相同增韧剂含量和相同相容剂含量下, POE 增韧尼龙的效果较好。

PA66 与POE 共混可以相互取长补短,获得所需要的使用性能。但PA66 与POE 属不相容体系,以前使用较多的增容剂是EPDM 接枝马来酸酐( EPDM2g2MA H) ,但马来酸酐MA H 的接枝率和转化率较低,增容效率不高。而POE 接枝马来酸酐( POE2g2MA H) 能显著改善PA66 与POE 间的相容性和界面粘结性,POE-g-MA H 可使PA66/ POE2g2模MA H 共混材料的缺口冲击强度提高至纯PA66材料的14 倍

左右。实验发现共混材料分散相的弹性体颗粒内部存在较多份量的有序结构,分散相颗粒具有明显促进结晶的作用,此作用引起PA66 基体结晶温度增加,结晶度增大,并在分散相质量分数为15 %的脆韧转变条件下,达到极大值。试样熔体的冷却速率越快,则此种促进结晶的作用就越明显。

陆波等研究了POE 对PA6/ POE/ POE-g-MA H 共混物的力学性能、耐热性和流变性能的影响。结果表明: 在12. 5 份POE-g-MA H 存在的条件下,随着POE 用量增大,共混物的缺口冲击强度不断增大,而拉伸强度、维卡软化温度、表观粘度降低。在混合体系中, POE-g-MA H 具有增容和增韧的双重作用;加入30 份POE 时,共混物的维卡软化温度下降12 ℃,这是因为PA6 在共混物中是连续相, POE 为分散相, PA6 的耐热性比POE 好。

H. Chen 等用挤出的方法制得PA1010/POE-g-MA H 共混物样品,研究了不同接枝率和不同含量的弹性体对共混体系力学性能的影响。结果表明,当弹性体含量一定、接枝率为0. 51 %时,共混体系的综合力学性能最好;在PA1010/POE-g-MA H 体系中, 随POE-g-MA H 含量增加,弹性体粒子的平均尺寸保持不变,这是因为挤出过程形成的共聚物PA1010/ POE-g-MA H 阻碍了弹性体粒子的聚集。

2. 3 PPO/ PA/ POE 体系

将非晶性的聚苯醚( PPO) 和结晶性的PA 进行共混,所得共混物兼具PA 和PPO 的优点,在不损失PPO 的高玻璃化转变温度和尺寸稳定性的前提下, 又赋予PA 耐溶剂性和成型性。但PPO 与PA 是典型的非相容体系,因此,改善两者的相容性是关键。

冯威等[ 27 ] 研究PPO/ PA6/ POE-g-MA H 共混体系的相态结构和力学性能, POE-g-MA H 增强了PPO 和PA6 之间的相互作用,在所研究的范围内,PPO 和POE 分散在PA6 连续相中,共混物的脆韧转变受控于相间的界面强度和弹性体的用量。在保证共混体系各组分间具有适当相容性的情况下,可以制得高韧性的PPO/ PA6/ POE-g-MA H 共混物, 体系的缺口冲击强度可达600 J / m。透射电镜( TEM) 观察发现,冲击断面下方应力发白区有大量空穴,表明弹性体的空穴化是诱发剪切带从而吸收能量的原因。

2. 4 其它工程塑料/ POE 体系

刘晓红[28 ] 比较了不同种类和用量的增韧剂对聚碳酸酯(PC) 力学性能的影响。结果表明,乙烯-醋酸乙烯酯( EV A) 的加入使材料缺口冲击强度提高至纯PC 的25 倍,但拉伸强度急剧下降; POE-g-MA H 对PC 的增韧效果仅次于EV A ,但材料拉伸强度降低程度比EVA 小且材料的断裂伸长率提高很多。而其它两种共混体系PC/ 乙烯2丙烯酸共聚物( EAA) 、PC/ 马来酸酐接枝线型低密度聚乙烯(LLDPE-g-MA H) 的性能介于EVA 和POE-g-MA H 之间。综合考虑材料的各种机械性能,添加质量分数20 %的POE2g2MA H的PC 性能最佳。POE 可以改性热塑性聚氨酯( PU) 。含有PU 质量分数30 %~90 %,POE 质量分数10 %~70 % ,特殊的双酰胺0. 1 %~5. 0 %的复合材料具有中等强度、高弹性和低的永久变形,可用于制备薄膜和片材。

湖南省塑料研究所采用POE、苯乙烯、丙烯腈共聚物(AS) 和EV A 三元共聚物材料制造运动鞋底、跑道、铝塑复合板芯和电动工具手柄等。由于POE 是非极性弹性材料,与AS 的粘合性差,加入EVA 作相容剂,POE 对共混材料的影响起主导作用,拉伸强度、断裂伸长率、压缩永久变形随POE 用量的增加而增加。

3 展望

塑料改性是改善或提高塑料制品质量档次,降低加工成本,提高附加值的有效方法,也是获得具有独特功能的新型高分子材料的最佳途径。POE 是一种优异的新型热塑性弹性体,广泛应用于塑料改性中, 增加对POE 接枝改性以及与POE 形成共聚物的研究,进一步提高POE 与塑料基体之间的相容性,可以扩大其在塑料领域中的应用。另外,笔者认为随着改性技术的发展,单纯的共混、接枝、加入增容剂等改性技术呈现了一定的局限性,单项性能的提高通常会导致其它性能的降低,因此将各种改性技术复合,从而制备出综合性能优异的材料是研究的热点。相信随着广大科研人员的研究和开发,POE 将在更广阔的领域中得到应用。

聚烯烃弹性体POE的性能及使用范围

POE是由辛烯和聚烯烃树脂组成的,连续相与分散相呈现两相分离的聚合物掺混物,通过扫描电子显微镜或相差显微镜的图像表明,可以形成以橡胶为连续相、树脂为分散相或以橡胶为分散相、树脂为连续相,或者两者都呈现连续相时的互穿网络结构。随着相态的变化,共混物的性能也随之而变。若橡胶为连续相时,呈现近似硫化胶的性能;树脂为连续相时,则性能近于塑料。

加工与配合:POE不需混炼和硫化。可采用通常热塑性塑料加工设备进行加工成型。成型加工温度和加工压力一般应略高一些,可在极高的加工速度下加工。可以注射成型、挤出成型,也可用压延机加工成板材或薄膜,并可吹塑成型,利用热成型可制造形状复杂的制品。可根据需要添加各种颜料制成不同的颜色。有些生产厂家依制品的使用要求,提供如耐油型、阻燃型、电稳定型以及可静电涂料型等各种品级的特殊配合料。有时为改善加工性能和某些制品的使用性能或降低成本时,也可以加入某些配合剂,如抗氧剂、软化剂和填充剂、着色剂等。边角料和废料可回收重复加工使用。但一般掺入比例不超过30%,这样对性能无影响POE对共混体系的影响

POE是采用茂金属催化剂的乙烯和辛烯实现原位聚合的热塑性弹性体,其特点是:(1)辛烯的柔软链卷曲结构和结晶的乙烯链作为物理交联点,使它既有优异的韧性又有良好的加工性。(2)POE分子结构中没有不饱和双键,具有优良的耐老化性能。(3)POE分子量分布

窄,具有较好的流动性,与聚烯烃相容性好。(4)良好的流动性可改善填料的分散效果,同时也可提高制品的熔接痕强度。

随着POE含量的增加,体系的冲击强度和断裂伸长率有很大的提高。可见,POE对PP有优良的增韧作用,与PP、活性碳酸钙有较好的相容性。这是因为POE的分子量分布窄,分子结构中侧辛基长于侧乙基,在分子结构中可形成联结点,在各成分之间起到联结、缓冲作用,使体系在受到冲击时起分散、缓冲冲击能的作用,减少银纹因受力发展成裂纹的机会,从而提高了体系的冲击强度。当体系受到张力时,由于这些联结点所形成的网络状结构可以发生较大的形变,所以,体系的断裂伸长率有显著的增加,当POE的含量增加时,体系的拉伸强度、弯曲强度和弯曲模量均有所下降,这是由POE本身的性能决定的,故POE的含量应控制在20%以下。

POE的含量与熔融指数的关系,加入POE后,体系的熔融指数增加。POE本身的流动性较好,它的加入,同时也改善了整个体系的流动性,当POE含量超过15份以后,体系的熔融指数基本没有变化,若要继续提高体系的流动性,则不能完全依赖于POE。

基本特性:(1)POE具有热塑性弹性体的一般物性,如成型性、废料再利用和硫化胶性能等。(2)价格低,并且相对密度小,因而体积价格低廉。(3)耐热性、耐寒性优异,使用范围宽广。(4)耐候性、耐老化性良好。(5)耐油性、耐压缩永久变形和耐磨耗等不太好。应用范围:主要用于改性增韧PP、PE和PA在汽车工业方面制作保险杠、挡泥板、方向盘、垫板等等。电线电缆工业上耐热性和耐环境性要求高的绝缘层和护套。也用于工业用制品如胶管、输送带、胶布和模压制品。医疗器械以及家用电器、文体用品、玩具等,以及包装薄膜等等。

POE弹性体材料的性能用途--7086、7256、8556、7380、7270、7447、7467

DuPont Dow弹性体公司的Engage ENR 7086(门尼粘度26,0.901g/cm3,>0.5g/10min)是一种高熔体强度的乙烯-丁烯共聚物,设计用于改性PP均聚或共聚物,应用于吹塑、挤出和热成型。它也是能用于提高填充HDPE挤出料的熔体强度和韧性。东莞探塑者推荐POE与PP 混合后(用量15%~20%),可吹塑更大的部件,如艇的护舷物,允许采用更大的牵引和更宽的加工窗口进行热成型。它也能提高透明PP的冲击强度,以替代PET和PS。

ENR 7256(2g/10min,0.885g/cm3,邵A硬度79,乙烯-丁烯)和ENR 8556(2g/10min,0.885g/cm3,邵A硬度68,乙烯-辛烯)都为管材、型材和线/缆的发泡和挤出进行过优化。二者的加工性能得到改进,挤出速率更快。用于线/缆,与填料或交联结合可提高物理性能;用于挤出型材,则挤出速率更快,产量更高。目标市场包括交联弹性体和韧性热塑性材料。

ENR 7380(门尼粘度48,0.870g/cm3)是一种丁烯品级,设计在软质TPE中作为一种弹性添加剂。当25%~30%的7380与SEBS混合时,可使材料保持所有关键性的同时降低成本5%~10%。其低的结晶度和增强的熔体强度也使它可作为热成型PP的优异改性剂。

ENR 7270(0.8 g/10min, 0.880 g/cm3),ENR 7447(5 g/10min, 0.865 g/cm3)和ENR 7467(1.2 g/10min, 0.862 g/cm3)是三种丁烯品级,设计用于汽车TPO和非汽车塑料改性。ENR 7467是一种高性能品级,具有极低的结晶度和优异的低温韧性。ENR 7270则是一种通用品级,提供了良好的性价比,用于改性PP和HDPE。ENR 7447是一种高流动低密度的品级,设计用于与别的Engage弹性体一起微调PP 和HDPE的改性。在PP和HDPE中用5%~10%,ENR 7270和7447就能显著提高家具、电器和草坪/花园设备的抗冲击性能。

增韧剂(POE)应用于PP改性

聚丙烯是五大通用塑料之一,但它的成型收缩率大、易翘曲变形等缺点,限制了其在结构材料和工程塑料方面的应用。以POE为增韧剂,对体系进行增韧改性,同时配以碳酸钙在降低成本的同时,使复合材料取得各项均衡的力学性能,拓展了聚丙烯的应用空间。

1、碳酸钙的活化

随着复合材料工业的迅速发展,碳酸钙已不仅仅是一种填充剂,同时也是一种重要的改性剂。在聚丙烯共混改性体系中,加入碳酸钙可以降低制品的成型收缩率和原料成本,提高改性聚丙烯制品的刚性和耐热性。但是,碳酸钙是无机填料,与聚丙烯的相容性较差,所以在使用前需进行活化处理,以提高碳酸钙与聚合物分子链的结合力,提高填充聚丙烯材料的力学性能,建议使用800目以上的重质碳酸钙,经干燥处理后投入高速搅拌机中,然后加入适量的磷酸脂偶联剂,高速搅拌15-20分钟,对碳酸钙进行活化处理。或者直接使用800目以上的活性重质碳酸钙。

在共混体系中随着活化碳酸钙含量的增加,体系的冲击强度先快速增加,30份以后增加缓慢,40份以后冲击强度降低。用偶联剂活化过的碳酸钙,能使材料的冲击强度增加,这是因为活化碳酸钙的粒子表面发生了物理化学结构和性质的改变,更易分散在基体中。当碳酸钙的含量超过一定程度时,会出现无机粒子集结堆积现象,使共混体系的结构产生内部缺陷,造成各项力学性能的下降。所以,碳酸钙

的用量以不超过40份为宜。

2、POE对共混体系的影响

POE是采用茂金属催化剂的乙烯和辛烯实现原位聚合的热塑性弹性体,其特点是:(1)辛烯的柔软链卷曲结构和结晶的乙烯链作为物理交联点,使它既有优异的韧性又有良好的加工性。(2)POE分子结构中没有不饱和双键,具有优良的耐老化性能。(3)POE分子量分布窄,具有较好的流动性,与聚烯烃相容性好。(4)良好的流动性可改善填料的分散效果,同时也可提高制品的熔接痕强度。

随着POE含量的增加,体系的冲击强度和断裂伸长率有很大的提高。可见,POE对PP有优良的增韧作用,与PP、活性碳酸钙有较好的相容性。这是因为POE的分子量分布窄,分子结构中侧辛基长于侧乙基,在分子结构中可形成联结点,在各成分之间起到联结、缓冲作用,使体系在受到冲击时起分散、缓冲冲击能的作用,减少银纹因受力发展成裂纹的机会,从而提高了体系的冲击强度。当体系受到张力时,由于这些联结点所形成的网络状结构可以发生较大的形变,所以,体系的断裂伸长率有显著的增加,当POE的含量增加时,体系的拉伸强度、弯曲强度和弯曲模量均有所下降,这是由POE本身的性能决定的,故POE的含量应控制在20%以下。

POE的含量与熔融指数的关系,加入POE后,体系的熔融指数增加。POE本身的流动性较好,它的加入,同时也改善了整个体系的流动性,当POE含量超过15份以后,体系的熔融指数基本没有变化,若要继续提高体系的流动性,则不能完全依赖于POE。

3、老化

为了使该材料有良好的耐候性,在体系中加入适量的防老化母料或抗氧剂,经测试,试片在氙灯紫外线辐射1000h,相当于一年的时间,冲击强度、拉伸强度保持率分别为88%和86%。氙灯紫外线辐射3000h,相当于三年的时间,冲击强度和拉伸强度的保持率分别为74%和71%,优良的耐老化性能,使该材料的使用周期长,减少了废弃塑料对环境的污染

聚烯烃弹性体(POE)塑料的特性和应用范围由探塑者公司整理介绍

POE是由辛烯和聚烯烃树脂组成的,连续相与分散相呈现两相分离的聚合物掺混物,通过扫描电子显微镜或相差显微镜的图像表明,可以形成以橡胶为连续相、树脂为分散相或以橡胶为分散相、树脂为连续相,或者两者都呈现连续相时的互穿网络结构。随着相态的变化,共混物的性能也随之而变。若橡胶为连续相时,呈现近似硫化胶的性能;树脂为连续相时,则性能近于塑料。

加工与配合:POE不需混炼和硫化。可采用通常热塑性塑料加工设备进行加工成型。成型加工温度和加工压力一般应略高一些,可在极高的加工速度下加工。可以注射成型、挤出成型,也可用压延机加工成板材或薄膜,并可吹塑成型,利用热成型可制造形状复杂的制品。可根据需要添加各种颜料制成不同的颜色。有些生产厂家依制品的使用要求,提供如耐油型、阻燃型、电稳定型以及可静电涂料型等各种品级的特殊配合料。有时为改善加工性能和某些制品的使用性能或降低成本时,也可以加入某些配合剂,如抗氧剂、软化剂和填充剂、着色剂等。边角料和废料可回收重复加工使用。但一般掺入比例不超过30%,这样对性能无影响POE对共混体系的影响

POE是采用茂金属催化剂的乙烯和辛烯实现原位聚合的热塑性弹性体,其特点是:(1)辛烯的柔软链卷曲结构和结晶的乙烯链作为物理交联点,使它既有优异的韧性又有良好的加工性。(2)POE分子结构中没有不饱和双键,具有优良的耐老化性能。(3)POE分子量分布窄,具有较好的流动性,与聚烯烃相容性好。(4)良好的流动性可改善填料的分散效果,同时也可提高制品的熔接痕强度。

随着POE含量的增加,体系的冲击强度和断裂伸长率有很大的提高。可见,POE对PP有优良的增韧作用,与PP、活性碳酸钙有较好的相容性。这是因为POE的分子量分布窄,分子结构中侧辛基长于侧乙基,在分子结构中可形成联结点,在各成分之间起到联结、缓冲作用,使体系在受到冲击时起分散、缓冲冲击能的作用,减少银纹因受力发展成裂纹的机会,从而提高了体系的冲击强度。当体系受到张力时,由于这些联结点所形成的网络状结构可以发生较大的形变,所以,体系的断裂伸长率有显著的增加,当POE的含量增加时,体系的拉伸强度、弯曲强度和弯曲模量均有所下降,这是由POE本身的性能决定的,故POE的含量应控制在20%以下。

POE的含量与熔融指数的关系,加入POE后,体系的熔融指数增加。POE本身的流动性较好,它的加入,同时也改善了整个体系的流动性,当POE含量超过15份以后,体系的熔融指数基本没有变化,若要继续提高体系的流动性,则不能完全依赖于POE。

POE基本特性探塑者推荐应用:(1)POE具有热塑性弹性体的一般物性,如成型性、废料再利用和硫化胶性能等。(2)价格低,并且相对密度小,因而体积价格低廉。(3)耐热性、耐寒性优异,使用范围宽广。(4)耐候性、耐老化性良好。(5)耐油性、耐压缩永久变形和耐磨耗等不太好。日本三井POE广东代理商探塑者推荐POE的应用范围:主要用于改性增韧PP、PE和PA在汽车工业方面制作保险杠、挡泥板、方向盘、垫板等等。电线电缆工业上耐热性和耐环境性要求高的绝缘层和护套。也用于工业用制品如胶管、输送带、胶布和模压制品。医疗器械以及家用电器、文体用品、玩具等,以及包装薄膜等等。

改性增强尼龙6主要技术指标

改性增强尼龙6主要技术指标 弯曲强度(MPa)≥100 缺口冲击强度(kJ/m2)≥6.0 拉伸强度(MPa)≥70 压缩强度(MPa)≥78 相对密度≤1.22 熔融值的测定方法 一、目的: 区别热塑性塑料在熔融状态下的粘流特性。 二、定义: 熔体流动速率测定仪亦称熔融指数仪;是测定热塑性塑料在一定温度和负荷下,熔体每10分钟通过标准口模毛细管的质量或熔融体积。 三、操作环境、要求: 温度:10~30℃湿度:≤80%RH 四、仪器规格、测试范围: 1、温度控制范围:100-400℃ 2、波动:±0.1℃ 3、测定范围:0.031-1500g/10min 4、口模内径:Ф2.095±0.005mm、Ф1.180±0.010mm 5、料筒内径:Ф9.550±0.020mm 6、电源:AC220V 50Hz 5A

五、仪器介绍: 六、操作方法: 1、将口模与料杆装入料筒: 2、开启左侧电源开关,上显示器显示当前料筒实际温度,下显示器显示(上次)设置温度,并根据所设置的温度开始升温、控温,行程指示灯(25.4)亮(如图2);按行程键选择行程,仪器按上次设置的参数运行,参数设置方法如下: 按一下设置键,上显示器显示T,下显示器显示当前己设置温度值;如需修改按键,下显示器第一位灯闪,按▼键或▲键修改当前数值,使该位数值“+1”或“-1”,再按下显示器第二位灯闪,仍按▼键或▲键修改数值,直至修改完成依次按一下设置键与返回键,既可保存修改,并回到工作状态;依次按设置键可修改温度、日期、批号、负荷、密度、温度修正值(参数修改方法同上); 3、行程设置:在自动工作状态下的初始杠杆上翘时,自动行程自动设置在25.4,相应指示灯亮,按行程键,转换至6.35(相应灯亮),再按行程键,转至25.4。6.35或25.4(“1/4”或“1”)的选择依据参见表一。 MFR(g/min) 料杆移动距离(mm) 0.031~10 6.35( 1/4″) 10~1500 25.4( 1″) (表一)

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用 1、聚丙烯在合成树脂生产中占据重要地位,发展极为迅速 聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。表1列出近期投产和正在建设的聚丙烯装置的地点和产能。 表1 近期投产和在建聚丙烯装置

在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。 另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。 1 聚丙烯基本知识 1.1 树脂与塑料的定义和分类 树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。 塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。 热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。 热固性塑料(Thermosetting Plastics):在第一次成型之后,成为不熔、不溶性物料的塑料。

工程塑料改性技术秘笈

工程塑料改性技术秘笈

工程塑料改性技术秘笈 第一笈聚对苯二甲酸丁二醇酯 PBT 1.环保阻燃非增强特点:环保阻燃、低析出性、高加工流动性 2.环保阻燃非增强特点:环保型、未增强、阻燃、不析出、流动性好 3. PBT/PC合金特点:玻纤增强、环保、阻燃。良好的加工性能,优良的力学性能和阻燃性能 4. 环保阻燃30%增强特点:环保阻燃、低析出性、玻纤增强 5. 环保阻燃30%增强特点:环保型、玻纤增强、阻燃、不析出、增韧 6. 环保阻燃增强高CTI 特点:矿物、玻纤填充,阻燃,防翘曲,高电性能,表面光滑 7. 环保阻燃增强高长期耐热特点:环保型、玻纤增强、阻燃、流动性好、优异的高温长期使用性能 第二笈聚对苯二甲酸乙二醇酯 PET 3.30%增强特点:玻纤增强、非阻燃、机械强度高、抗蠕变性 4.阻燃30%增强特点:环保阻燃增强、机械强度高、抗蠕变性、尺寸稳定性高 5.阻燃40%增强特点:阻燃增强、机械强度高、抗蠕变性、尺寸稳定性高 6.环保阻燃30%增强特点:环保型、阻燃增强、机械强度高、抗蠕变性 7.环保阻燃30%增强特点:环保型、高阻燃、高流动性、机械强度高、耐高温焊锡 第三笈 PA6 8.超韧尼龙:环保型,优异的低温韧性增强尼龙 9.高阻燃非增强 10.10-30%增强高阻燃尼龙 11.高尺寸稳定性30%填充阻燃尼龙 12.5-25%矿物填充、阻燃改进、无卤无磷阻燃、高环保型,电性能优异 13. 第四笈 PA66 14.高阻燃非增强 15.10-30%增强高阻燃尼龙 16.10-30%环保增强高阻燃尼龙 17.高尺寸稳定性30%填充阻燃尼龙

18.5-25%矿物填充、阻燃改进、无卤无磷阻燃、高环保型,电性能优异 19.红磷型阻燃增强 第五笈 PPO 20.未增强PPO 21.阻燃增强型 22.环保阻燃增强型 23.PPO/PA合金 24.第六笈 PPS 25.环保型矿物、玻纤增强阻燃 26.玻纤增强 第七笈 27.PBT、PET、PA6、PA66、PPO母料 第七笈 PC 28.PC改性方向: 29.耐候型 30.光高反射 31.难燃型 32.汽车用 33.光散射型 34.低异向性 35.等方向型 36.高难燃型 37.耐磨耗型 38.碳纤维增强型 39.EMI型 40.PC/ABS改性方向 41.防静电型 42.高流动型 43.高刚型

改性尼龙需要注意的问题点

聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。是美国著名化学家卡罗瑟斯和他的科研小组发明的。 尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。 尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。 尼龙[1],是聚酰胺纤维(锦纶)是一种说法. 可制成长纤或短纤。 尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。 1928年,美国最大的化学工业公司——杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯博士受聘担任该所的负责人。他主要从事聚合反应方面的研究。他首先研究双官能团分子的缩聚反应,通过二元醇和二元羧酸的酯化缩合,合成长链的、相对分子质量高的聚酯。在不到两年的时间内,卡罗瑟斯在制备线型聚合物特别是聚酯方面,取得了重要的进展,将聚合物的相对分子质量提高到10 000~25 000,他把相对分子质量高于10 000的聚合物称为高聚物(Superpolymer)。1930年,卡罗瑟斯的助手发现,二元醇和二元羧酸通过缩聚反应制取的高聚酯,其熔融物能像制棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可达到原来的几倍,经过冷却拉伸后纤维的强度、弹性、透明度和光泽度都大大增加。这种聚酯的奇特性质使他们预感到可能具有重大的商业价值,有可能用熔融的聚合物来纺制纤维。然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。 随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。 聚酰胺(尼龙) 聚癸二酸癸二胺(尼龙1010) 聚十一酰胺(尼龙11) 聚十二酰胺(尼龙12) 聚己内酰胺(尼龙6) 聚癸二酰乙二胺(尼龙610) 聚十二烷二酰乙二胺(尼龙612) 聚己二酸己二胺(尼龙66) CAS编码:32131-17-2

尼龙改性中使用的相容剂和增韧剂

尼龙改性中主要可以使用的相容剂为POE接枝相容剂ST-2,另外还有EPDM接枝相容剂ST-18,我们现在生产得最多的是POE 接枝相容剂ST-2,在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙以及增韧尼龙中,我们都建议大家使用ST-2,因为POE接枝相容剂ST-2在尼龙中的增韧效果比较理想,ST-2在尼龙中的作用主要是提高尼龙的韧性及冲击强度。在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙中,建议大家使用ST-2的添加量为5-10%时较为理想,添加量太少,可能增韧效果达不到要求,添加量太多,可能对尼龙的防火、拉伸强度以及耐温会有一定的影响,任何事物只能是量力而为,相容剂的使用亦是如此。而在上述尼龙改性中的一些特殊情况,如用户只要求冲击强度达到一定高度而对尼龙耐温和拉伸强度没有什么要求,则ST-2的使用量可以在10%以上。另外ST-2的一个大的用途是在超韧尼龙和超韧耐寒尼龙中使用,这时ST-2的建议使用量为15-20%,甚至在一些高要求的情况中,ST-2的使用量需达25%以上。ST-2在尼龙中使用时,尼龙最高缺口冲击强度可达120KJ/ m2,耐寒尼龙最低温度可做到零下35℃,另外在超韧耐寒尼龙改性中,对尼龙的粘度的选择亦有较高要求,这一点是许多尼龙改性工作者所不注意的,在超韧耐寒尼龙改性中,要求尼龙粘度达2.8以上,否则,相容剂加得再多,冲击强度也难提高。我公司ST-2在PBT改性中亦能起到很好的相容增韧作用,用户如作高韧性要求的PBT改性产品,ST-2 一定会让你得到意想不到的帮助。 EPDM接枝相容剂ST-18主要用于超耐寒尼龙中,如要求尼龙的耐寒在-35℃到-40℃的情况,就需用它。

尼龙6的增韧性研究及应用前景

尼龙6的增韧性研究及应用前景 谢敏敏 [摘要]:综述了国内外尼龙增韧改性的研究进展,介绍了高韧性尼龙 6工程塑料的研究进展及应用前景,并从不同方面对尼龙的增韧进行了探讨,例如与聚烯烃及弹性体共混增韧、掺混高韧性工程塑料增韧、无机粒子增韧。 [关键词]:尼龙6 增韧 尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键,能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。但是尼龙6存在低温和干态冲击性能差,吸水性大等弱点,使其应用领域受到一定限制,为适应工业发展的需要,近年来通过共混改性,使其向高冲击、低吸水和优化加工等方向发展的研究成为广泛关注的课题。尼龙6的增韧工作自20世纪70年代以来一直是尼龙改性的重要课题,美国、西欧、日本先后开发了各种牌号的高抗冲尼龙6合金。尼龙6是比较容易形成合金的树脂,合适的相容剂是形成韧性尼龙的关键。 高韧尼龙6合金的获得主要有以下三种途径:一是通过与聚烯烃及弹性体共混;二是掺混高韧性工程塑料;三是无机粒子增韧。 1. 聚烯烃、弹性体增韧 尼龙6与非极性或弱极性的聚烯烃、弹性体共混可以改善韧性。但尼龙6带有强极性的酰胺基团,与聚烯烃、弹性体的相容性差,导致合金的韧性下降。解决相容性的方法有两种:一种方法是尼龙6中加入单体熔融接枝聚烯烃工弹性体,单体一般为带羧基官能团的马来酸酐(MAH)、甲基丙烯酸缩水甘油醇(GMA);另一种是加入一种能同聚烯烃或弹性体相容的、带有活性基团(如环氧基)的第三组分,反应基团可以和尼龙6分子末端的胺基实现反应性相容。另外,采用聚烯烃接枝丙烯酸的方法是改善尼龙与聚烯烃弹性体相容性的另一种有效途径。这是由于接枝丙烯酸共聚物所带的羟基官能团同样能与尼龙末端的胺基反应形成化学键。虽然羟基的反应活性不如二酸酐,但是由于丙烯酸自身可以发生聚合,在接枝过程中可形成较长的聚丙烯酸支链,因而可获得较高的接枝率;所制备的接枝共聚物与尼龙

改性塑料调研报告

改性塑料调研报告 一、概述 所谓改性塑料,是指通用塑料经过填充、共混、增强等方法加工,从而使它们具有阻燃、高抗冲等性能,它具有取代钢铁的功能。几乎所有塑料的性能都可通过改性方法得到改善。 改性塑料产品主要分为三大类, 一类是以粉体材料为主要原料 的填充改性塑料产品, 包括活性粉体、填充母料和粉体材料占20%-- 30%的改性塑料专用料;另一类是以不同类别的高分子材料经过共混制成的塑料合金专用料, 如ABS/聚碳酸酯( PC)合金、PA/ABS 合金、聚丙烯( PP)/PA 合金等; 第三类是为达到电、光、热、燃烧等方面的功能性, 综合使用功能性填料和不同类别的高分子材料, 以及适 量的相容剂、增韧剂而制成的功能性专用料, 如阻燃ABS、无卤阻燃PP、汽车保险杠、仪表板专用料等。三大类改性塑料产品的年总产量已超过3000kt , 三大类产品所占比例分别为50%、35% 和15%左右, 即1600kt、1000kt 和600kt左右。 行业内认为的改性塑料包括通用塑料中的PP、ABS、PS,工程塑料中的通用工程塑料(PC、PA、PBT、PPO 和POM)的树脂改性。经过改性以后,塑料的外观、透明性、密度、精度、加工性、机械性能、化学性能、电磁性能、耐腐蚀性能、耐老化性、耐磨性、硬度、热性能、阻燃性、阻隔性等某些方面有所改善或提高。 二、生产情况 根据2010 年中国改性塑料行业十佳企业评选活动中各改性塑料企业上报的数据分析, 全国已有以改性塑料产品为主营业务的企业近1000 家, 就业人数达十几万人,多数年产量在3000吨左右,超过3000吨的接近50家,万吨以上的屈指可数,而超过10万吨的仅

尼龙的改性特性以及应用范围

本文摘自再生资源回收-变宝网(https://www.sodocs.net/doc/7815287233.html,)尼龙的改性特性以及应用范围 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。 因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。 ③提高尼龙的机械强度,以达到金属材料的强度,取代金属 ④提高尼龙的抗低温性能,增强其对耐环境应变的能力。 ⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。 ⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。 ⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。 ⑧降低尼龙的成本,提高产品竞争力。

总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。 改性PA产品的最新发展 前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA 投放市场。 20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。 20世纪90年代,改性尼龙新品种不断增加,这个时期改性尼龙走向商品化,形成了新的产业,并得到了迅速发展,20世纪90年代末,世界尼龙合金产量达110万吨/年。 在产品开发方面,主要以高性能尼龙PPO/PA6,PPS/PA66、增韧尼龙、纳米尼龙、无卤阻燃尼龙为主导方向;在应用方面,汽车部件、电器部件开发取得了重大进展,如汽车进气歧管用高流动改性尼龙已经商品化,这种结构复杂的部件的塑料化,除在应用方面具有重大意义外,更重要的是延长了部件的寿命,促进了工程塑料加工技术的发展。 改性尼龙发展的趋势 尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。

尼龙的增韧改性.

《聚合物复合材料设计与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 学号:2010130101025

尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。 关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方

尼龙改性

尼龙改性认识 一、尼龙的种类及特性 1.1尼龙的种类 尼龙系分子主链的重复结构单元中,含有酰胺基(—CONH—)的一类热塑性树脂,包括脂肪族聚酰胺、脂肪-芳香族聚酰胺及芳香族聚酰胺。脂肪族聚酰胺品种多、产量大、应用广泛,既可作纤维,也可作塑料。脂肪-芳香族聚酰胺品种少,产量也小;芳香族聚酰胺常简称为聚芳酰胺,主要用作纤维(芳纶)。脂肪族尼龙分尼龙6、尼龙66、尼龙1010等。 1.2尼龙的特性 尼龙属于聚酰胺,在它的主链上有氨基。氨基具有极性,会因氢键的作用而相互吸引。所以尼龙容易结晶,可以制成强度很高的纤维。聚酰胺为韧性角质状半透明或乳白色结晶性树脂,常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。 各种聚酰胺的共同特点是耐燃,抗张强度高(达104MPa),耐磨,电绝缘性好,耐热(在455kPa下热变形温度均在150℃以上),熔点150~250℃,熔融态树脂的流动性高,相对密度1.05~1.15(加入填料可增至1.6),大都无毒。

二、尼龙的现有主要种类及市场概况 2.1HTN HTN属于杜邦尼龙家族。杜邦HTN分为51G、52G、53G和54G四个系列,其中51G、52G和54G是属于6T的改性产品,可归属于半芳香族尼龙PPA,而53G系列因分子中苯环含量较少杜邦把它归为高性能尼龙。 Zytel?HTN51G=PA6T/MPMDT………..PPA Zytel?HTN52G=PA6T/66……………….PPA Zytel?HTN53G=PA……………………..HPPA Zytel?HTN54G=PA6T/XT+PA6T/66…PPA 作为老牌尼龙制造商,拥有强劲开发实力的杜邦实现HTN的工业化也比较早,并最先推出高温尼龙的无卤阻燃系列。杜邦高温尼龙目前在市场上表现平平,后期在无卤规格上可能会有所作为。 2.2 ARLEN? PA6T ARLEN?为日本三井化学公司所开发出的一种耐高温尼龙,是基于对苯二甲酸,己二酸及己二胺的改性尼龙6T,其熔点高达310℃。ARLEN?主要应用于电子零件用ARLEN为一种对于苯二甲酸,己二酸及己二胺的改質尼龙6T,其熔点高于310℃。电子零件。ARLEN 的主要特性为优异的高温刚性,尺寸安定性以及耐化学品性。 2.3 PA9T PA9T由KURARAY公司首度开发成功并实现工业化。商品名为

尼龙的增韧改性

尼龙的增韧改性 Prepared on 22 November 2020

《聚合物复合材料设计 与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。 关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙

lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进聚酰眩塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。 2.国内外的技术情况 国内外学者对尼龙改性进行了大量的研究,近年来已有了新的进展,同时有了一些成熟的工业化产品,也获得了许多综合性能优良,加工性能好的产品。 尼龙自发明以来,生产能力和产量都居于五大通用工程塑料之首 (PA,Pc,PoM,PBT/PET,PPO)的第一位"美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化,20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求,因而被广泛用于电子电气、交通运输、机械设备及日常生活用品等领域,在经济中的地位日益显着"。 但于我国经济发展的需求和国外先进技术相比,差距是不言而喻的。目前我们应当重视将比较成熟的研究成果进行中试,直至规模生产,从而减低国内用户的生产成

ABS塑料配方成分分析,塑料改性技术

ABS塑料配方成分分析,塑料改性技术导读:本文详细介绍了ABS塑料的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 禾川化学引进尖端配方解剖技术,致力于ABS塑料成分分析,配方还原,研发外包服务,为ABS塑料相关企业提供一整套配方技术解决方案。 一、ABS树脂的介绍 丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile-butadiene-Styrene copolymers,简称ABS)是一种应用广泛的工程塑料,在汽车保险杠、手机以及电脑外壳等制品上应用广泛。大部分ABS无毒,略透水蒸气但不透水,吸水率低,抗冲击性极好,冲击强度在低温下也不会快速下降,大多数ABS的拉伸性能在35.2~46.2Mpa,特殊品种可达63.3Mpa,屈服伸长率为2~4%,在负荷为14.1Mpa、温度为50℃条件下压缩24h,其尺寸变化在0.2~1.7%之内,半硬质和硬质ABS的弯曲强度约为28.1Mpa和63.3~70Mpa。ABS耐磨性很好,摩擦系数很低,不能作为自润滑材料,但可作为中转速轴承材料。因品种不同其抗蠕变性能不同,但总体而言升温时抗蠕变应力不会迅速下降。ABS电性能稳定,受温度、湿度影响较小;水、无机盐、酸、碱类对其性能影响较小,在醛、酮、酯、盐酸中会溶解或形成乳浊液,不溶于大部分醇和烃,但在烃中会软化或溶胀。在加工中,ABS的加工性由剪切速率调节,而并非温度。成分中的丁二烯橡胶相提供塑料以强韧性,聚苯乙烯相提供塑料以电气性、成型性和透明性。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进

尼龙6改性研究进展

聚己内酰胺又称尼龙6(Nylon6),1938年由德国I.G.Farbon公司的P.Schlach发明,并于1943年由该公司首先实现工业化。普通尼龙6且有良好的物理、机械性能,例如拉伸强度高,耐磨性优异,抗冲击韧性好,耐化学药品和耐油性突出,是五大工程塑料中应用最广的品种。但由于其在低温和干燥状况下易脆化、抗冲击性能差,且吸水性差、尺寸稳定性差,限制了其更加广泛的应用。为此,国内外的研究者对尼龙6进行了大量的改性研究和开发,研制出许多综合性能优越、可满足特殊要求的改性尼龙材料,使普通工程塑料向高性能的工程塑料和功能塑料发展。 尼龙是重要的工程塑料,对其进行改性可以得到性能多样的产品,拓宽其应用领域。尼龙6的改性研究内容丰富,方法多样,增强改性是其中的重要内容。由于尼龙本身的优点以及生产厂商不断开发新品种及新的加工方法以适应新的用途,通过共混、共聚、嵌段、接枝、互穿网络、填充、增强、复合,包括目前日益成为热点的纳米级复合材料技术,赋予了尼龙工程塑料的高性能,从而使尼龙工程塑料在当今激烈的市场竞争中仍能占据五大工程塑料之首。尼龙6的增强改性主要是添加纤维状、片状或其它形状的填料,在保证其原有的耐化学性和良好的加工性的基础上,使其强度大幅度提高,尺寸稳定性和耐热性也得到明显改善。改性后的尼龙6作为一种性能优良的工程塑料广泛应用于机械、电子、交通、建筑和包装等领域。 纤维增强 典型的纤维增强有玻璃纤维、碳纤维、石棉纤维。 用高强度纤维与树脂配合后能提高机体的物理力学性能,其增强效果主要依赖于纤维材料与机体的牢固粘结使塑料所受负荷能转移到高强度纤维上,并将负荷由局部传递到较大范围甚至于整个物体。 玻璃纤维增强尼龙材料是较为常用的纤维增强改性方法。表1列出了玻纤增强尼龙6复合材料和纯尼龙6材料的性能对比。 玻纤与基体之间的结合力起着控制聚合物复合材料力学性能的重要作用,并主要受玻纤表面处理的影响。偶联剂是某些具有特定基团的化合物,它能通过化学或物理作用将两种性质相差很大的材料结合起来。硅烷偶联剂在玻纤表面的应用能起到改善结合力的作用。崔周平等人系统考察了玻纤增强尼龙6复合材料力学性能的影响因素,并通过对比实验表明,用A1100偶联剂处理的玻纤较用A187及其它偶联剂处理的玻纤增强效果好。且玻纤的加入量以30%-40%为宜。 玻纤长度是决定纤维增强复合材料的又一主要因素。短玻纤增强尼龙中,玻纤在混合中逐步被剪碎,最终制品中的玻纤长度一般在0.2-0.4mm范围内。长玻纤比短玻纤具有更加的增强效果,拓宽了尼龙6在汽车、机械、电器和军工领域的应用。高志秋等人采用容体浸滞工艺制备了长玻纤增强尼龙6的预浸料,由表2可以看出,长玻纤增强尼龙复合材料的力学性能明显优于短玻纤尼龙复合材料。这一方面是由于长玻纤在复合材料中是相互交织在一起的无序排列,而不同于短玻纤在复合材料中的流动方向排列;另一方面是因为玻纤长度的增加,使玻纤与尼龙的界面面积增大,玻纤从基体中抽出的阻力增大,从而提高了承受拉伸载荷的能力。 GMT是以热塑性树脂为基体,以玻璃纤维毡为增强骨架的轻质板片状结构材料,因其密度小、强度高、废料可生产利用和可无限起存放的优点而被广泛应用。吴妙生等人通过优化优选研制出玻纤毡增强尼龙6复合片材,该材料是一种轻量化和节能的新型结构材料,可用于汽车发动机油底壳、转矩链条罩和负载地板等。

尼龙的增韧改性

《聚合物复合材料设计 与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,

年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进聚酰眩塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。 2.国内外的技术情况 国内外学者对尼龙改性进行了大量的研究,近年来已有了新的进展,同时有了一些成熟的工业化产品,也获得了许多综合性能优良,加工性能好的产品。 尼龙自发明以来,生产能力和产量都居于五大通用工程塑料之首(PA,Pc,PoM,PBT/PET,PPO)的第一位"美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化,20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求,因而被广泛用于电子电气、交通运输、机械设备及日常生活用品等领域,在经济中的地位日益显着"。 但于我国经济发展的需求和国外先进技术相比,差距是不言而喻的。目前我们应当重视将比较成熟的研究成果进行中试,直至规模生产,从而减低国内用户的生产成本。同时应当在加强传统PA6共混手段研究的基础上,逐步开展一些新型PA6改性方法的研究,加速尼龙6改性研究步伐,开发系列化的耐高温、低吸湿、可电镀、高硬度、高强度、高阻隔性等特殊性能的改性PA6,进一步拓宽尼龙6应用领域以适应科技发展需要。我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为6.5万吨。在当前形势下,外商普遍看好我国尼龙“产品市场。美国杜邦、德国伍德、日本东洋和旭化成等公司均将大量尼龙66等制品投放中国市场,面对跨国公司的激烈竞争,我国必须建设我们自己的尼龙66生产与加工产业,提高国内企业在市场中的地位。由于尼龙66的生产目前仍是走国外引进的路子,就要求国内加大尼龙66深加工的力度,拓展尼龙66的广阔市场。尼龙66的深度加工具有加工工艺简单、建设周期短、投资少、增值快的特点,大部分属于短平快项目。有的深加工项目只需增添一些增强剂、改性剂,然后注塑成型即可制成工程塑料。目前,我国对尼龙66的深加工主要是用来生产轮胎帘子布和高级合成纤维,而用于工程塑料尚处于摸索起

改性尼龙以及聚酰胺纤维的性能介绍及发展

改性尼龙以及聚酰胺纤维的性能介绍及发展尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。 ①高强度高刚性尼龙的市场需求量越来越大,新的增强材料如无机晶须增强、碳纤维增强PA将成为重要的品种,主要是用于汽车发动机部件,机械部件以及航空设备部件。 ②尼龙合金化将成为改性工程塑料发展的主流。尼龙合金化是实现尼龙高性能的重要途径,也是制造 尼龙专用料、提高尼龙性能的主要手段。通过掺混其他高聚物,来改善尼龙的吸水性,提高制品的尺寸稳定性,以及低温脆性、耐热性和耐磨性。从而,适用车种不同要求的用途。 ③纳米尼龙的制造技术与应用将得到迅速发展。纳米尼龙的优点在于其热性能、力学性能、阻燃性、阻隔性比纯尼龙高,而制造成本与普通尼龙相当。因而,具有很大的竞争力。 ④用于电子、电气、电器的阻燃尼龙与日俱增,绿色化阻燃尼龙越来越受到市场的重视。 ⑤抗静电、导电尼龙以及磁性尼龙将成为电子设备、矿山机械、纺织机械的首选材料。 ⑥加工助剂的研究与应用,将推动改性尼龙的功能化、高性能化的进程。

⑦综合技术的应用,产品的精细化是推动其产业发展的动力。 聚酰胺纤维是大分子链上具有C9-NH基团一类纤维的总称。常用的为脂肪族聚酯胺夕主要品种有聚酰胺6和聚酰胺66,我国商品名称为锦纶6和锦纶66。锦纶纤维以长丝为主,少量的短纤维主要用于和棉,毛或其它化纤混纺。锦纶长丝大量用于变形加工制造弹力丝,作为机织或针织原料。锦纶纤维一般采用熔体法纺丝。锦纶6和锦纶66纤维的强度为4~5.3cN/dtex,高强涤纶可达7.9cN/dtex以上,伸长率18%~45%,在10%伸长时的弹性回复率在90%以上。据测定,锦纶纤维的耐磨为棉纤维的20倍、羊毛的20倍、粘胶的50倍。耐疲劳性能居各种纤维之首。在民用上大量用于加工袜子和其他混纺制品,提高织物的耐磨牢度,但锦纶纤维模量低,抗摺皱性能不及涤纶,限制了锦纶在衣着领域的应用。锦纶帘子线的寿命比粘胶大3倍,冲击吸收能大,因此轮胎能在坏的路面上行驶,但由于锦纶帘子线伸长大,汽车停止时,轮胎变形产生平点,起动初期汽车跳动厉害。因此只能用于货车的轮胎,不宜作客车的轮胎帘子线之用。 锦纶纤维表面平整,不加油剂的纤维摩擦系数很高,锦纶油剂贮存日久易失效,纺织加工时还需要重新添加油剂。 锦纶纤维的吸湿比涤纶高,锦纶6与锦纶66在标准条件下的回潮率为4.5%,在合纤中仅次于维纶。染色性能好,可用酸性染料,分散性染料及其他染料染色。

塑料改性技术在电线电缆材料中的应用

塑料改性技术在电线电缆材料中的应用 发表时间:2018-08-13T17:06:59.093Z 来源:《电力设备》2018年第8期作者:赵奇陈文杰 [导读] 摘要:伴随电气化发展的水平进一步加快,电气工程当中使用的电线电缆需求量越来越大,而塑料改性技术在很多时候都能达到电线电缆的生产需求,本文与现在电线电缆行业的发展进行分析,对塑料改性技术的应用方法和必然性进行讨论,具体阐述聚烯烃低烟无卤电线电缆、聚氯乙烯电线电缆、高压绝缘电缆等塑料改性技术实际应用于电线电缆生产中的情况,分析和研究未来改性塑料在电线电缆中的发展情况,以供参考。 (广东远光电缆实业有限公司广东清远 511520) 摘要:伴随电气化发展的水平进一步加快,电气工程当中使用的电线电缆需求量越来越大,而塑料改性技术在很多时候都能达到电线电缆的生产需求,本文与现在电线电缆行业的发展进行分析,对塑料改性技术的应用方法和必然性进行讨论,具体阐述聚烯烃低烟无卤电线电缆、聚氯乙烯电线电缆、高压绝缘电缆等塑料改性技术实际应用于电线电缆生产中的情况,分析和研究未来改性塑料在电线电缆中的发展情况,以供参考。 关键词:塑料改性;技术;电线电缆;材料应用 引言 伴随当前科学技术的快速发展,塑料改性技术逐步成为电力行业发展过程中的高级技术,改进电缆材料会在某种程度上推动电力快速进步,迎来新的挑战。塑料改性技术在聚氯乙烯(PVC)电线电缆材料生产以及传统材料改进方面效果非常明显,让我国电缆的质量进一步提升,为我国电力行业的发展提供了很大的帮助。在以后的几十年内电线电缆的耐高温高压以及阻燃性等特性都会是重点发展方向。 1塑料改性技术概述 1.1塑料改性技术内涵 塑料改性主要指的是石油化工企业将很多通用树脂利用机械、化学、物理等手段对其性能进行增加或改善,使其在特殊环境下能够在机械性能、阻燃、耐老化、热、光、电磁等特殊环境之内发挥功用,改性塑料的科技含量高,涉及面广。 1.2塑料改性技术的作用 塑料改性技术的作用在于可以让塑料的性能得到有效改善,塑料改性技术可以让塑料更耐磨抗冲击、抗老化、有高强度韧度、耐腐蚀、密度小等特点,而且在塑料的综合性能方面得到了很大的提高让生产成本降低,通过塑料改性技术,可以让塑料原料的成本大大降低,让电线电缆的生产企业可以获取极大的利润。 2塑料改性技术在电线电缆材料中的应用 2.1聚氯乙烯(PVC)电线电缆 PVC材料加工方便,机械性能优良,价格低廉。在电线电缆生产中逐步成为主要原材料,在电缆料的包裹材料当中使用应用空间非常广阔,但是现在PVC料的问题也很多,比如说耐温性差、不耐磨、抗老化性能差。为了与现在当前的环保要求相吻合,某些发达国家已经部分禁止或全面禁止PVC电缆,这就要求加大力度研发新的塑料改性材料应用在电线电缆当中。 2.1.1无毒PVC热稳定剂的应用 无毒聚氯乙烯稳定剂主要作用在于对材料的保温性和耐热性进行改善,稀土热稳定剂逐步在PVC热稳定剂中占主流地位,取有取代镉铅稳定剂和钙锌复合稳定剂的趋势,这也让电线电缆的环保性和稳定性进一步增加。 2.1.2 PVC辐照交联技术的应用 主要使用的是化学交联法、紫外线辐射、高能电子射线、C60-γ等,让PVC的性能和结构得到很大的改善。 2.1.3 PVC阻燃抑烟技术的应用 PVC材料本身就具有很好的阻燃性,燃点比较高,但是在生产的时候大量添加增塑剂,让其阻燃性能大大降低,因此一定要通过阻燃抑烟技术改进其阻燃性能,一般情况下会选择一些纳米阻燃抑烟剂或有机阻燃抑烟剂、无机阻燃抑烟剂,对其进行改性,工艺流程比较简单,使用性强,应用广泛。 在电线电缆产品当中,除了电磁线、钢芯、铝绞线等裸线产品外,所有的导线都会使需要使用到屏蔽层、护套层、绝缘层等进行保护,所以改性材料的使用面非常大,我国的现代化水平逐步增强,经济实力进一步提高,在未来的几年内,线缆改性材料的需求量将快速增长,年增长率约为10%,尽管PVC电缆材料具有很大的消耗量,但是人们越来越重视环保和安全,PVC材料在电缆上的应用将会逐步减小,这些低烟无卤电缆料逐步成为各企业研发的重头。 表1 PVC电线电缆料的市场用量预测(单位:万t) 2.2聚烯烃低烟无卤电线电缆 低烟无卤电缆材料主要选择交联聚乙烯材料、聚丙烯材料、聚乙烯材料等。然而这些材料在使用的过程中没有阻燃性,所以还需要另外添加的无卤阻燃剂,而氢氧化镁阻燃剂和氢氧化铝阻燃剂使用最为广泛。这两种阻燃剂在燃烧的时候不会出现毒气,而且优势非常明显。但是要想让效果显现出来就需要大量添加使用,这就造成塑料粘度非常大,而且没有很强的韧性,所以一定要适当处理这些阻燃剂,主要步骤有以下三点: 2.2.1表面化处理 用硬脂酸钠或硅烷偶联剂让低烟无卤阻燃剂的相容性增强,主要的手法有湿法改性和干性改性两种。干性改性主要是混合一些阻燃剂和惰性溶剂,再进行加温偶联的操作,湿性改性的方法在于将偶联剂和阻燃剂融到容器当中,在偶联工作完成之后,再分离溶剂。 2.2.2微细化处理 接着需要进行微细化处理,微细化处理的目的是为了让树脂的和阻燃剂的相容性提高,让阻燃剂的添加量得到控制。 2.2.3协同效应

相关主题