搜档网
当前位置:搜档网 › 巧用Solidworks零部件阵列实现链条快速建模

巧用Solidworks零部件阵列实现链条快速建模

巧用Solidworks零部件阵列实现链条快速建模
巧用Solidworks零部件阵列实现链条快速建模

巧用Solidworks零部件阵列实现链条快速建模

关键字: Solidworks链传动建模零部件阵列

本文介绍了Solidworks中链条的三维造型是实现链传动建模的难点,长期以来得到了广泛的关注。利用“零部件阵列”实现了链条的快速建模,节省了大量的建模时间,为机械产品设计时的虚拟装配、干涉检查与展示交流提供了可能,具有一定的实际应用价值。

0 引言

链传动结构紧凑;没有弹性滑动和打滑,能保持准确的平均传动比;需要的张紧力小,作用于轴的压力小,可减少轴承的摩擦损失;能在温度较高、有油污等恶劣环境条件下工作;广泛用于交通运输、农业、轻工、矿山、石油化工和机床工业。

三维模型是现代机械产品设计、制造、装配、仿真等一切工作的基础。Solidworks中链条的三维造型是实现链传动建模的难点,长期以来得到了广泛的关注。目前,只有袁彬等人提出了导入全部链节进行装配的链条建模方法。这一方法让链条装配得十分美观,为以后设计链传动打下了坚实的基础。但是,这种方法链条的整体装配关系很复杂,要求计算机具有较高的硬件配置且操作比较繁锁,容易出现装配关系过定义等出错的情况。本文根据多年使用Solidworks建模昀经验,提出了建立一个链节单元,在装配体环境中利用“零部件阵列”实现链条快速建模的方法。

1 链轮建模

根据工作要求,取小链轮齿数17、大链轮齿数38、节距31.75。查机械设计手册,利用Solidworks拉伸、旋转、切除、阵列等基本造型方法可以得到主动链轮与从动链轮的零件模型,如图1-2所示。

图1 主动链轮

图2 从动链轮

2 链节建模

滚子链由内链板、外链板、销轴、套筒和滚子组成。查机械设计手册得到图3所示20A型链节相关尺寸,在SolidWorks 2010中分别将这几个零件单独进行建模然后进行装配,可以得到一个链节装配体(如图6所示)。为简化建模过程,本文的链节仅由一个内链节(如图4所示)与二个外链节(如图5所示)组成。

图3 20A型链节尺寸

图4 内链节

图5 外链节

分页此外,还需在内链节与外链节零件中绘制点草图,如图7所示的三个点(这将用于与轨迹零件的配合,以确定链节的位置)。

图6 链节

图7 点草图

3 建立链传动装配体

新建链传动装配体,插入主动链轮与从动链轮零件,添加三个配合,如图8所示。其中距离配合用于确定中心距,根据机器设备结构尺寸初定中心距950。

图8 链传动装配体

4 轨迹建模

在链传动装配体中,新建立—轨迹零件,这是链条运动的轨迹。首先如图9所示,在链轮齿宽中性面上,根据实际传动参数绘制草图。然后,进行对称的“曲面拉伸”得到如图10所示的轨迹零件。在这里,需要注意的是不能使用“套合样条曲线”功能,将四个线段套合成一个样条曲线。因为,在装配体环境中没有“曲线驱动的阵列”,只有“线性零部件阵列”与“圆周零部件阵列”。

图9 轨迹零件草图

图10 轨迹零件

分页

5 采用“零部件阵列”生成链条

(1)在链传动装配体中插入一链节,放在下直线端,设定与轨迹的四个配合,如图11所示。利用“线性零部件阵列”,选择要阵列的零部件和方向,输入阵列的距离和实例数,即可生成下直线段链条,如图12所示。

图11 链接与下直线段的配合

图12 线性阵列下直线段链条

(2)再插入一链节,放在小圆弧端,设定与轨迹的三个配合,如图13所示。利用“圆周零部件阵列”,选择要阵列的零部件和方向,输入阵列的角度和实例数,即可生成小圆弧段链条,如图14所示。

图13 链接与小圆弧段的配合

图14 圆周阵列小圆弧段链条

分页(3)此时得到的两段链条是活动的,如图15所示可分别沿着相应的轨迹移动。用同心配合联接下直线段与小圆弧段,如图16所示。

图15 得到的下直线段与小圆周段

图16 用同心配合联接两段链条

(4)插入一链节,如图17所示设定三个配合,过渡到上直线段。

图17 过渡到上直线段

(5)与步骤(1)相似,插入一链节,设定4个配合,线性零部件阵列得到上直线段链条,如图18-19所示。

图18 链节与上直线段的配合

图19 线性阵列上直线段链条

分页(6)与步骤(2)相似,插入一链节,设定3个配合,圆周零部件阵列得到大圆弧段链条,如图20-21所示。

图20 链节与大圆弧段的配合

图21 圆周阵列大圆弧段链条

(7)插入一链节如图22所示,用于联接上直线段与大圆弧段。添加四个配合:同心(链节与直线段),重合(内外链板平面),重合(点与圆弧轨迹),同心(链节与圆弧段)。

图22 联接上直线段与大圆弧

(8)插入一链节如图23所示,用于联接下直线段与大圆弧段。设定三个配合:同心(链节与直线段),重合(内外链板平面),重合(点与圆弧轨迹)。

图23 联接下直线段与大圆弧

(9)调节中心距。一般情况下,最后联接的部分存在偏差,这需要调节链轮的中心距大小,从图23可知要增大中心距,才能正好安装一个链节。此时,通过改变两链轮距离配合的距离值来改变中心距,如图8所示。增大中心距至960,如图24所示,发现中心距嫌大。经过几次调整,当中心距为957.5时可以实现正确的联接,如图25所示。

图24 中心距960时联接图

图25 装配完成的链条

6 结束语

通过—个链传动的建模实例,详细说明了如何利用Solidworks“零部件阵列”功能,快速建立链条模型。这一方法得到的链条可以与导入全部链节进行装配的链条建模方法相媲美,可用于机械产品设计时的虚拟装配、干涉检查与展示交流。如果能用迈迪三维设计工具集等方法自动生成链轮与链节模型,则链条的建模速度将更加迅速。

SolidWorks随形阵列技巧精讲

(本教程摘录自网上不老叔的精彩讲解) 随形阵列与一般阵列不同处是前者在阵列过程中其形状或位置会随着相关的特征、草图实体等而发生关联变化。使阵列千变万化,甚至于产生让人觉得不可思议的效果。 在驱动方式上,一般阵列有多种方式(习惯上多数用边线或基准轴驱动,并指定驱动方向):而随形阵列必需用尺寸驱动。如下图 阵列结果如下

复杂的随形阵列希望在尺寸驱动时,其它尺寸能同步作出变化,而且在SW的阵列过程中方 程式不起作用,这就需要用到一些窍门。下面列出一些常用的技术: 1、使用辅助的构造线:草图上有些线条不是特征的实际轮廓线,但它能控制实际轮廓线的 变化,一般用构造线画出。在复杂的随形阵列中由于要实现特殊的变化,就需要用更多的构 造线。 2、添加几何关系 下图中三个不等球相切。 草图中标出了辅助的构造线及几何关系,尺寸及是考虑到让球的直半径增大是三个球能可靠 specif ied> W 讦 al - 1 g 瀕 悔 视 视 视 列 血 光 灾 前 上 右 隆 割 -AJ ?!!! ^ 妙 000 匚 爲 也 -5- rHii Ki

相连。(如果分离将不能阵列特征)

令刃牛① 皆甸闪 視aa ① 執to XMID [“山帕 邨璽 舉助OP -MX 』D"EI ■初由厘《9”07遲*團?旦■丨幻?典 臼列[?聲 Z 筑魏O 于柱 心莎14 fl- K' B'lEI^IXnGS^^Ti 1 H *l_k^ 金叮予莓㈡蔽||丄” 阵列间距是75mm ,下面跳过了第二实例,以保持三球相切,这种跳过实例的方法也是常用 的方法之一。 A 辭 沖』牌越槻視從点 和泮谡%±立前 上向片 黑出0 扫凶⑥000 ?卒 $ + : 450.003 150 -3fe ” 出 frm -60. 乂伽n>

SolidWorks 减速器建模实例

12.2减速器建模实例 12.2.1齿轮绘制 在下面的练习中,将详细讲述齿轮的绘制过程,这里先给出齿轮的各项参数:模数m=2、齿数z=55。通过这些参数,可以计算出:分度圆直径=110mm、齿顶圆直径=114mm、齿根圆直径=105mm。齿轮建模的操作步骤如下: (1)单击标准工具栏中的“新建”图标,新建一个零件文件。 (2)在特征管理器设计树中选择“前视基准面”,单击“草图绘制”工具,进行草图1的绘制。单击草图工具栏中的“圆”工具,以草图原点为圆心分别绘制出分度圆、齿顶圆、齿根圆。选择分度圆,单击草图工具栏中的“构造几何关系”工具,使分度圆变为点划线。 (3)单击“中心线”工具,过草图原点绘制一条垂直的对称中心线。单击“点”工 具,移动鼠标指针到分度圆与中心线相交的位置,当推理指针捕捉到交点时,按下鼠标左键确定点的位置。 (4)保持点的选择,单击草图工具栏中的“圆周阵列”工具,在“排列”选项栏的“数 量”文本框中输入55×4=220,单击“确定”按钮,结束圆周阵列的操作,此时,您将看到分度圆上出现一系列的点。需要指出的是:点的绘制对后面的实体造型没有本质的作用,但是它为后面的操作提供了参照。 (5)单击草图工具栏中的“样条曲线”工具,在点的引导下绘制如图12-27 所示的曲 线,注意曲线的端点分别在齿顶圆和齿根圆上。这里我们把齿形渐开线的绘制简化为简单曲线的绘制,如果读者有兴趣的话,可以参考机械工程手册中的齿轮渐开线绘制方法完成这一部分的操作。 (6)按住键,选择曲线与垂直中心线,单击草图工具栏中的“镜像实体”工具完成曲线的镜像复制操作,如图12-27所示。接着,单击“裁剪实体”工具,选择“裁剪 到最近端”选项,剪裁齿顶圆,如图12-28所示: 图12-27绘制及镜像样条曲线 图12-28 裁剪齿顶圆 (7)单击草图工具栏中的“分割实体”工具,选择齿根圆进行分割,如图12-29(a)所示。 (8)单击特征工具栏中的“拉伸凸台/基体”工具,设置拉伸深度为26mm,单击“所选轮廓”选项框,并在图形区域中选取齿根圆的轮廓。单击“确定”,完成拉伸1特征

SolidWorks的随形变化阵列

Solidworks2009教程之随形变化阵列 2009-06-10 23:55:54 作者:jiangnanxue 来源:智造网—助力中国制造业创新—https://www.sodocs.net/doc/7815814053.html, 分享到 利用Solidworks的阵列特征命令,能够快速的对变化着的特征进行阵列建模,充分体现了Solidworks 人性化的设计,这将能够极大地减轻工程师的操作压力,提高了工作效率。 在产品设计过程中,经常会出现重复的一些基本特征造型的重复生成,常见的有一些有产品的散热孔、加强筋,结构框架,这时我们就会采用3D软件中的阵列特征命令。在SolidWorks软件中同样有此功能,其阵列设计的方法有:圆周阵列和线性阵列的规则阵列特征,由草图驱动的阵列、表格驱动的阵列、曲线驱动的阵列等不规则阵列及随形阵列功能.对于具有相同结构特征的零件,有助于减少重复性工作,从而提高设计效率,这里主要介绍随形阵列命令构建模型,随形变化阵列主要是针对在阵列过程中,特征呈现一定规律变化的阵列。这里的例子就是一块板材,上面打有具备一定规律变化着的孔特征。这也是最近网友经常问到的一个阵列问题,希望此例能够提供一点帮助。 实际操作: 在此例中,设定好几何关系和尺寸,因为它们在阵列中保持不变: 标注零件底层草图线到底层边线的尺寸(4mm)。标注草图圆到指定变形边界的切线宽度尺寸,注意,这里不要标注圆心尺寸。单击特征工具栏中的拉伸切除,或单击插入、切除、拉伸,然后生成源特征。在 FeatureManager 设计树中选择切除-拉伸特征。单击特征工具栏上的线性阵列,或单击插入、阵列/镜向、线性阵列。为阵列方向选择驱动尺寸 (20 mm),阵列的数量15个,然后在选项下选择随形变化,

solidworks实例-100多个实例

图1 图2 图1提示:①拉伸圆柱→倒内外角→拉伸切槽;。 ②拉伸带槽柱体→倒内外角;。 ③旋转带倒角圆套→切伸切槽。 图2提示:①拉伸带孔的六边形→倒内角→倒外角;。 ②拉伸圆柱套→倒内角→倒外角→拉伸切六边;。 ③旋转带倒角圆柱套→拉伸切六边。 图3 图4 图3提示:①拉伸带孔的六边形→倒内角→倒外角→拉伸切顶槽; ②拉伸圆柱套→倒内角→倒外角→拉伸切六边形→拉伸切顶槽; ③旋转带倒角的圆柱套→拉伸切六边→拉伸切顶槽。 图4提示:①拉伸圆锥套→拉伸侧耳→切除多余部分→圆角; ②旋转圆锥套→拉伸侧耳→切除多余部分→圆角。 图5 图6 图5提示:旋转生成主体→拉伸切横槽→阵列横槽。 1

图6提示:①拉伸圆柱→倒角→拉伸切除圆柱孔; ②旋转带倒角圆柱→拉伸切除圆柱孔。 图7 图8 图7提示:旋转法。 图8示:①旋转阶梯轴(带大端孔)→拉伸切内六角→拉伸切外六角→切小端圆孔; ②拉伸阶梯轴→拉伸切圆柱孔→拉伸切内六角→拉伸切外六角→切小端圆孔。 图9 图10 图9提示:①旋转带球阶梯轴→拉伸切中孔→拉伸切横孔→拉伸切球部槽。 图10提示:①旋转法。 图11 图12 图11示:旋转生成轮主体→拉伸切轮幅→拉伸切键槽。 图12提示:旋转主体→切除拉伸孔→切除拉伸槽。 2

图13 图14 图13提示:①旋转。 图14提示:①旋转生成带皮带槽的轮主体→拉伸切轮幅→拉伸切键槽。 图15 图16 图15提示:①画一个方块→切除拉伸内侧面→拉伸两个柱→切除拉伸外侧面→切除拉伸孔。 图16提示:①旋转生成齿轮主体→切除拉伸键槽→画一个齿的曲线→扫描生成一个齿→阵列其它齿。 ②从库中提取→保存零件。 图17 图18 图17提示:旋转主体→切除拉伸孔。 3

solidworks建模制作帆船要点

基于Solidworks软件的工艺品建模实验 1.实验目的:了解Solidworks软件的功能,掌握工艺产品建模的基本技巧。2.实验设备:计算机一台,Solidworks 软件一套。 3.实验要求:利用Solidworks 软件进行模型设计; 进行特征分析,并填写特征分析参数表; 提交实验报告一份。 4.实验报告:

1.模型特征分析表: 2.工艺产品建模过程:(过程简介) 1)在右视基准面插入草图,如下; 并凸台拉伸200mm 在一面建立如下草图; 拉伸切除:完全贯穿;命名特征:右侧。

2)对刚才的两特征做镜像特征,以前视基准面作镜像面 对两边线做圆角特征,半径15mm 3)前视基准面建立草图如下: 拉伸切除,到两外表面的距离为2mm;特征命名为:甲板1

4)在最上层表面建立草图,利用等距实体将外轮廓向内等距2mm,并裁减如下;向下拉伸切除3mm;命名特征:船头船尾甲板 5)@船尾位置。在前视基准面建立草图,如下;凸台拉伸,两侧对称,50mm

6)@船头位置。在前视基准面建立草图如下。拉伸切除,两侧对称,12mm 7)在船的内表面建立草图,如下; 凸台拉伸 在楼梯板侧面建立草图(利用线性草图阵列),如下。 在同一草图,对其余两个楼梯画出类似草图; 凸台拉伸0.7mm

在楼梯板侧面建立草图(利用线性草图阵列),如下。 在同一草图,对其余两个楼梯画出类似草图;凸台拉伸0.7mm 8)镜像特征。 以前视基准面作镜像面 所镜像特征:刚做的三个楼梯面及其扶手。 9)在楼梯扶手面建立草图,如下;同一草图里,对其他三个楼梯画出该形状的草图; 凸台拉伸,选择成形到一面,(选择对面的楼梯扶手);

solidworks汽车壳体曲面建模实例教程

本节详细讲了solidworks曲面建模实例汽车壳体的绘制过程以及注意事项等内容。 在SolidWorks中利用三视图进行汽车建模的一般方法是:首先将汽车视图分别导入到相应基准面作为草绘的参考,然后找到各视图中对应的轮廓线,进行投影形成空间曲线,最后进行放样等操作。限于篇幅,本文将以audi R8为例介绍汽车壳体建模的大致过程。 一、建模前的图片准备 首先利用图片处理软件(如PhotoShop)对图片进行必要的裁剪,将图片以主视图、左视图及俯视图的形式进行裁剪,并分别保存为单独的图片文件,以便后续的操作。 二、汽车壳体建模 1.打开SolidWorks软件 单击“开始”→“所有程序”→“SolidWorks 2009”→“SolidWorks 2009 x64 Edition SP3.0”→“SolidWorks 2009 x64 Edition SP3.0”,打开软件或双击桌面快捷图标打开软件。 1)单击“新建”按钮,如下图所示:

2)在弹出的“新建Solidworks文件”对话框中单击“零件”按钮,然后单击“确定”按钮,如下图所示:

2.导入汽车图片 1)在上视基准面新建草图,然后单击“工具”→“草图工具”→“草图图片”,在弹出的对话框中选中“俯视图”图片,单击“打开”按钮,如下图所示,图片将显示在上视基准面中。

2)拖动鼠标,将图片移动到中心位置,并调整合适的大小,单击“确定”按钮完成图片调整.为了定位准确,可以在上视基准面参考图片大小,绘制一个矩形,标注合适的尺寸,完成汽车图片的导入。可能需要反复调整图片的大小及矩形的大小,最终达到类似于图4的效果,单击右方角的按钮退出草图。(在调整过程中,可随时双击图片,激活它以调整大小和位置。) 同理,分别在前视基准面和右视基准面插入主视图和左视图,调整到合适的大小及位置。插入图片的效果如下图所示。

SolidWorks随形阵列技巧精讲

(本教程摘录自网上不老叔的精彩讲解) 随形阵列与一般阵列不同处是前者在阵列过程中其形状或位置会随着相关的特征、草图实体等而发生关联变化。使阵列千变万化,甚至于产生让人觉得不可思议的效果。 在驱动方式上,一般阵列有多种方式(习惯上多数用边线或基准轴驱动,并指定驱动方向),而随形阵列必需用尺寸驱动。如下图 阵列结果如下

复杂的随形阵列希望在尺寸驱动时,其它尺寸能同步作出变化,而且在SW的阵列过程中方程式不起作用,这就需要用到一些窍门。下面列出一些常用的技术: 1、使用辅助的构造线:草图上有些线条不是特征的实际轮廓线,但它能控制实际轮廓线的变化,一般用构造线画出。在复杂的随形阵列中由于要实现特殊的变化,就需要用更多的构造线。 2、添加几何关系 下图中三个不等球相切。 草图中标出了辅助的构造线及几何关系,尺寸及是考虑到让球的直半径增大是三个球能可靠相连。(如果分离将不能阵列特征)

阵列间距是75mm,下面跳过了第二实例,以保持三球相切,这种跳过实例的方法也是常用的方法之一。

3、数值关联 在随形阵列中,往往需要在驱动尺寸变化时,其它尺寸能关联变化。下图是一个薄壁圆锥筒上面有规则地嵌了许多小球,小球直径随着高度变化。 下图是在基准面上的一个草图,基准面时小球的所在平面,初始基准面距底面,按的间距向上阵列。关键是当基准面高度变化时保证小球中心在锥面上,并延着圆周方向旋转一定角度。图中50、100、25与锥筒的底半径、高、顶半径一致,中心距底面的尺寸与基准面高度对应,显然实线半圆的中心(即旋转后的小球中心)到原点中心的距离等于基准面高度的锥筒半径,这就保证了小球中心在锥筒壁上。尺寸左边的符号表明它是共享数据,在方程序下面说明名称为”1”的共享数值的初始值等于,在此图中是一个线段和一个圆弧的长度,还有一个基准面高度未在此图中出现,由于共享数据的一致性,保证基准面高度不管如何变化,不会使小球离开筒壁。 图中的5度线与半圆相切,使得小球的直径随着高度的增加而减少。 图中弧长与基准面高度共享数据,使小球位置随着基准面高度的增加而顺时针转动,的半径决定了小球转动的快慢,半径越小,转动越快。 小球在圆周方向的阵列要在一个线性阵列中解决,那就不能用圆周阵列了,用线性阵列实现圆周阵列也是一种常用的手段。图中用弧长(现值1mm)的变化模拟圆周阵列,由于线性阵列只能用线性尺寸驱动,所以用在本图左下角与弧长共享数值的构造线作为驱动尺寸,只要算好间距值就行了。

Solidworks阵列和镜向概述

广州有道资料网https://www.sodocs.net/doc/7815814053.html, Solidworks阵列和镜向概述(Pattern and Mirror Overview) 阵列按线性或圆周阵列复制所选的源特征。您可以生成线性阵列、圆周阵列、曲线驱动的阵列、填充阵列,或使用草图点或表格坐标生成阵列。 镜向复制所选的特征或所有特征,将它们对称于所选的平面或面进行镜向。 要将 SolidWorks 的颜色、纹理和装饰螺纹数据延伸给所有阵列实例和镜向特征,在PropertyManager 中选取延伸视象属性。 对于多实体零件,您可使用阵列或镜向特征来阵列或镜向同一文件中的多个实体。 对于线性阵列,先选择特征然后指定方向、线性间距和实例总数。 对于圆周阵列,先选择特征,再选择作为旋转中心的边线或轴,然后指定: 实例总数及实例的角度间距。 -或- 实例总数及生成阵列的总角度。 对于曲线驱动的阵列,选择特征和边线或阵列特征的草图线段。然后您可指定曲线类型,曲线方法,以及对齐方法。 对于草图阵列,通过在模型面上绘制点来选择在何处复制源特征。 对于表格阵列,添加或检索以前生成的 X-Y 坐标来在模型的面上增添源特征。 对于填充阵列,使用特征阵列或预定义的切割形状来填充所定义的区域。 对于镜向特征,选择要复制的特征和一个基准面,将对称于此基准面来镜向所选的特征。如果您选择模型上的平面,您将绕所选面镜向整个模型。 对于装饰图案,使用预定义切割特征的装饰图案来填充所定义的区域。 您还可以生成阵列的阵列、生成阵列的镜向副本、以及控制和修改阵列。 关于在装配体中使用零部件阵列的信息,请参阅添加零部件阵列。 广州有道资料网https://www.sodocs.net/doc/7815814053.html,

巧用Solidworks零部件阵列实现链条快速建模

巧用Solidworks零部件阵列实现链条快速建模 关键字: Solidworks链传动建模零部件阵列 本文介绍了Solidworks中链条的三维造型是实现链传动建模的难点,长期以来得到了广泛的关注。利用“零部件阵列”实现了链条的快速建模,节省了大量的建模时间,为机械产品设计时的虚拟装配、干涉检查与展示交流提供了可能,具有一定的实际应用价值。 0 引言 链传动结构紧凑;没有弹性滑动和打滑,能保持准确的平均传动比;需要的张紧力小,作用于轴的压力小,可减少轴承的摩擦损失;能在温度较高、有油污等恶劣环境条件下工作;广泛用于交通运输、农业、轻工、矿山、石油化工和机床工业。 三维模型是现代机械产品设计、制造、装配、仿真等一切工作的基础。Solidworks中链条的三维造型是实现链传动建模的难点,长期以来得到了广泛的关注。目前,只有袁彬等人提出了导入全部链节进行装配的链条建模方法。这一方法让链条装配得十分美观,为以后设计链传动打下了坚实的基础。但是,这种方法链条的整体装配关系很复杂,要求计算机具有较高的硬件配置且操作比较繁锁,容易出现装配关系过定义等出错的情况。本文根据多年使用Solidworks建模昀经验,提出了建立一个链节单元,在装配体环境中利用“零部件阵列”实现链条快速建模的方法。 1 链轮建模 根据工作要求,取小链轮齿数17、大链轮齿数38、节距31.75。查机械设计手册,利用Solidworks拉伸、旋转、切除、阵列等基本造型方法可以得到主动链轮与从动链轮的零件模型,如图1-2所示。 图1 主动链轮 图2 从动链轮 2 链节建模 滚子链由内链板、外链板、销轴、套筒和滚子组成。查机械设计手册得到图3所示20A型链节相关尺寸,在SolidWorks 2010中分别将这几个零件单独进行建模然后进行装配,可以得到一个链节装配体(如图6所示)。为简化建模过程,本文的链节仅由一个内链节(如图4所示)与二个外链节(如图5所示)组成。

solidworks装配体中零部件阵列—特征驱动

solidworks装配体中零部件阵列—特征驱动(如何使用) 图片:

天天晒太阳 顶端Posted: 2010-03-31 16:34 | [楼主] w_hs 级别: 工程师 精华: 0 小中大引用推荐编辑只看复制 在装配体中如果某零件的一个特征是用孔特征或阵列 特征完成的,我们就可以将另一个零件按孔特征或阵列特征的位置进 行阵列装配,这就是“特征阵列”。 下面动画中零件1的若干孔位是由孔特征定义的,零件2的装配配合 关系是与孔的同心配合和与零件1上平面的重合配合。 特征配合的选项分别是 阵列对象是零件2 驱动特征是零件1的孔特征 如果有些阵列位置不相合可以选取源位置来调整 如果需要去掉几个派生零件可以跳过几个实例 进行特征配合后零件2的派生零件正确地落在零件1的各个孔位置上。

发帖: 818 威望: 8 点 金钱: 2686 机械币 贡献值: 0 点 注册时间:2006-04- 14 最后登录:2013-02- 08 顶端Posted: 2010-03-31 19:31 | 1 楼634363900 级别: 学徒工 精华: 0 发帖: 98 威望: 1 点 金钱: 10 机械币 贡献值: 0 点 注册时间:2008-11-0 小中大引用推荐编辑只看复制 谢谢!以前都没用过!现在会了! 天天晒太阳 顶端Posted: 2010-04-01 13:20 | 2 楼

最后登录:2013-01-0 6 rsing 级别: 技工 精华: 0 发帖: 138 威望: 1 点 金钱: 19 机械币 贡献值: 0 点 注册时间:2008-07-0 7 最后登录:2013-04-2 3 小中大引用推荐编辑只看复制 能不能做到跟零件的外表面!或者是装配体自定义的草图进行阵列?此问题一直十分困扰我! 顶端Posted: 2010-09-15 11:14 | 3 楼libinrf v 级别: 学 徒工 精华: 0 发帖: 67 威望: 2 点 金钱: 23 机械币 贡献值: 0 点 注册时间: 2009-06-0 小中大引用推荐编辑只看复制 我现在的问题就是我要他按草图不规则阵列可以吗? 顶端Posted: 2011-03-30 08:03 | 4 楼

solidworks 入门实例建模教程

来自于https://www.sodocs.net/doc/7815814053.html, 图1 图2 图1提示:①拉伸圆柱→倒内外角→拉伸切槽;。 ②拉伸带槽柱体→倒内外角;。 ③旋转带倒角圆套→切伸切槽。 图2提示:①拉伸带孔的六边形→倒内角→倒外角;。 ②拉伸圆柱套→倒内角→倒外角→拉伸切六边;。 ③旋转带倒角圆柱套→拉伸切六边。 图3 图4 图3提示:①拉伸带孔的六边形→倒内角→倒外角→拉伸切顶槽; ②拉伸圆柱套→倒内角→倒外角→拉伸切六边形→拉伸切顶槽; ③旋转带倒角的圆柱套→拉伸切六边→拉伸切顶槽。

图4提示:①拉伸圆锥套→拉伸侧耳→切除多余部分→圆角; ②旋转圆锥套→拉伸侧耳→切除多余部分→圆角。 图5 图6 图5提示:旋转生成主体→拉伸切横槽→阵列横槽。 图6提示:①拉伸圆柱→倒角→拉伸切除圆柱孔; ②旋转带倒角圆柱→拉伸切除圆柱孔。 图7 图8 图7提示:旋转法。 图8示:①旋转阶梯轴(带大端孔)→拉伸切内六角→拉伸切外六角→切小端圆孔; ②拉伸阶梯轴→拉伸切圆柱孔→拉伸切内六角→拉伸切外六角→切小端圆孔。

图9 图10 图9提示:①旋转带球阶梯轴→拉伸切中孔→拉伸切横孔→拉伸切球部槽。图10提示:①旋转法。 图11 图12 图11示:旋转生成轮主体→拉伸切轮幅→拉伸切键槽。 图12提示:旋转主体→切除拉伸孔→切除拉伸槽。

图13 图14 图13提示:①旋转。 图14提示:①旋转生成带皮带槽的轮主体→拉伸切轮幅→拉伸切键槽。 图15 图16 图15提示:①画一个方块→切除拉伸内侧面→拉伸两个柱→切除拉伸外侧面→切除拉伸孔。 图16提示:

图17 图18 图17提示:旋转主体→切除拉伸孔。 图18提示:旋转主体→切除拉伸孔。 图19 图20 图19提示:旋转主体→拉伸切除六边形。图20提示:旋转主体→拉伸切除六边形。 图21 图22

SolidWorks 巧用“曲线驱动的阵列”功能实现链条快速建模

巧用“曲线驱动的阵列”功能实现链条快速建模 链传动结构紧凑;没有弹性滑动和打滑,能保持准确的平均传动比;需要的张紧力小,作用于轴的压力小,可减少轴承的摩擦损失;能在温度较高、有油污等恶劣环境条件下工作;广泛用于交通运输、农业、轻工、矿山、石油化工和机床工业。 三维摸型是现代机械产品设计、制造、装配、仿真等一切工作的基础。SolidWorks中链条的三维造型是实现链传动建模的难点,长期以来得到了广泛的关注。目前,只有袁彬等人提出了导入全部链节进行装配的链条建模方法。这一方法让链条装配得十分美观,为以后设计链传动打下了坚实的基础。但是,这种方法得到的链条装配关系很复杂,要求计算机具有较高的硬件配置,且操作繁琐,容易出现装配关系过定义等出错的情况。 本文根据多年使用SolidWorks建模的经验,提出了建立一个链节单元,在零件编辑环境中利用“曲线驱动的阵列”功能,实现链条快速建模的方法。 1 链节建模 滚子链由内链板、外链板、销轴、套筒和滚子组成。为简化建模过程,本文的链节仅由1个内链节与2个外链节组成。可得到内、外链节的各部分尺寸,在SolidWorks2010中分别进行建模,然后进行装配,即可以得到一个20A型链节装配体(如图1所示)。 图1 链节装配体 2 轨迹建模 在链节装配体中,新建立一轨迹零件,这是链条运动的轨迹。首先,根据实际传动参数绘制草图,取小链轮齿数17、大链轮齿数38、初定中心距800。然后,使用“套合样条曲线”功能,将4个线段套合成1个样条曲线。最后,进行“曲面拉伸”得到如图2所示的轨迹零件。 图2 轨迹零件 分页 3 配合链节与轨迹

如图3所示,作内链节与外链节零件中绘制3个点的点草图。然后,设定链节与轨迹零件的4个配合(3个点与轨迹的重合配合,1个内链节对称面与轨迹对称面的重合配合),使得链节可沿着既定的轨迹进行移动,保存链节装配体。 图3 链节与轨迹的配合 4 利用“曲线驱动的阵列”功能生成链条 方法1:链节在圆弧处,阵列得到整个链条。 打开链节装配体,拖动链节至小圆弧或大圆弧端点处,另存为链条,选择零件为文件类型。打开链条零件,利用”曲线驱动的阵列”功能,选择阵列的实体、方向,输入阵列的距离,即可生成整个链条。 方法2:链节在直线处,阵列得到整个链条。 打开链节装配体,拖动链节至直线端点处,另存为链条,选择零件为文件类刑。打开链条零件、利用“曲线驱动的阵列”功能,生成整个链条。 方法3:分段阵列,装配得到整个链条。 a.打开链节装配体,拖动链节至小圆弧端点处,另存为链条小圆弧,选择零件为文件类型。打开链条小圆弧零件,利用“曲线驱动的阵列”功能,仅生成链条的小圆弧部分。 b.打开链节装配体,拖动链节至大圆弧端点处,另存为链条大圆弧,选择零件为文件类型。打开链条大圆弧零件,利用“曲线驱动的阵列”功能,仅生成链条的大圆弧部分。 c.打开链节装配体,拖动链节至直线端点处,另存为链条直线,选择零件为文件类型。打开链条直线零件,利用“曲线驱动的阵列”功能,仅生成链条的直线部分。 d.新建链条装配体,如图4所示的插入链条的各个部分,添加配合关系进行装配连接,得到图5所示的链条。值得注意的是,在最后一个连接处,可能需要插入链节或内链节零件,调整中心距,才能保证链条的正确装配。 图4 插入到装配体的各段链条

solidworks学习资料

第1章SolidWorks基础与建模技术 本章要点 SolidWorks是一个在Windows环境下进行机械设计的软件,是一个以设计功能为主的CAD/CAE/CAM软件,其界面操作完全使用Windows风格,具有人性化的操作界面,从而具备使用简单、操作方便的特点。 SolidWorks是一个基于特征、参数化的实体造型系统,具有强大的实体建模功能;同时也提供了二次开发的环境和开放的数据结构。本章介绍SolidWorks的环境和简单的造型过程,让读者快速了解这个软件的使用。 本章内容 ?SolidWorks环境简介 ?SolidWorks建模技术 ?简单演练

SolidWorks 2006三维建模实例教程 2 1.1SolidWorks环境简介 SolidWorks是美国SolidWorks公司开发的三维CAD产品,是实行数字化设计的造型软件,在国际上得到广泛的应用。同时具有开放的系统,添加各种插件后,可实现产品的三维建模、装配校验、运动仿真、有限元分析、加工仿真、数控加工及加工工艺的制定,以保证产品从设计、工程分析、工艺分析、加工模拟、产品制造过程中的数据的一致性,从而真正实现产品的数字化设计和制造,并大幅度提高产品的设计效率和质量。 通过本节的学习,读者应熟悉SolidWorks的界面,以及常用工具条的使用。 1.1.1工作环境和模块简介 1.启动SolidWorks和界面简介 安装SolidWorks后,在Windows的操作环境下,选择【开始】→【程序】→【SolidWorks 2006】→【SolidWorks 2006】命令,或者在桌面双击SolidWorks 2006的快捷方式图标,就可以启动SolidWorks 2006,也可以直接双击打开已经做好的SolidWorks文件,启动SolidWorks 2006。 图1-1是SolidWorks 2006启动后的界面。 图1-1SolidWorks界面 这个界面只是显示几个下拉菜单和标准工具栏,选择下拉菜单【文件】→【新建】命令,或单击标准工具栏中按钮,出现“新建SolidWorks文件”对话框,如图1-2所示。

如何使用SOLIDWORKS让数字在阵列中递增——数字递增阵列的应用

如何使用SOLIDWORKS让数字在阵列中递增——数字递增阵列的应用 & u0 c5 u; [摘要:对于阵列的使用在设计中是比较常见的,主要用在特征或实体按照一定规律进行复制的情况下。但是对于例如直尺上的刻度和数字,钟表面上的刻度和数字以及例如千分尺的刻度和数字这类多个不同的特征如何一次性产生呢? 关键字:数字阵列直尺钟表千分尺变量阵列 数字递增阵列是让特征在阵列的过程中让草图中的文本(数字)发生变化的过程。在设计中常见的有三种形式,线性阵列、圆周阵列和在圆柱面上的阵列,分别对应的典型实例为:直尺刻度数字,钟表面上数字以及千分尺上的刻度数字.3 y' u" q' |$ o+ b( \5 \ 接下来将使用数学方法和变量阵列(SOLIDOWORKS2015中添加的新功能)来完成数字递增线性阵列和数字递增圆周阵列,最后单独介绍圆周阵列完成圆柱面上的数字递增阵列的两种方法。) b- a T0 d1 a: 两种方法来说,变量阵列在自定义使用的时候将会更加灵活一些。 一、数字递增线性阵列 1. 三角函数法 如图1,做好的直尺模型8 `" _2 L! N+ z! a& I 首先,我们以直尺为例,在创建好的直尺模型上创建数字草图及拉伸特征1 X( R: W* }$ s1 C0 A

此处需要注意的是,我们输入的数字是通过链接到尺寸值完成(双引号+草图名称)。文字的位置控制由三角形控制。如图2示。0 p6 D! v" z: \7 ^ 说明:三角形的边长不能为0,所以这个方法需要单独创建0这个位置. F% s/ w4 I8 `" q- \: {' Z* c " K9 @- z( w7 s+ ^. K 然后双击数字的拉伸特征显示该特征的草图,之后使用线性阵列的命令) H- Q3 _- D) d9 Q; s: n

solidworks实例教程

Solidworks 2010 三维建模及工程图实验指导书 (机械制图习题集机类、近机类5-3-2) 一、实验目的 1.了解现代设计工具的应用现状,体会基于特征的参数化建模技术的应用。 2.通过本次实验使学生掌握Solidworks 2010软件的草绘、建模、工程图三个模 块基本操作及常用命令,并运用该软件创建零件的三维模型及二维工程图。 3.通过实验使理论和实践相结合。使学生在掌握一种绘图技能的同时,提高自 身的空间思维能力、读图和绘图能力,有助于学生深入理解工程制图课程的理论知识,激发学生们的学习兴趣。 二、实验要求 根据图1所示泵体零件图,运用Solidworks 2010创建三维模型(图2所示)及二维工程图(图3所示)。提交此模型的三维模型(图2所示)及二维工程图(图3所示)文件。

图1 几何作图 图 2 三维模型

图 3 二维工程图 三、实验内容 (一) 启动Solidworks2010 选择“开始”—“所有程序”—“Solidworks 2010”—“Solidworks 2010”,如图4所示,启动Solidworks2010 软件(或直接双击桌面快捷键启动软件,如图5所示)。软件启动后,如图6所示。 图4 图5

图6 (二) 新建文件 在最上方标准工具栏中点击“新建”命令(如图7所示),出现“单位和尺寸标准”对话框,如图8所示,“单位”处选择“MMGS(毫米、克、秒),“尺寸标准”选择“GB”,“确定”后,出现“新建Solidworks文件”对话框 (如图9所示),选择“零件”文件,“确定”后,系统自动进入三维建模环境,如图10所示。 图7

SolidWorks的随形变化阵列

SolidWorks的随形变化阵列 使用过SolidWorks软件的朋友应该都知道,在SolidWorks里面的阵列功能是非常的强大的,其中包括有:线性阵列、圆周阵列、曲线驱动阵列、草图驱动阵列、表格驱动阵列、填充阵列和镜象等阵列的方法,为设计者提供了十分方便的工具。在这里我就想给大家介绍一种相对来说比较特殊的阵列方法,那就是线性阵列中的随形变化阵列。 (1)六角切除随涡状线变化线性阵列(2)球随螺锥变径线性阵列 (3)螺锥变径立体线性阵列 图1 随形变化例子 请允许我用一个简单的例子来说明一下线性阵列里的随形变化的基本特点,在图2我们可以看到,由左边的阵列源得到的线性阵列,它们是随着一定的形状有规律地变化的,阵列出来的特征跟基体的侧边始终保持一个距离。

阵列源随形变化阵列 图2 下面我们来看一下是怎样去实现随形变化阵列的。 首先,建立阵列源特征,与一般特征有别的是,它需要有(如图3所示):1.定出特征随形变化时的“形”,也就是其变化的边界,并且定义特征草图与边界的几何关系。2.一般的线性阵列都是以一些基准轴或者边线来定义方向的,但是随形变化阵列需要一个线性尺寸作为阵列的参考方向,这是它的特别之处。

图3 草图 点击线性阵列,在方向的选择框中选择图示的尺寸作为方向,我们可以观察到,在该线性阵列的选项中,“随形变化”的选项显示可选的状态(只有阵列方向的参考是尺寸它才会显示可选),接着把它钩选,阵列的间距为1.00in,阵列的数量为10,在设计数中选择要阵列的特征为之前所建立的拉伸切除特征,最后点击确定就完成了。 SolidWorks的随形变化阵列-2 图4 随形变化阵列操作 由图5,我们可以观察到,在阵列的方向上,阵列出来各个切除的位置里基体上侧边线的距离是根据定义方向的尺寸0.25in和阵列的间距1.00in有规律地累加起来的。并且各个切除到两侧边线的距离始终保持0.45in,维持了随形变化中的“形”。

SOLIDWORKS线性随形阵列教程(入门篇)

SOLIDWORKS线性随形阵列教程(入门篇).txt 1.阵列的特征是“切除拉伸”特征,从图形可以看出切除的端部两个圆的圆心,分别在一条 曲线上,阵列时,圆心的位置随着曲线变化,解决此阵列的核心就是如何将圆心约束在曲线 上,这也为我们建立草图提供了依据。 如图所示,建模过程: 2. 3.阵列时选择随形阵列,阵列方向选择切除拉伸的左侧定位尺寸,阵列的特征选择切除拉伸, 输入阵列数量,确定即可。 4.不仅仅可以通过辅助线作为约束条件,利用本身的几何形状同样可以,如下面这个例子即利 用本身的几何形状,通过切除拉伸时的选项来添加约束,同样可以达到随行的目的。 6利用约束曲线来实现随形的阵列很多,例如: 7,此实例的核心同样是将旋转截面的圆心定位在约束曲线上,利用直线与约束曲线的距离来 定位旋转截面圆的直径。达到阵列的同时,旋转位置的随形变化和旋转截面直径的随形变化。 如图所示 8,9.下面这个例子,同样是这个道理,利用约束曲线同时控制拉伸草图圆的直径和圆心的位 置。所不同的是拉伸的深度也要随形变化,在这里通过拉伸深度与随形阵列方向)(线性尺寸) 的数值连接,使得阵列时线性尺寸值与拉伸深度,同时变化。 10.同理 通过以上几个简单例子不难发现,做随形阵列的基本步骤(个人之见,仅供参考): 1.分析变化规律,确定相互的基本关系。 2.绘制基体,为保证阵列后实体不断裂,常用此法(也可不做)。 3.对于简单线性阵列,根据第一步中的关系,绘制约束草图,或者特征选项中加约束。 4.根据需要将变化相同的特征数值用数值连接的方法连接起来。 5.选择尺寸作为阵列方向,确定阵列初始选项(将在以后的教程中利用实例讲解),选择阵列 的特征,勾选随形阵列选项。 下一篇主要讲解,如何实现角度与线性尺寸的变换,以及数值连接的应用,和一些经典的阵 列实例,同时介绍阵列初始选项的设置方法。 不知细叶谁裁出,二月春风似剪刀。春江潮水连海平,海上明月共潮生。

最新SolidWorks 巧用“曲线驱动的阵列”功能实现链条快速建模

S o l i d W o r k s巧用“曲线驱动的阵列”功能实现链条快速建 模

巧用“曲线驱动的阵列”功能实现链条快速建模 链传动结构紧凑;没有弹性滑动和打滑,能保持准确的平均传动比;需要的张紧力小,作用于轴的压力小,可减少轴承的摩擦损失;能在温度较高、有油污等恶劣环境条件下工作;广泛用于交通运输、农业、轻工、矿山、石油化工和机床工业。 三维摸型是现代机械产品设计、制造、装配、仿真等一切工作的基础。SolidWorks中链条的三维造型是实现链传动建模的难点,长期以来得到了广泛的关注。目前,只有袁彬等人提出了导入全部链节进行装配的链条建模方法。这一方法让链条装配得十分美观,为以后设计链传动打下了坚实的基础。但是,这种方法得到的链条装配关系很复杂,要求计算机具有较高的硬件配置,且操作繁琐,容易出现装配关系过定义等出错的情况。 本文根据多年使用SolidWorks建模的经验,提出了建立一个链节单元,在零件编辑环境中利用“曲线驱动的阵列”功能,实现链条快速建模的方法。 1 链节建模 滚子链由内链板、外链板、销轴、套筒和滚子组成。为简化建模过程,本文的链节仅由1个内链节与2个外链节组成。可得到内、外链节的各部分尺寸,在SolidWorks2010中分别进行建模,然后进行装配,即可以得到一个20A型链节装配体(如图1所示)。 图1 链节装配体 2 轨迹建模 在链节装配体中,新建立一轨迹零件,这是链条运动的轨迹。首先,根据实际传动参数绘制草图,取小链轮齿数17、大链轮齿数38、初定中心距800。然后,使用“套合样条曲线”功能,将4个线段套合成1个样条曲线。最后,进行“曲面拉伸”得到如图2所示的轨迹零件。 图2 轨迹零件 分页 3 配合链节与轨迹

solidworks建模过程

摘要: SolidWorks是一款三维机械CAD软件,具有强大的功能、易用性和创新性。本文以箱体零件的绘制过程介绍了运用Solidworks绘制零件图的方法及拉伸、切除、镜像等操作。 英文摘要: SolidWorks is a 3D mechanical CAD software,it has a powerful functionality and innovation. Also it is easy to use. This paper describes the process of drawing of box parts using Solidworks drawing of the part drawing methods and drawing, excision, mirror and other operations. 关键词:箱体、拉伸、切除、草图、模型 正文 一、软件介绍 Solidworks是由美国SolidWorks公司开发的三维机械CAD软件,问世于1995年。因其强大的功能、易用性和创新性,在于同类软件的竞争中逐步确立了市场地位。 SolidWorks提供了强大的基于特征的实体建模功能,用户可以通过拉伸特征、旋转特征、薄壁特征、抽壳、特征阵列以及打孔等操作实现产品的设计,方便地添加特征、更改特征以及将特征重新排列,对特征和草图进行动态修改,并通过拖拽等方式实现实时设计修改。 在进行装配设计时,可以直接参考其他零件并保持这种参考关系生成新零件可以动态装配体的所有运动,并对运动零部件进行动态的干涉检查和间隙检查,还可以应用智能零件技术自动完成重复设计,运用智能化装配技术完成自动捕捉并定义装配关系。 在进行工程图设计时,可以自动生成详细,准确的工程图样,且这种工程图样是全相关的,即在修改图样时,三维模型,各个视图,装配体都会自动进行更新。 SolidWorks还提供了功能强大的全相关的钣金设计和模具设计能力,以及开放的二次开发工具。 二、学习心得 经过一个学期的课程,我基本掌握了运用SolidWorks绘制零件图的方法。学会了基准面的创建方法,拉伸和旋转特征建模方法,创建圆角、倒角等附加特征的方法,并了解了运用扫描和放样特征建模。 学习中,我体验到了SolidWorks这款软件功能的强大以及许多方便用户使用的设计。SolidWorks绝对是机械3D建模的利器。

solidworks实例操作

实例操作 在简单介绍了界面和工具栏后,这里给读者演示做一个小零件,如图1-21 所示,让读者了解造型的过程。

2 SolidWorks 2006三维建模实例教程 图1-21零件的造型 (1) 打开SolidWorks 界面后,单击【文件】宀 【新建】命令或者单击按钮 口,出现 “新建SolidWorks 文件”对话框,选择【零件】命令后单击【确定】按钮,出现一个新建 文件的界面,首先单击【保存】按钮,将这个文件保存为“ 底座”。 (2) 在控制区单击【前视基准面】,然后在草图绘制工具栏单击按钮 胃,出现如 图 1-22所示的草图绘制界面; 在图形区单击鼠标右键, 取消选中快捷菜单的 【显示网格线】 复选框,在图形区就没有网格线了。在作图的过程中,由于实行参数化,对于网格一般不 应用,所以在以后的作图中,都去掉网格。 图1-22 草图绘制界面 (3 )单击绘制【中心线】按钮 ■,在图形区过原点绘制一条中心线,然后单击【直 线】按钮—I ,在图形区绘制如图1-23所示的图形,需要注意各条图线之间的几何关系。不 ▼ I □国 MB :4曲:¥為? A 9 目- ifilh 釦| 站存盪仪Q 湮&申 fil nn 9.J tA 3 鹉 tf Al 曙驱 肚kl 曲 -◎ stains 1= MI 辰 -阖也与卿i 孕 7rE?l EiliT 0上丧It 潯面 0右我 ■龙而 [蘇 U g^C-UBl 口距*购 0峋 勺tW*也 e 三卓EW 嚼 ]中碎t 仙 Q 样来曲池 葺宙■再M 妣 $ W6尺她I H 养尺叶;瓯 JIMlJtJE k 3U.nj^*5. 堂昌询?甌「用主JF …回 qjl#.¥jWSi&7 CH 丄亍Flfii 建1皿 J* ^nlbiWnrk^ OfYirr Pmof^vsiafMJ 7r>fW\ - [7BII v *] WB Wi- MQJ t 豐哑昌〒號鼻库酩 -E ◎、口 000-5> 中尙6? 旧内 + 血门 F1

SolidWorks2010详细教程和资料

SolidWorks2010详细教程和资料 SolidWorks公司成立于1993年,由PTC公司的技术副总裁与CV公司的副总裁发起,总部位于马萨诸塞州的康克尔郡(Concord,Massachusetts)内,当初所赋予的任务是希望在每一个工程师的桌面上提供一套具有生产力的实体模型设计系统。从1 995年推出第一套SolidWorks三维机械设计软件至今,它已经拥有位于全球的办事处,并经由300家经销商在全球140个国家进行销售与分销该产品。SolidWorks软件是世界上第一个基于Windows开发的三维CAD系统,由于技术创新符合CAD技术的发展潮流和趋势,SolidWorks公司于两年间成为CAD/CAM产业中获利最高的公司。良好的财务状况和用户支持使得SolidWorks每年都有数十乃至数百项的技术创新,公司也获得了很多荣誉。该系统在1995-1999年获得全球微机平台CAD系统评比第一名;从1995年至今,已经累计获得十七项国际大奖,其中仅从1999年起,美国权威的CAD 专业杂志CADENCE连续4年授予SolidWorks最佳编辑奖,以表彰SolidWorks的创新、活力和简明。至此,SolidWorks所遵循的易用、稳定和创新三大原则得到了全面的落实和证明,使用它,设计师大大缩短了设计时间,产品快速、高效地投向了市场。 由于SolidWorks出色的技术和市场表现,不仅成为CAD行业的一颗耀眼的明星,也成为华尔街青睐的对象。终于在1997年由法国达索公司以三亿一千万美元的高额市值将SolidWorks全资并购。公司原来的风险投资商和股东,以一千三百万美元的风险投资,获得了高额的回报,创造了CAD行业的世界纪录。并购后的SolidWork s以原来的品牌和管理技术队伍继续独立运作,成为CAD行业一家高素质的专业化公司,SolidWorks三维机械设计软件也成为达索企业中最具竞争力的CAD产品。 由于使用了Windows OLE技术、直观式设计技术、先进的parasolid内核(由剑桥提供)以及良好的与第三方软件的集成技术,SolidWorks成为全球装机量最大、最好用的软件。资料显示,目前全球发放的SolidWorks软件使用许可约28万,涉及航空航天、机车、食品、机械、国防、交通、模具、电子通讯、医疗器械、娱乐工业、日用品/消费品、离散制造等分布于全球100多个国家的约3万1千家企业。在教育市场上,每年来自全球4,300所教育机构的近145,000名学生通过SolidWorks的培训课程。 据世界上著名的人才网站检索,与其它3D CAD系统相比,与SolidWorks相关的招聘广告比其它软件的总合还要多,这比较客观地说明了越来越多的工程师使用S

相关主题