搜档网
当前位置:搜档网 › 尼龙的增韧改性

尼龙的增韧改性

尼龙的增韧改性
尼龙的增韧改性

《聚合物复合材料设计

与加工》课程报告

题目:尼龙的增韧改性

专业:10材料化学

姓名:李玉海

尼龙的增韧改性

摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。关键词:聚酰胺玻璃纤维增强增韧共混改性

1.前言

当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,

年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进聚酰眩塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。

2.国内外的技术情况

国内外学者对尼龙改性进行了大量的研究,近年来已有了新的进展,同时有了一些成熟的工业化产品,也获得了许多综合性能优良,加工性能好的产品。

尼龙自发明以来,生产能力和产量都居于五大通用工程塑料之首(PA,Pc,PoM,PBT/PET,PPO)的第一位"美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化,20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求,因而被广泛用于电子电气、交通运输、机械设备及日常生活用品等领域,在经济中的地位日益显着"。

但于我国经济发展的需求和国外先进技术相比,差距是不言而喻的。目前我们应当重视将比较成熟的研究成果进行中试,直至规模生产,从而减低国内用户的生产成本。同时应当在加强传统PA6共混手段研究的基础上,逐步开展一些新型PA6改性方法的研究,加速尼龙6改性研究步伐,开发系列化的耐高温、低吸湿、可电镀、高硬度、高强度、高阻隔性等特殊性能的改性PA6,进一步拓宽尼龙6应用领域以适应科技发展需要。我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为6.5万吨。在当前形势下,外商普遍看好我国尼龙“产品市场。美国杜邦、德国伍德、日本东洋和旭化成等公司均将大量尼龙66等制品投放中国市场,面对跨国公司的激烈竞争,我国必须建设我们自己的尼龙66生产与加工产业,提高国内企业在市场中的地位。由于尼龙66的生产目前仍是走国外引进的路子,就要求国内加大尼龙66深加工的力度,拓展尼龙66的广阔市场。尼龙66的深度加工具有加工工艺简单、建设周期短、投资少、增值快的特点,大部分属于短平快项目。有的深加工项目只需增添一些增强剂、改性剂,然后注塑成型即可制成工程塑料。目前,我国对尼龙66的深加工主要是用来生产轮胎帘子布和高级合成纤维,而用于工程塑料尚处于摸索起

步阶段。

3.改性方案设计

本文着重考察了以尼龙66为基体,玻璃纤维作为增强材料带来的力学性能的提高,同时探讨了不同增韧剂PE,EPDM,POE和添加剂在增韧的同时对基体力学性能的影响。以寻求在保持玻璃纤维填充尼龙66一定刚性的同时,较大的提高材料的冲击强度,以求获得综合力学性能优异的增强增韧材料。

3.1影响尼龙66的强度和韧性的主要因素

尼龙66表现出脆性行为还是韧性行为既与尼龙66本身结构如化学结构、二次结构等有关,还与外界条件如温度、湿度、应变速率有关。下面就影响尼龙66强度和韧性的几个主要因素进行讨论。

3.1.1化学结构的影响

高聚物材料的破坏无非是高分子主链上化学键的断裂抑或是高分子链间相互作用力的破坏,所以尼龙66的强度来源于主链化学键和分子间的相互作用力,通过增加高分子的极性或产生氢键都可使材料强度提高。尼龙66有氢键,拉伸强度可达60-83Mpa,氢键密度越高,材料的强度也就越高。但如果极性基团过密,致使阻碍高分子链段的活动性,则虽然强度会有所提高,但材料变脆。

3.1.2添加剂的影响

增塑剂

一般地说,在高聚物中加入增塑剂后,因削弱了高分子之间的相互作用力,会导致材料的断裂强度下降,强度的降低值与加入的增塑剂量成正比,同时也能降低材料的屈服强度,从而提高材料的韧性。水对高分子链上带有亲水基团的尼龙66来说是一种增塑剂,尼龙66吸水后模量和强度明显下降,断裂伸长率和冲击强度提高。但是尼龙66吸水过多会严重变形而影响其尺寸稳定性,即在吸水量超过某一临界值后,不仅强度下降,韧性也会变坏。

固体填料

尼龙66复合材料的强度同填料本身的强度和填料与尼龙66的亲和程度有关。一类是为降低成本而采用的惰性填料,只起稀释作用,它将使尼龙66的强度降低;另一类是把提高尼龙66的强度作为主要目的的活性填料,如现今发展起来的玻璃纤维以其高强度和低廉价格的优势而成为普遍采用的纤维增强填料。

3.1.3共聚和共混的影响

高聚物的共聚共混是改善高聚物性能的重要手段之一,通过共聚和共混可以达到提高应用性能、改善加工性能或降低成本的目的,因而引起了广泛的关注。在尼龙66共混复合材料中,不同组分之间主要是以物理作用结合,在强的剪切作用下熔融混合时,由于剪切作用可能使大分子产生断链,产生少量的自由基,从而生成嵌段或接枝共聚物,或在共混物中加入增容剂,也可以在其中引入少量的化学键合。用接枝共聚、嵌段共聚和共混的方法对尼龙66的力学性能进行改性的效果与基体尼龙66和分散相的化学组成与结构、分散相的含量、粒径和接枝率等因素有关。

3.1.4PA66的填充增强改性

在PA66树脂中加入纤维增强材料,不仅可保持PA66树脂的耐化学药品性,加工性能等优点,而且力学性能,耐热性能亦可大幅提高,尺寸稳定性等也能得到明显的改善[3]。

由于玻璃纤维(GF)的比强度和杨氏模量比PA66大10-20倍,线膨胀系数约为PA66的1/20,吸水率接近于零,且有耐热和耐化学药品性好等特点。增强剂E一玻璃纤维(GF)具有良好的机械性能,其单丝强度达到3500N/mm2,弹性模量达到73000N/mm2,适合于做工程用增强材料。先用硅烷类偶联剂对玻纤表面进行处理,否则玻纤与尼龙的界面粘合能较小,容易从尼龙基体中拔出。偶联剂通过与增强材料表面的某些基团反应,又与基体树脂反应,在两者之间形成一个传递应力的界面层,增强玻纤与尼龙66之间的粘合强度。研究表明,玻纤增强尼龙66复合材料在玻纤含量为30%时,其缺口冲击强度达到最大值。含量为15%时,无缺口冲击强度达到最小值。需将玻纤含量控制在30%附近,材料的缺口、无缺口冲击强度才会达到较理想的值,其拉伸强度也较高。如果在增强的基础上进一步进行增韧改性,则尼龙66复合材料的综合性能会有更大幅度改善。如在PA66/GF中添加一定量的增韧剂POE,就能保证复合材料在具有较优良的力学性能的同时具有较高的冲击韧性。国内对GF增强PA66的研究非常活跃,增强PA66中的GF含量逐步提高。国外对高GF含量PA66的研究较多,研制出的高GF含量的PA66材料具有高刚性,低吸水性,热变形温度和尺寸稳定性也有显着提高。国内对高GF含量的PA66材料的研究还不多。但也有不错的成果。然而,由于玻纤的纤维粗大,性脆等特点,造成其增强塑料在加工与使用中存在难以克服的缺点。具体表现在以下几个方面:注塑成型时玻纤对模具的浇口和流道磨损严重,大大缩短了模具的使用寿命;注塑过程中玻纤的

流动性差,在复杂模具中很难分布均匀,从而在制品中形成机械强度很低的贫纤维区;玻纤增强塑料制成的运动部件因玻纤脆而易引起疲劳开裂:玻纤增强塑料制品的表面光洁度差。后三点缺陷对于常用作受力与运动部件的玻纤增强尼龙来说尤为突出。

除玻璃纤维外,还可选择碳纤维(CF)、钛酸钾晶须等其它增强材料。研究表明,碳纤维增强增韧尼龙66的效果比玻纤更显着,表现为PA66/GF/POE>PA66/CF>PA66/GF,这是因为碳纤是比玻纤更刚性的材料,与PA66基体复合后,可利用碳纤的高强度以承受应力,利用基体的塑性及其与纤维的粘接性以传递应力。钛酸钾晶须是一种新型针状短纤维,是新一代高性能复合材料增强剂。用改性剂处理后的钛酸钾晶须与尼龙66复合后会形成弹性界面层在微裂纹由基体扩展到晶须表面时会使传播速率突然变小而发生偏转,这种偏转会增加材料对能量的消耗,终止微裂纹继续扩展。

3.1.5PA66的共混改性

PA66树脂与其它树脂共混改性可提高材料干态和低温下的冲击强度,改善吸湿性,提高耐热性。国内外在这方而进行了大量的研究工作,并取得了很大的成效。共混合金化增韧尼龙66主要是以尼龙树脂为主体,添加增韧剂如韧性树脂、橡胶弹性体及热塑性弹性体,经共混制得的高分子多组分体系-尼龙66合金。尼龙合金中的主要增韧剂有PP、PE等非极性聚烯烃物质和三元乙丙橡胶(EPDM)、乙烯-辛烯共聚物(POE)等弹性体。

但是用共混的方法改善高聚物的性能,要得到预期的效果,必须是共混组分在宏观上相容,而微观上相分离。若共混的两组分相容性太好,则共混物的性能不会得到很大的改善;但两者的相容性太差,其界面结合力低,材料的力学性能也难以提高。用三元乙丙胶(EPDM)来改善PA66的冲击韧性,由于PA66与EPDM在极性方面的差异很大,二者相容性差,结合强度低,材料的力学性能难以提高,采用三元乙丙胶接枝马来酸醉(MA)的共聚物(EPDM-g-MA)作为增韧增容材料作为界面相容剂,以改善PA66与EPDM的相容性。发现随着EPDM-g-MA含量的增加,PA66/EPDM-g-MA二元共混体系的耐冲击性能明显提高,当EPDM-g-MA含量为20%(质量)时、lzod缺口冲击强度为纯PA66的7倍,但拉伸强度、模量等随之下降;对于PA66/EPDM/EPDM-g-MA三元共混体系,其力学性能介于PA66/EPDM和PA66/EPDM-g-MA两种二元共混体系之间。

3.1.6PA66的热氧化稳定性改性

聚酞胺在加工使用过程中,即使在完全没有氧存在的情况下,也会发生因聚酞胺化学结构变化引起的各种老化。如末端氨基相互作用产生仲氨基和叔氨基或由于氨解、酸解和水解而引起的降解等。PA66通常在80℃以下空气中能经受得起较长时间的热作

用,但在100-140℃就会迅速老化,引起制品变黄、变脆和机械性能下降。聚酞胺的末端氨基在导致制品发黄的过程中起重要作用,这可能是因为末端氨基与聚酞胺的氧化产物相互作用会产生显色的各种吡咯衍生物所致。

防热氧化的稳定剂,其作用机理分为两大类。第一类是能够使自由基链式反应终止的链终止剂;第二类位能抑制引发自由基反应的抑制类稳定剂。第一类稳定剂又称为主抗氧剂,它又可分为:自由基捕获剂、电子给予体、氢给予体,第二类稳定剂又称为辅助抗氧剂,可分为:过氧化物分解剂和金属离子钝化剂两种。

用于聚酚胺的稳定化的稳定剂有受阻酚、芳香胺、金属盐、受阻胺、亚磷酸醋、硫化物等,而最常用的是铜化合物和碱金属的溴盐、碘盐等无机防老剂,还有磷酸的各种无机和有机衍生物。这类工作多见专利文献,系统研究不同类型稳定剂对聚酞胺的稳定作用,稳定机理及并用效应等的工作较少。曾比较过卤化铜、胺类和受阻酚类的稳定作用,指出卤化铜和受阻酚类抗氧化效果优于胺类,同时卤化铜和胺类有使聚酞胺着色的缺点。研究了受阻酚、芳香胺、受阻胺和氮氧自由基对PA66的稳定化,结果表明芳香胺具有较好的稳定作用,而受阻酚的稳定作用很差。认为这可能是由于在PA66热加工过程中,受阻酚结构遭到破坏,从而失去了稳定作用。由于在研究中主要应用吸氧方法,只研究了初期的氧化,其结果具有很大的局限性。中科院的李荣福[8]对聚酞胺(主要选择PA66体系)的热氧化降解进行了系统的研究。他们得到PA66的热氧化降解,不同稳定剂稳定作用大小的顺序。受阻酚及芳香胺和168及DNP并用体系均表现出不同程度的协同作用。虽然铜盐及芳香胺表现出很高的稳定作用效率,但是它们使PA66着色,因而对于要求无色或浅色的制品,他们是不理想的稳定剂,而受阻酚1098及1010和辅助抗氧剂的复合配方体系则是更好的选择。他们还研究了各种金属盐(铁、钻、镍、铜、锰、银等)对PA66热氧化降解的影响,金属铜盐的稳定效果最好。铜盐和KI配合使用时,稳定效果较好,其它金属盐和KI配合使用时,则表现出反协同作用。

3.1.7PA66助剂改性

助剂是指这样一类物质或材料,它们在聚合物母体中以物理形式分散而不影响聚合物的分子结构,或者不影响聚合和变定过程。许多添加剂在塑料中起了十分重要的作用,有时甚至是决定材料价值的关键。在PA66中添加助剂改性主要用于改善其阻燃性,提高抗静电性、抗菌性,增强耐老化性、耐磨性以及赋予PA66其它特殊功能。

PA66是结晶性聚合物,如果不加阻燃剂,其阻燃性属UL94V-2级,只有加人阻燃剂后才能达到UL94V-0级。常用的阻燃剂有卤素阻燃剂、氮素阻燃剂、锑系阻燃剂、芳香

簇卤系阻燃剂等。随着人们对环境保护的要求越来越高及电子电气、煤矿、机械仪表等行业的不断发展,对阻燃材料的要求越来越高。国外各大公司都在积极开发新的阻燃材料,如美国Lnarel工业公司开发了以氯代有机阻燃剂为基础的耐温性较高的阻燃GF填充PA66材料。阻燃PA66适用制作阻燃性零部件。有关无卤膨胀阻燃白色尼龙66,我国尚处于基础研究阶段,有关的的资料和报道不多。阻燃尼龙的研究仍向无毒、高效的方向发展着。

增塑剂添加到高分子聚合物中能够增加高分子聚合物的塑性,从而使之易于加工并且使制品具有柔韧性。增塑剂可以降低树脂的软化温度、熔融温度和玻璃化温度,降低融体的粘度,增加其流动性,从而改善树脂加工性能。目前增塑剂在塑料加工行业中的运用极为普遍,大约有500种。将这些品种进行归类,有利于了解各类品种的特性,便于用户根据需要进行准确地选择品种和进行复配,也便于研究者根据这些规律开发新品种。根据化学结构,增塑剂可分为如下的类别:邻苯二甲酸酯类、二元酸酯类、环氧酯类、磷酸酯类、聚酯类、烷基磺酸苯酯类及氯化石蜡类等。某些增塑剂在尼龙中的使用多引起材料易燃,所以有一定的局限性。所以我们在尼龙中常选用含有N、S、P、Si 等阻燃元素的增塑剂添加到共混物中。且在用量不太大的情况下达到增塑的目的。

为了抑制光、热、氧等外界因素的作用,在尼龙中添加如下对尼龙较为有效的防老剂:DNP、Gl1098、UV207、UV327、对苯二酚、间苯二酚、碘化钾、碘化锂、醋酸铜、醋酸锰、萘酸铜、萘酸锰等。有报道说,美国Clariant公司开发的芳香族受阻胺光稳定剂NylosatbS-EED,适用于所有尼龙聚合物,它以化学键与聚合物连接,保护聚合物及尼龙纤维对外界光稳定、热稳定,且称之为反应性稳定剂[9]。

为了使制品具有鲜艳色彩和耐候性,常常加入着色剂,同时起遮蔽紫外光的作用,阻止紫外光进入聚合物内。炭黑、镉红、镉黄是尼龙较好的着色剂,兼有遮光抑制氧化作用。

近年来离子注入改善聚合物材料表面的导电性、生物相容性,也有不少探索性工作。离子注入提高聚合物材料表面的硬度和耐磨性已经引起人们的注意。用离子注入技术来提高尼龙66的表面硬度和耐磨性。C、Al、Ti、Fe、Ni五种离子单独被注入尼龙66,磨损实验表明五种离子注入后均可使尼龙66的耐磨性提高,其中Al离子注入后改性效果最好。Al离子注入后尼龙66的耐磨性提高了8倍多,纳米硬度测量显示Al离子注入后其硬度提高了1.4倍,弹性模量提高了15%。

3.1.8尼龙66纳米填料增韧改性

纳米技术是20世纪90年代发展起来的新技术。由于纳米微粒具有巨大的表面积,表面能高,位于表面的原子占有相当大的比例,处于表面的原子数多,并缺少近邻的原子配位和高表面能,使其表面原子具有很高的活性,能与某些大分子键合作用,使纳米复合材料的强度、耐热性有很大提高。

自从1987年日本丰田研究所首先报道用插层聚合法制得了尼龙66粘土纳米复合材料以来,人们对以蒙脱土(MMT)为代表的粘土/聚合物纳米复合材料倾注了极大的热情。人们对PA66/蒙脱土纳米复合材料的制备、结构及性能进行了大量的研究。蒙脱土(MMT)是一种厚度方向上具有纳米尺寸的层状硅酸盐粘土。利用蒙脱土的结构特点得到的有机蒙脱土可便于尼龙66大分子的插入,并且当MMT的含量很少(2%左右)时使尼龙66的冲击韧性不变甚至提高的情况下,其他性能有显着的改善。这正是目前尼龙改性希望达到的目标。

PA66/蒙脱土纳米复合材料的制备以熔融共混法为主,在共混之前,通常要对蒙脱土进行有机化处理,即将合适的有机物(如季铵盐)通过离子交换插入到蒙脱土片层间。有机化处理的目的主要有两个,一是促进蒙脱土片层的剥离,一是改善蒙脱土与聚合物的相容性。

据报道,通过将环氧树脂改性的有机粘土与尼龙66复合得到的纳米尼龙66具有很好的综合性能,其悬臂梁缺口冲击强度可以在粘土含量为5%时提高50%,而且此时该改性尼龙66的吸水性也有显着下降。

利用表面原位修饰法制得的表面键合有机官能团的SiO

2

来增韧尼龙,研究结果表明

尼龙66与此改性SiO

2纳米微粒有很好的界面相容性,使得尼龙66/纳米SiO

2

复合材料

的拉伸强度和缺口冲击强度均较纯尼龙66有不同程度的提高;而且,随着纳米SiO

2

量的增加,复合材料的拉伸强度在纳米SiO

2

质量分数为3%是达到最大,较纯尼龙66提

高7.6%;复合材料的简支梁缺口冲击强度提高51.3%,他们认为这是因为尼龙基体与SiO

2纳米微粒间形成一个弹性过渡层,可以有效的传递和松弛界面上的应力,更好地吸收和分散外界的冲击能,从而提高材料的韧性。通过该实验结果,可以知道相比蒙脱土而言,

纳米SiO

2

有更好的增韧效果,并且无需对尼龙进行增韧剂处理,方法更为简单。

3.2玻璃纤维填充PA66的性能

3.2.1玻璃纤维的选择及增强机理

玻璃纤维对尼龙的增强已得到广泛应用,其研究也相对成熟,玻璃纤维增强尼龙后,其拉伸强度,弯曲强度等力学性能得到了大幅提高,这就是玻璃纤维抵抗外力的贡献。

由于尼龙在共混过程中,在双螺杆挤出机高速剪切作用下,被剪切成一定长度的纤维,并均匀的分布在尼龙基体树脂中,混合挤出过程中,玻璃纤维会沿轴向方向产生一定程度的取向,当制品受到外力作用时,从基体传到玻璃纤维时,力的方向会发生变化,即沿取向方向传递,这种传递作用在一定程度上起到外力的分散作用,即能量分散作用,这就增强了材料承受外力作用的能力,在宏观上,显示出材料的拉伸强度、弯曲强度等力学性能的大幅度提高。

在玻璃纤维加入的同时,起填充的同时,玻璃纤维对尼龙66起成核剂的作用,因此改性因此改性尼龙66在玻璃纤维作用下的结晶行为也影响到了共混材料的性能,从结晶行为来看,结晶度的增加对材料的力学性能是有利的,利用玻璃纤维对结晶性基体树脂(PA66)结晶行为与结晶形态的影响,以达到树脂基体增强增韧的目的。因此共混物的冲击强度在结晶状态下也得以提升。目前市场上作为尼龙类增强的玻璃纤维大多选择了E型无碱玻璃纤维,这是由于尼龙本身呈弱碱性,与碱性的玻璃纤维很难黏结好。

生产过程中,影响到GFPA66(玻璃纤维增强尼龙66)性能的主要是玻璃纤维的长度,其长度对制品的力学性能及表观质量都有较大的影响,玻璃纤维的长度一般控制在0.8~1?mm,从理论上讲玻璃纤维越长增强效果越好,但做为短玻璃纤维增强,较长的GF会带来制品的表面粗糙及翘曲等问题,所以控制螺杆结构及转速以求获得长度适中的GF是做好GFPA66的关键。

尼龙66本身的拉伸性能较低,只有60~80MPa,经过玻璃纤维增强后,其强度能够得到大大提高。一般来说玻璃纤维含量越高,GFPA66的力学性能越高,但实际生产中应根据市场需求来确定DF的含量。同时过高的GF含量对设备的磨损严重,且注塑成型加工也较困难,特别是薄壁制品难以充满模腔。这是由于GF的加入使GFPA66的MFR(溶体流动速率)下降,对形状复杂及薄壁制品来说很难成型。

图3~6给出了不同的GF含量对GFPA66力学性能及热变形温度的影响,由图3~6可以看出,玻璃纤维的含量在30%以内时,拉伸强度,弯曲强度,冲击强度及热变形温度提升很快,几乎呈直线上升,但含量在40%~50%时,力学性能提升不大,在50%以后性能几乎没有提升,这是由于过高的玻璃纤维含量涉及到GF的分散性及与尼龙66树脂的黏结效果,过高的GF含量使GF与尼龙66机体树脂黏结度降低。因此采用30%的GF 增强尼龙66较合理。

同时由于玻璃纤维的加入,使得制品的成型收缩率也得到了很好的改善,GF填充30%时,收缩率降至0.2%。

3.3增韧剂的选择及对PA66性能的影响

3.3.1

以聚烯烃增韧PA66,由于聚烯烃PE和PA66之间的拉伸弹性模量和泊松比存在差异较大,在分散相的界面周围会产生高的静压强,在其作用下,作为分散相的PE易发生屈服产生冷拉伸,引起大的塑性形变,吸收了大量的冲击强度,达到增韧的目的。

可用于PA66增韧的增韧剂有EPDM,POE,PE,EVA等,但不同的增韧剂对其共混物的增韧效果及对刚性的影响不同。由于PA66是强极性高分子与弹性体本身相容性较差,因此常用弹性体接枝马来酸酐法来解决相容性问题。图7给出了不同增韧剂对PA66干态下冲击性能的影响。

从表1可以看出,聚烯烃的增韧效果远不如弹性体EPDM,POE,对于单纯的增韧PAA66来说,加入少量的弹性体就能达到增韧的目的,但作为增强增韧材料的增韧剂,除了要考虑到增韧剂对共混物韧性的影响外,我们还应该关注其增韧剂的加入对共混物综合力学性能的影响,入拉伸强度,弯曲强度等。表1给出了不同的增韧剂对增韧PA66力学性能的影响。

表1各种增韧剂对增韧PA66力学性能的比较

的流动性,在反应体系中加入少量的抗氧剂1010,能产生热稳定作用,对接枝率影响不大。较合适的接枝条件为:LLDPE/MAH为100:5,DCP的加入量为MAH含量的10%,二甲亚砜的加入量为LLDPE的1.5%

3.4增强增韧配方设计

对于增强增韧尼龙来说,以PA66/PA6为基体,以30%的玻璃纤维为增强填充材料,加入一定量的增韧剂PE—g-MAH,能够得到综合力学性能优良的符合材料。表2给出了不同组分配比对共混物力学性能的影响。

由表2可见,采用30%GF增强,添加一定组分的增韧剂PE-g-MAH改性的PA66,其拉伸强度,弯曲强度,冲击强度,热变形温度均达到了一定的高度,由4#可以看出,PE-g-MAH 含量在20%时,其缺口冲击强度达到了23.3KJ/m-2,与5#PE-g-MAH含量为10%相比,其缺口冲击强度提高了2.9KJ/m-2,升幅不到15%,而其他性能特别是刚性缺受到了很大的影响,拉伸强度,弯曲强度下降较大,这是由于作为基体树脂的PA66仅占了总组分的50%,而作为分散相的接枝PE和GF含量过多,较大程度的影响了基体树脂本身特有性能。衡量之下,以GF含量为30%,加入10份接枝PE,能够得到较高刚性,较高韧性的共混材料。

同样,我们把增强增韧的PA66与纯的PA66以及30%GF增强的GFPA66做了比较,以5#为例,与1#相比,5#综合性能得到了大幅的提高,其缺口冲击强度提高了4倍以上,因GF的加入,热变形温度提高到了240℃,与3#相比,采用增强增韧的PA66其综合性能要比30%GF增强PA66理想,在保持了GF增强PA66相当刚性的同时,缺口冲击强度提高了60%以上,而拉伸强度,弯曲强度下降均不到10%。

表2不同组分增强增韧组分对共混物力学性能比较

注①PA66/PA6=70/30表2

3.5增强增韧PA66的生产配方

经过以上分析以基本确认了共混物组分的配比,但作为生产以生产为向导的配方往往要考虑到现实生产中存在的诸多问题。

实际生产中,往往采用PA66/PA6合金的来做PA66的增强增韧配方,这是由于PA 合金可以改善PA 基体的某些缺陷或提高某些性能。我们知道PA66与PA6由于结构相似具有很好的相容性,而且采用不同组分的配比对性能有很好的互补作用。以PA66为主体,PA6为分散相制得的合金(PA66/PA6=70/30),采用玻璃纤维增强时,材料的弯曲强度略低与玻璃纤维增强的GFPA66,但其缺口冲击强度比玻璃纤维增强PA66提高了10%,同时加工流动性也得到改善,PA66/PA6的加工温度也比纯PA66宽。而且原材料PA6的价格也相对较低。

经过以上的探讨,我们选择了以5#作为基本配方,选择了以PA66/PA6合金的方式为基体树脂,以30%GF 填充增强,以PE-g-MAH 作为增韧剂,再加入一定的加工助剂,得到了较理想的增强增韧PA66。

配方如下:

PA6645KH-5700.15

PA615抗氧剂10980.1

GF30抗氧剂1680.1 PA66(Wt%)

PE-g-MAH(Wt%)

GF(Wt%)

拉伸强度(MPa )

弯曲强度(MPa ) 缺口冲击强度(KJ/m -2) 无缺口冲击强度(KJ/m -2) 热变形温度(℃)

10 0 0 73.4 99 4.2 60.1 70 70 30 0

51.3

65

22.3

NB

149 70 0 30 175 282.5 12.7 74.5 252 50 20 30 149.3 230 23.3 89.5 210 60 10 30 165 259.2 19.4 78.4 240 60 10 30 163 254 21.9 78.2 241

LLDPE-g-MAH10其他助剂适量

增强增韧后的PA66除了具有高的刚性和韧性外,还具有其它一些优良的性能,如GF的加入使材料的收缩率下降,PE-g-MAH的加入降低了材料的吸水率。

由于在PA66中加入了廉价的PE、GF,使材料的成本也大大降低,应该说增强增韧PA66的市场前景非常广阔。

四.结论

①采用MAH接枝PE,可以显着改善与PA66的相容性。

②采用聚烯烃PE作为增韧剂,在增韧的同时,对PA66的刚性影响较小。

③PE-g-MAH的接枝率及交联度对增韧材料的性能影响较大。交联度过大时对

PA66几乎没有增韧效果,同时带来了材料的黏度过高,难以注塑。

④玻璃纤维增强PA66是较好也是较成熟的增强方式,以30%增强的效果最理

想。

⑤PA66/PA6合金的组分在70/30时,在采用GF增强时,共混物的弯曲强度略

低于GF增强的PA66,但缺口冲击强度提高了10%,同时加工流动性得到改善。

⑥PA66/PE-g-MAH/GF增强增韧的复合材料具有很高的刚性和较高的韧性,综

合性能优越,其力学性能均衡的特点,可以代替PA66应用与各种产品,同时GF,PE-g-MAH的加入降低了成型收缩率和吸水率,克服了PA66固有的缺点。

⑦采用PA66/PE-g-MAH/GF共混的复合材料,可以通过改变PE-g-MAH和GF的

含量来得到不同刚性和韧性的改性PA66,选择范围广泛。

参考文献

[1].欧玉春.尼龙基复合材料的增韧和增强[J].工程塑料应用.1993.(02)

[2]姜明才,辽阳石油化纤公司研究技术报告,1992

[3]陈媛,陈永东,杨桂生.聚酰胺增韧改性研究进展[J].现代塑料加工应

用,2000,12(6):46.

[4]沙珍雁,[4]化工科技动态

[5]朱静安,高分子材料与工程,1999,(15):76

[6]郑宏圭,塑料科技,2000,14(6):17~19

改性增强尼龙6主要技术指标

改性增强尼龙6主要技术指标 弯曲强度(MPa)≥100 缺口冲击强度(kJ/m2)≥6.0 拉伸强度(MPa)≥70 压缩强度(MPa)≥78 相对密度≤1.22 熔融值的测定方法 一、目的: 区别热塑性塑料在熔融状态下的粘流特性。 二、定义: 熔体流动速率测定仪亦称熔融指数仪;是测定热塑性塑料在一定温度和负荷下,熔体每10分钟通过标准口模毛细管的质量或熔融体积。 三、操作环境、要求: 温度:10~30℃湿度:≤80%RH 四、仪器规格、测试范围: 1、温度控制范围:100-400℃ 2、波动:±0.1℃ 3、测定范围:0.031-1500g/10min 4、口模内径:Ф2.095±0.005mm、Ф1.180±0.010mm 5、料筒内径:Ф9.550±0.020mm 6、电源:AC220V 50Hz 5A

五、仪器介绍: 六、操作方法: 1、将口模与料杆装入料筒: 2、开启左侧电源开关,上显示器显示当前料筒实际温度,下显示器显示(上次)设置温度,并根据所设置的温度开始升温、控温,行程指示灯(25.4)亮(如图2);按行程键选择行程,仪器按上次设置的参数运行,参数设置方法如下: 按一下设置键,上显示器显示T,下显示器显示当前己设置温度值;如需修改按键,下显示器第一位灯闪,按▼键或▲键修改当前数值,使该位数值“+1”或“-1”,再按下显示器第二位灯闪,仍按▼键或▲键修改数值,直至修改完成依次按一下设置键与返回键,既可保存修改,并回到工作状态;依次按设置键可修改温度、日期、批号、负荷、密度、温度修正值(参数修改方法同上); 3、行程设置:在自动工作状态下的初始杠杆上翘时,自动行程自动设置在25.4,相应指示灯亮,按行程键,转换至6.35(相应灯亮),再按行程键,转至25.4。6.35或25.4(“1/4”或“1”)的选择依据参见表一。 MFR(g/min) 料杆移动距离(mm) 0.031~10 6.35( 1/4″) 10~1500 25.4( 1″) (表一)

尼龙工程材料的改性

尼龙工程材料的改性 摘要: 尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。因此对尼龙66的改性受到人们的广泛关注。国内外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。 1.尼龙改性的研究进展 对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。 1.1共混改性 在尼龙改性研究中,高分子合金是最常用的一种手段。其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。就尼龙合金而言,主要的研究集中在以下几个方面。1.1.1尼龙与聚烯烃(PO)共混改性 聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。 在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。根据聚合物共混理论,理想的体系应该是两组分部分既相容,又各自成相,相间存在一界面层,在层中两种聚合物的分子链相互扩散,有明显的浓度梯度。通过增大共混组分间的相容性,进而增强扩散,使相界面弥散,界面层厚度加大,是获得综合性能优异共混物的重要条件。

尼龙66注塑成型工艺 (1)

华侨大学 课程名称:增强增韧尼龙66汽车专用料姓名:彭儒 学号:9 专业:08高分子二班 任课教师:钱浩

前言: 尼龙是结晶型塑料,品种颇多,已达到130多种,应用于注塑加工的有尼龙6、尼龙66、尼龙610、尼龙1010以及共聚性尼龙、超韧性尼龙、玻璃纤维增强尼龙、矿物增强尼龙等等。世界市场中,应用量最大的是尼龙66。 尼龙最早在1889年首先由Gabriel和Maass 两人合成制得,但系统的研究并最终实现工业化实在1929年,由美国杜邦公司的Carothers着手进行的。1931年Carothers申请了第一篇尼龙专利,1935年首先制得尼龙66,1939年实现工业化。 尼龙66的应用领域一般在汽车、电子电器、化工设备、机械设备等方面。从最终用途看,汽车行业消耗的尼龙66占第一位,电子电器占第二位。大约有88%的尼龙66通过注射成型加工成各种制件,约12%的尼龙66则通过挤出、吹塑等成型加工成相应的制品。 由于尼龙66优良的耐热性、耐化学药品性、强度和加工方便等,因而在汽车工业得到了大量应用,目前几乎已能用于汽车的所有部位,如发动机部位,电器部位和车体部位。发动机部位包括进气系统和燃油系统,如发动机气缸盖罩、节气门、空气滤清器机器外壳,车用空气喇叭、车用空调软管、冷却风扇及其外壳、进水管、刹车油罐及灌盖,等等。车体部位零部件有:汽车挡泥板、后视镜架、保险杠、仪表盘、行李架、车门手柄、雨刷支架、安全带扣搭、车内各种装饰件等等。车内电器方面如电控门窗、连接器、保鲜盒、电缆扎线等。 工艺特点:

⑴吸水性尼龙66较易吸湿,如果长时间暴露在空气下,会吸收大气中的水分。吸水后会发生体积膨胀,影响制品的尺寸精度,如在注塑前吸收过量的水分时,其制作的外国外观和力学性质都会受损。 ⑵结晶性尼龙66为结晶性高聚物,一般在20%~30%之间。结晶度的高低与性能有关,结晶度高,拉伸强度、耐磨性、硬度、润滑性等性能有所提高,热膨胀系数和吸水性趋于下降。 ⑶热稳定性在熔点以上温度,约254℃,水分子会与尼龙66发生化学反应,使聚合物水解或裂解,使尼龙66变色,树脂分子量及其韧性相对减弱,流动性增大,不单带来加工上的困难,而且会对制品性能造成损害。注塑时喷嘴流涎,制件飞边严重。聚合物裂解产生的气体和从空气中吸收的水分,共同夹击制件,轻则在表面形成不光洁、银丝、斑纹、微孔、气泡,重则反生熔体膨胀无法成型或成型后机械强度下降。最后,经过这种水解裂解的尼龙,其性能完全不可还原,即使重新干燥也不能再次使用。 干燥好的原料如果随便在空气中露置,会迅速在空气中吸收水分而使干燥效果丧失殆尽。即使在加盖的机台料斗内,存放的时间也不宜太长,一般雨天不超过1h,晴天限制在3h之内。 尼龙66熔融温度虽然高,但当达到熔点后,其粘度远较一般热塑性塑料如聚苯乙烯等低很多,故成型时流动性不成问题,尼龙66的流变特性是剪切速率增加时其表观粘度下降不突出,加之熔融温度范围较窄,在3~5℃之间,所以高的料温无疑是顺利冲模的保证,而不在乎高的注射速度和压力。 ⑷流动性尼龙66熔体的粘度低,流动性大,容易冲模成型,对薄壁制品更是如此,而且制品在模内能迅速固化,模塑周期短。

改性尼龙需要注意的问题点

聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。是美国著名化学家卡罗瑟斯和他的科研小组发明的。 尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。 尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。 尼龙[1],是聚酰胺纤维(锦纶)是一种说法. 可制成长纤或短纤。 尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。 1928年,美国最大的化学工业公司——杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯博士受聘担任该所的负责人。他主要从事聚合反应方面的研究。他首先研究双官能团分子的缩聚反应,通过二元醇和二元羧酸的酯化缩合,合成长链的、相对分子质量高的聚酯。在不到两年的时间内,卡罗瑟斯在制备线型聚合物特别是聚酯方面,取得了重要的进展,将聚合物的相对分子质量提高到10 000~25 000,他把相对分子质量高于10 000的聚合物称为高聚物(Superpolymer)。1930年,卡罗瑟斯的助手发现,二元醇和二元羧酸通过缩聚反应制取的高聚酯,其熔融物能像制棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可达到原来的几倍,经过冷却拉伸后纤维的强度、弹性、透明度和光泽度都大大增加。这种聚酯的奇特性质使他们预感到可能具有重大的商业价值,有可能用熔融的聚合物来纺制纤维。然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。 随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。 聚酰胺(尼龙) 聚癸二酸癸二胺(尼龙1010) 聚十一酰胺(尼龙11) 聚十二酰胺(尼龙12) 聚己内酰胺(尼龙6) 聚癸二酰乙二胺(尼龙610) 聚十二烷二酰乙二胺(尼龙612) 聚己二酸己二胺(尼龙66) CAS编码:32131-17-2

尼龙的改性特性以及应用范围

本文摘自再生资源回收-变宝网(https://www.sodocs.net/doc/8412018222.html,)尼龙的改性特性以及应用范围 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。 因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。 ③提高尼龙的机械强度,以达到金属材料的强度,取代金属 ④提高尼龙的抗低温性能,增强其对耐环境应变的能力。 ⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。 ⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。 ⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。 ⑧降低尼龙的成本,提高产品竞争力。

总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。 改性PA产品的最新发展 前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA 投放市场。 20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。 20世纪90年代,改性尼龙新品种不断增加,这个时期改性尼龙走向商品化,形成了新的产业,并得到了迅速发展,20世纪90年代末,世界尼龙合金产量达110万吨/年。 在产品开发方面,主要以高性能尼龙PPO/PA6,PPS/PA66、增韧尼龙、纳米尼龙、无卤阻燃尼龙为主导方向;在应用方面,汽车部件、电器部件开发取得了重大进展,如汽车进气歧管用高流动改性尼龙已经商品化,这种结构复杂的部件的塑料化,除在应用方面具有重大意义外,更重要的是延长了部件的寿命,促进了工程塑料加工技术的发展。 改性尼龙发展的趋势 尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。

尼龙改性中使用的相容剂和增韧剂

尼龙改性中主要可以使用的相容剂为POE接枝相容剂ST-2,另外还有EPDM接枝相容剂ST-18,我们现在生产得最多的是POE 接枝相容剂ST-2,在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙以及增韧尼龙中,我们都建议大家使用ST-2,因为POE接枝相容剂ST-2在尼龙中的增韧效果比较理想,ST-2在尼龙中的作用主要是提高尼龙的韧性及冲击强度。在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙中,建议大家使用ST-2的添加量为5-10%时较为理想,添加量太少,可能增韧效果达不到要求,添加量太多,可能对尼龙的防火、拉伸强度以及耐温会有一定的影响,任何事物只能是量力而为,相容剂的使用亦是如此。而在上述尼龙改性中的一些特殊情况,如用户只要求冲击强度达到一定高度而对尼龙耐温和拉伸强度没有什么要求,则ST-2的使用量可以在10%以上。另外ST-2的一个大的用途是在超韧尼龙和超韧耐寒尼龙中使用,这时ST-2的建议使用量为15-20%,甚至在一些高要求的情况中,ST-2的使用量需达25%以上。ST-2在尼龙中使用时,尼龙最高缺口冲击强度可达120KJ/ m2,耐寒尼龙最低温度可做到零下35℃,另外在超韧耐寒尼龙改性中,对尼龙的粘度的选择亦有较高要求,这一点是许多尼龙改性工作者所不注意的,在超韧耐寒尼龙改性中,要求尼龙粘度达2.8以上,否则,相容剂加得再多,冲击强度也难提高。我公司ST-2在PBT改性中亦能起到很好的相容增韧作用,用户如作高韧性要求的PBT改性产品,ST-2 一定会让你得到意想不到的帮助。 EPDM接枝相容剂ST-18主要用于超耐寒尼龙中,如要求尼龙的耐寒在-35℃到-40℃的情况,就需用它。

尼龙66改性的最新研究进展

xx66改性的最新进展 第一章诸论 1.1xx66的概述 尼龙66是一种高档热塑性树脂,是制造化学纤维和工程塑料优良的聚合材料。它是高级合成纤维的原料,可广泛用于制作针织品、轮胎帘子线、滤布、绳索、渔网等。经过加工还可以制成弹力尼龙,更适合于生产民用仿真丝制品、泳衣、球拍及高级地毯等。尼龙66还是工程塑料的主要原料,用于生产机械零件,如齿轮润滑轴承等。也可以代替有色金属材料作机器的外壳。由于用它制成的工程塑料具有比重小,化学性能稳定,机械性能良好,电绝缘性能优越,易加工成型等众多优点,因此,被广泛应用于汽车、电子电器、机械仪器仪表等工业领域,其后续加工前景广阔。 尼龙66由己二胺和己二酸缩合制得,常见的尼龙是一种结晶性高分子,不同牌号、不同测试方法报道的尼龙66的熔点在250-271℃之间。由于尼龙66无定型部分的酞胺基易与水分子结合,常温下尼龙66的吸水率较高。与一般塑料相比,尼龙66的冲击韧性大,耐磨性优良,摩擦噪音小,另外,尼龙66对烃类溶剂,特别是汽油和润滑油的耐受力较强。尼龙66的90%应用于工业制品领域。 其中,尼龙在汽车工业中的用量占总用量的37%,其用途包括储油槽、汽缸盖、散热器、油箱、水箱、水泵叶轮、车轮盖、进气管、手柄、齿轮、轴承、轴瓦、外板、接线柱等。尼龙66的第二大应用领域是电子电器工业,消耗量占总量的22%,其用途包括电器外壳、各类插件、接线柱等。此外尼龙66也被广泛应用于文化办公用品、医疗卫生用品、工具、玩具等场合。 我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产 4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为

尼龙材料相关整理

1.聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团-[-NHCO-]-的热塑性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是PA11、PA12、PA610、PA612,另外还有PA1010、PA46、PA7、PA9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括:增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 1.1.性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为15000-30000。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好,有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良好,因而容易增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼

龙的熔体流动性好,故制品壁厚可小到1mm。 1.2.性能特点与用途 1.2.1.PA6 物性:乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工:成型加工性极好,可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用:轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、储油容器等。 1.2.2.PA66 物性:半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而尺寸稳定性差。 加工:成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、焊接、粘接。

尼龙66的主要牌号与性能

尼龙66的主要牌号与性能 01.3.6.1国产尼龙66的主要性能指标 国内生产尼龙66的厂家有:黑龙江省尼龙厂、上海塑料制品十八厂、辽阳化纤工业总公司、太原合成纤维厂、神马集团、浙江衢州化工厂、宜兴太湖尼龙厂、江苏海安化工厂。其产品主要用制造各种机械、汽车、化工、电子电气装置的零部件,特别适合用于高强度或耐磨部件,如各种齿轮、滑轮、辊轴、轴承、泵体中叶轮、风箱叶片、高压密封圈、阀座、垫片、衬套、各种壳体、工具手柄、支撑架、电缆包层、汽车灯罩等。在电子仪器设备、继电器等电气设备中制造零件、电梯导轨、建筑装饰扶手等。在医疗器械、体育用品和日用品上也有广泛应用,如棒球棒、滑雪板等。也可制成薄膜后与铝箔等形成复合膜用于食品包装,如软包装饮料、罐头等。表01-73列出了几家企业的尼龙66产品指标。 表01-73 国产尼龙66的性能指标 01.3.6.2阻燃增强尼龙66的主要性能指标

目前,国内尚有许多厂家从事改性尼龙66树脂的生产。生产阻燃尼龙66和阻燃增强尼龙66的主要厂家有:黑龙江省尼龙厂、黑龙江省化工研究所、上海赛璐珞厂、广州莲花山工程塑料厂、江阴市永建化工有限公司等。阻燃尼龙66主要用于低压电器、机床电器、广播电视工业中,制造各种阻燃零件如调压器开关、仪器仪表外壳和电子电气连接器等;生产玻纤增强尼龙66的主要厂家有:黑龙江省尼龙厂、上海德胜塑料厂、广州莲花山工程塑料厂、苏州塑料一厂等。产品主要应用于低压电器工业,如交流接触器底座、线圈骨架、行程开关等各种要求耐火性能的介电零件中。黑龙江省化学研究所还生产防老化尼龙。其主要指标列于表01-74中。 表01-74 国产改性尼龙66树脂的主要性能指标 01.3.6.3杜邦公司系列尼龙66产品的基本性能指标 杜邦公司是主要的尼龙66生产厂家之一,其产品型号齐全,覆盖面广,满足各行各业对尼龙66树脂的不同性能要求,见表01-75。 表01-75 杜邦公司Zytel? 尼龙66树脂型号与用途

尼龙6的增韧性研究及应用前景

尼龙6的增韧性研究及应用前景 谢敏敏 [摘要]:综述了国内外尼龙增韧改性的研究进展,介绍了高韧性尼龙 6工程塑料的研究进展及应用前景,并从不同方面对尼龙的增韧进行了探讨,例如与聚烯烃及弹性体共混增韧、掺混高韧性工程塑料增韧、无机粒子增韧。 [关键词]:尼龙6 增韧 尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键,能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。但是尼龙6存在低温和干态冲击性能差,吸水性大等弱点,使其应用领域受到一定限制,为适应工业发展的需要,近年来通过共混改性,使其向高冲击、低吸水和优化加工等方向发展的研究成为广泛关注的课题。尼龙6的增韧工作自20世纪70年代以来一直是尼龙改性的重要课题,美国、西欧、日本先后开发了各种牌号的高抗冲尼龙6合金。尼龙6是比较容易形成合金的树脂,合适的相容剂是形成韧性尼龙的关键。 高韧尼龙6合金的获得主要有以下三种途径:一是通过与聚烯烃及弹性体共混;二是掺混高韧性工程塑料;三是无机粒子增韧。 1. 聚烯烃、弹性体增韧 尼龙6与非极性或弱极性的聚烯烃、弹性体共混可以改善韧性。但尼龙6带有强极性的酰胺基团,与聚烯烃、弹性体的相容性差,导致合金的韧性下降。解决相容性的方法有两种:一种方法是尼龙6中加入单体熔融接枝聚烯烃工弹性体,单体一般为带羧基官能团的马来酸酐(MAH)、甲基丙烯酸缩水甘油醇(GMA);另一种是加入一种能同聚烯烃或弹性体相容的、带有活性基团(如环氧基)的第三组分,反应基团可以和尼龙6分子末端的胺基实现反应性相容。另外,采用聚烯烃接枝丙烯酸的方法是改善尼龙与聚烯烃弹性体相容性的另一种有效途径。这是由于接枝丙烯酸共聚物所带的羟基官能团同样能与尼龙末端的胺基反应形成化学键。虽然羟基的反应活性不如二酸酐,但是由于丙烯酸自身可以发生聚合,在接枝过程中可形成较长的聚丙烯酸支链,因而可获得较高的接枝率;所制备的接枝共聚物与尼龙

尼龙的增韧改性.

《聚合物复合材料设计与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 学号:2010130101025

尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。 关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方

增强增韧尼龙66汽车专用料的性能研究

新技术与产品开发 增强增韧尼龙66汽车专用料的性能研究 Ξ 崔 欣1,王静江2 (11中国石油辽阳石化分公司研究院,辽宁辽阳111003;21中国石油辽阳石油化纤公司技术中心,辽宁辽阳111003) 摘要:采用双螺杆挤出加工工艺,对增强增韧尼龙66材料综合性能进行了研究;比较了尼龙品种、增韧剂、玻璃纤维及助剂对内饰件材料的改性效果;并分析了生产工艺对材料性能的影响。确定了材料的最佳工艺参数和配方,并成功应用在出口汽车座椅滑块制品上。 关键词:尼龙;玻璃纤维;增韧剂;结构;性能;应用 中图分类号:T Q32316 文献标识码:B 文章编号:1005-5770(2007)04-0062-04 Study of Property of R einforced and Toughened N ylon 66 Special Compound for Auto I ndustry C UI X in 1,W ANGJing 2jiang 2 (11Research Institute of Liaoyang Petrochemical Branch ,PetroChina ,Liaoyang 111003,China ;21T echnical Center of Liaoyang Petrochemical Fiber C o.,PetroChina ,Liaoyang 111003,China ) Abstract :The overall property of rein forced and toughened nylon 66com pound was studied by means of extru 2sion technology on twin 2screw extruder 1The effect of the variety of nylon and the effects of toughener ,glass fiber and additive on the m odification of the decorative com pounds were com pared ,the effect of processing technology on the property of the com pound was analyzed 1The optimum processing parameter and formulation for the com pound were determined and applied to the production of the slide bar of the saddle of car for export success fully 1 K eyw ords :Nylon ;G lass Fiber ;T oughener ;Structure ;Property ;Application 汽车上零部件要求能耐高低温、耐油、耐化学药 品、耐候和一定的机械性能,达到节能降耗、提高车速、改进外观和舒适性、降低成本等众多目标。普通单牌号尼龙虽具有良好的强度和刚性,但冲击强度各有不同,且熔融范围较窄,熔体强度对温度敏感,以30%玻纤增强尼龙66为例,其熔体质量流动速率(MFR )为10~25g/10min ,波动较大,给注塑制件的工艺调整带来不便。随着国内汽车业的不断发展和成熟,对车用材料提出了更高要求的同时,成本控制也近乎苛刻,通过合金工艺生产的尼龙合金复合材料,可以很好地解决上述问题,满足汽车用材料的要求。以汽车座椅滑块为例,要求材料具有高强度、高刚性,良好的尺寸稳定性,并具备适当的韧性和良好的加工性。本项目组采用共混合金工艺,经过反复试验,取得了良好的效果,材料性能满足使用要求。 1 实验部分 111 主要原材料及设备 尼龙66:中黏EPR27、高黏EPR32,平顶山神马集团;尼龙6:高黏32,岳阳石化;中黏26228,岳阳石化/石家庄化纤;接枝聚丙烯:K T J 21A ,沈阳科通;接枝聚乙烯:K T 25A ,大连工大;接枝POE :K TR 23C ,沈阳科通;接枝POE :长春应化所;接枝POE :9805,上海日之升;接枝EPDM :9802,上海 日之升;接枝EPDM :南京驰鸿;玻璃纤维:988(长),浙江巨石;抗氧剂:1010,瑞士汽巴/吉林大河东;光亮润滑剂:T AF ,苏州国光。 双螺杆挤出机:SH J582Ⅱ,南京信立;注塑机:CWI 2120D ,上海纪威;万能试验机:C MT5204,深圳 新三思;冲击试验机:X JU 2515,承德金建;热变形温度检测仪:XRW 2300,承德金建;熔体质量流动速率仪:SRZ 2400C ,长春智能;尺寸变化测定仪:XC B 2150,承德金建。 ? 26?塑料工业 CHI NA P LASTICS I NDUSTRY 第35卷第4期2007年4月 Ξ作者简介:崔欣,女,1968年生,大学本科,高级工程师,长期从事化工材料材料的研究,发表论文多篇。 cuixin823@sina 1com

尼龙的增韧改性

《聚合物复合材料设计 与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,

年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进聚酰眩塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。 2.国内外的技术情况 国内外学者对尼龙改性进行了大量的研究,近年来已有了新的进展,同时有了一些成熟的工业化产品,也获得了许多综合性能优良,加工性能好的产品。 尼龙自发明以来,生产能力和产量都居于五大通用工程塑料之首(PA,Pc,PoM,PBT/PET,PPO)的第一位"美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化,20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求,因而被广泛用于电子电气、交通运输、机械设备及日常生活用品等领域,在经济中的地位日益显着"。 但于我国经济发展的需求和国外先进技术相比,差距是不言而喻的。目前我们应当重视将比较成熟的研究成果进行中试,直至规模生产,从而减低国内用户的生产成本。同时应当在加强传统PA6共混手段研究的基础上,逐步开展一些新型PA6改性方法的研究,加速尼龙6改性研究步伐,开发系列化的耐高温、低吸湿、可电镀、高硬度、高强度、高阻隔性等特殊性能的改性PA6,进一步拓宽尼龙6应用领域以适应科技发展需要。我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为6.5万吨。在当前形势下,外商普遍看好我国尼龙“产品市场。美国杜邦、德国伍德、日本东洋和旭化成等公司均将大量尼龙66等制品投放中国市场,面对跨国公司的激烈竞争,我国必须建设我们自己的尼龙66生产与加工产业,提高国内企业在市场中的地位。由于尼龙66的生产目前仍是走国外引进的路子,就要求国内加大尼龙66深加工的力度,拓展尼龙66的广阔市场。尼龙66的深度加工具有加工工艺简单、建设周期短、投资少、增值快的特点,大部分属于短平快项目。有的深加工项目只需增添一些增强剂、改性剂,然后注塑成型即可制成工程塑料。目前,我国对尼龙66的深加工主要是用来生产轮胎帘子布和高级合成纤维,而用于工程塑料尚处于摸索起

尼龙6 共混改性研究进展

收稿日期:1999-09-15。 作者简介:钟明强,浙江工业大学化工学院副教授,硕士生导师。主要从事聚合物共混与复合材料方面的研究工作。 尼龙6共混改性研究进展 钟明强 刘俊华 (浙江工业大学化工学院,杭州,310014) 摘要:系统介绍了国内外用聚乙烯、聚丙烯、PVDF 、PAR 、PET 、PVOH 、ABS 、PC 、PPO 、SAN 、弹性体、TLCP 等改性尼龙6的系列方法、研究成果及其性能,并提出了反应挤出共混改性和无机纳米材料改性尼龙6的设想。 关键词: 尼龙6 共混改性 进展 述评 尼龙6(PA6)具有力学性能优良、耐磨、自润滑、 耐油及耐弱酸弱碱等优良的综合性能。但因其极性强、吸水性大、尺寸稳定性差、抗蠕变性差,不宜在高于80℃、潮湿及高负荷下长期使用。提高PA6性能的方法包括共聚、共混、填充、增强、分子复合等手段,其中共混改性是近十多年来发展最为迅速的方法之一,并以其投资小、见效快、生产周期短等特点得到广泛应用。PA6可以与通用塑料、工程塑料、弹性体、液晶高分子等材料共混改性。 1 与通用塑料共混 111 PA6/PE PA6属极性高聚物,而PE 属非极性高聚物,PE 的掺入有利于降低PA6的吸湿性,但两者不具有热力学相容性,必须加入相容剂或通过机械共混的强烈剪切作用才能得到满意的共混效果。 B.J urkowski [1]等用静态混合器熔融共混PA6/LDPE 。通过热力学方法测试表明,试样在结构上可达到分子水平分布,说明静态混合器熔融共混能实现机械增容,使分散相非常细微[2]。Kang Yeol Park [3]等研究了LDPE 接枝HI (2-羟乙基甲基丙烯酸酯-异佛尔酮-二异氰酸)共聚物与PA6的熔融共混体系。测试表明在熔融共混时发生了化学反应。相态分析进一步表明用HI 官能化LDPE 使PA6/LDPE -g -HI 分散相颗粒比PA6/LDPE 的细,PA6/LDPE -g -HI (50/50)相间存在有连接点。R.G onz ález -n únez [4]等研究了凝聚作用对PA6/LDPE 体系分散相终态结构的影响,结果表明决定分散相最终相态的只是单个颗粒的形变。在PE 分子链上引入酸酐基团如马来酸酐(MAH )后再与PA6熔融共混,这些活性基团可与PA6末端的氨基 实现反应增容,提高两相界面粘接力,改善共混性 能[5]。MAH 对HDPE/PA6体系的反应挤出共混结果表明MAH 对不同配比的共混体系均有明显的增容作用,向HDPE/PA6/MAH/DCP (85/15/0.1/0.05)体系中加入2~3份的EVA -23能使体系的缺口冲击强度比纯PA6提高6倍。1.2 PA6/PP 林春香[6]等用LDPE -g -MAZn 有效改善了 PA6/PP 相容性。SEM 分析表明,在PA6/PP (50/50)体系中,离聚物的加入形成了两相贯穿结构;动态粘弹谱分析表明两相t g 相互靠拢,熔融温度有所提高。M.Heino [7]等用SEBS -g -MAH 增容PA6/PP 体系,并用拉伸试样研究了其断裂强度。结果表明,PA6含量增加,断裂强度增加,当PA6/PP 配比为80/20时,断裂强度最大。邱有德[8]等研究了影响玻纤增强PA6/PP -g -MAH 二元合金和PA6/PP/PP -g -MAH 三元合金的吸水性、流动性、力学和热性能的因素。当增强合金中PP -g -MAH 或PP/PP -g -MAH 含量为10%~20%(质量含量)时,材料的拉伸强度和弯曲强度、热变形温度基本保持在增强PA6水平,其冲击强度、吸水性和流动性能得到改进;当PP -g -MAH 或PP/PP -g -MAH 含量为30%时,增强合金的干湿态机械性能趋于一致。TA IC (三烯丙基异氰脲酸酯)对PP/PA6体系的反应性增容表明,TA IC 可与PP 接枝 提高体系相容性,并能抑制PP 降解;TA IC 使PP/PA6共混材料中PA6失去结晶能力,可作为控制 ?26? 现 代 塑 料 加 工 应 用Modern Plastics Processing and Applications 第12卷第2期

尼龙改性

尼龙改性认识 一、尼龙的种类及特性 1.1尼龙的种类 尼龙系分子主链的重复结构单元中,含有酰胺基(—CONH—)的一类热塑性树脂,包括脂肪族聚酰胺、脂肪-芳香族聚酰胺及芳香族聚酰胺。脂肪族聚酰胺品种多、产量大、应用广泛,既可作纤维,也可作塑料。脂肪-芳香族聚酰胺品种少,产量也小;芳香族聚酰胺常简称为聚芳酰胺,主要用作纤维(芳纶)。脂肪族尼龙分尼龙6、尼龙66、尼龙1010等。 1.2尼龙的特性 尼龙属于聚酰胺,在它的主链上有氨基。氨基具有极性,会因氢键的作用而相互吸引。所以尼龙容易结晶,可以制成强度很高的纤维。聚酰胺为韧性角质状半透明或乳白色结晶性树脂,常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。 各种聚酰胺的共同特点是耐燃,抗张强度高(达104MPa),耐磨,电绝缘性好,耐热(在455kPa下热变形温度均在150℃以上),熔点150~250℃,熔融态树脂的流动性高,相对密度1.05~1.15(加入填料可增至1.6),大都无毒。

二、尼龙的现有主要种类及市场概况 2.1HTN HTN属于杜邦尼龙家族。杜邦HTN分为51G、52G、53G和54G四个系列,其中51G、52G和54G是属于6T的改性产品,可归属于半芳香族尼龙PPA,而53G系列因分子中苯环含量较少杜邦把它归为高性能尼龙。 Zytel?HTN51G=PA6T/MPMDT………..PPA Zytel?HTN52G=PA6T/66……………….PPA Zytel?HTN53G=PA……………………..HPPA Zytel?HTN54G=PA6T/XT+PA6T/66…PPA 作为老牌尼龙制造商,拥有强劲开发实力的杜邦实现HTN的工业化也比较早,并最先推出高温尼龙的无卤阻燃系列。杜邦高温尼龙目前在市场上表现平平,后期在无卤规格上可能会有所作为。 2.2 ARLEN? PA6T ARLEN?为日本三井化学公司所开发出的一种耐高温尼龙,是基于对苯二甲酸,己二酸及己二胺的改性尼龙6T,其熔点高达310℃。ARLEN?主要应用于电子零件用ARLEN为一种对于苯二甲酸,己二酸及己二胺的改質尼龙6T,其熔点高于310℃。电子零件。ARLEN 的主要特性为优异的高温刚性,尺寸安定性以及耐化学品性。 2.3 PA9T PA9T由KURARAY公司首度开发成功并实现工业化。商品名为

改性尼龙塑料主要改性技术手段

改性尼龙塑料主要改性技术手段 衡水金轮网销部讯:在通用尼龙塑料的基础上,通过物理、化学、机械等方式,经过填充、共混、增强等手段,改善尼龙塑料的性能,对强度、抗冲击性、阻燃性等机械性能得到改善和提高,使得塑料能适用在更多的环境条件。那么改性尼龙塑料有哪些改性技术手段呢? 在改性手段上有物理改性和化学改性。物理改性是不发生化学反应,主要是物理混合过程。化学改性是在聚合物分子链上通过化学方法进行嵌段共聚、接枝共聚、交联与降解等反应,或者引入新的官能团而形成特定功能的高分子材料,主要的改性技术手段主要有:增强、增韧、填充、阻燃、耐候、合金。 ①增强 通过添加玻璃纤维、碳纤维等纤维状物质,与尼龙树脂经过双螺杆挤出机充分混炼挤出,能够明显改善材料的刚性强度和硬度。尼龙树脂本身具有很多固有的物理性能、化学性能和加工性能,经过挤出机混炼后,可以起到树脂的力学或其他性能,而树脂对材料可以起到粘合和传递载荷的作用。 ②增韧 有很多的材料韧性不足,可以通过加热韧性较好的材料或者超细无机材料,增加韧性和耐低温性能。常使用的增韧剂有马来酸酐POE、EPDM(三元乙丙橡胶),可以降低改性尼龙硬化后的脆性,提高冲击强度和伸长率。

③填充 通过给尼龙加入矿物粉末,改善材料的刚性、硬度、耐热性等性能,常使用的填充剂有活性碳酸钙、云母、滑石粉,提高加工性能,降低成本。 ④阻燃 尼龙本身属于HB阻燃,在UL94中级别较低,在很多使用环境电子电器、汽车行业等对阻燃性要求较高,往往通过物理添加阻燃剂来获得阻燃性,阻燃剂添加的多少与阻燃性有直接的关系。常使用的阻燃剂有含卤阻燃剂和无卤阻燃剂两种,无卤阻燃剂更先进更环保一些,更受到大家的喜爱。 ⑤耐候 尼龙在低温下的耐寒能力是比较差的,和塑料一样固有一些低温脆性,使材料在低温下变脆。耐候性是指塑料制品因受到阳光照射、温度变化、风吹雨打等外界条件的影响,而出现褪色、变色、龟裂、粉化和强度下降等一系列老化现象,其中紫外线是促进老化的关键因素。可以添加抗紫外线剂、抗水解剂等来得到改善。 ⑥合金 尼龙合金是利用物理共混或化学接枝、共聚的方法,将两种或多种材料制备成高性能、功能化、专业化的一种材料,达到改善一种材料的性能或兼具更多性能的目的。往往采用的有PE合金、PP合金等,改性尼龙合金主要应用于汽车、办公设备、电子电器、包装材料等行业。

相关主题