搜档网
当前位置:搜档网 › VC5402与外部存储器的接口设计

VC5402与外部存储器的接口设计

专题:存储器与接口设计

专题:存储器与接口设计 存储器接口类型可分为:异步存储器接口和同步存储器接口2大类型 异步存储器接口类型是最常见的,也是我们最熟知的,MCU一般均采用此类接口。相应的存储器有:SRAM、Flash、NvRAM……等,另外许多以并行方式接口的模拟/数字I/O器件,如A/D、D/A、开入/开出等,也采用异步存储器接口形式实现。 同步存储接口相对比较陌生,一般用于高档的微处理器中,TI DSP中只有C55x 和C6000系列DSP包含同步存储器接口。相应的存储器有:同步静态存储器:SBSRAM和ZBTSRAM,同步动态存储器: SDRAM,同步FIFO等。SDRAM可能是我们最熟知的同步存储器件,它被广泛用作PC机的内存。 C2000、C3x、C54x系列DSP只提供异步存储器接口,所以它们只能与异步存储器直接接口,如果想要与同步存储器接口,则必须外加相应的存储器控制器,从电路的复杂性和成本的考虑,一般不这么做。C55x、C6000系列DSP不仅提供了异步存储器接口,为配合其性能还提供了同步存储器接口。 C55x和C6000系列DSP的异步存储器接口主要用于扩展Flash和模拟/数字I/O,Flash主要用于存放程序,系统上电后将Flash中的程序加载到DSP片内或片外的高速RAM 中,这一过程我们称为BootLoader同步存储器接口主要用于扩展外部高速数据或程序RAM,如SBSRAM、 ZBTSRAM或SDRAM等。 现在的问题是如何设计DSP系统的外部存储器电路,即DSP如何正确地与各种类型的存储器芯片接口。在DSP外部存储器电路设计中经常会遇到下列一些问题:DSP提供的外部存储器接口信号与存储器芯片所需要的接口信号不完全一致某 些DSP支持多种数据宽度的访问,如8/16/32位数据宽度等,存储器电路中如何实现?数据、地址线在PCB布线时,为了走线方便,经常会进行等效交换,哪些存储器可以作等效交换、哪些不行? 下面我们将按存储器类型分别来解答这些问题 异步存储器:Flash 对于flash,读操作与SRAM相同;擦除和写入操作以命令序列形式给出,厂商不同,命令序列可能稍有不同写入命令序列后,Flash自动执行相应操作,直到完成,随后自动转为读状态。在完成相应操作前,读Flash得到操作是否完成的状态信息,而非存储单元数据. 对于flash,因为擦除跟写入操作以命令序列形式给出,可以对进行编程,包括两种方式: 1、在线,load2段程序,把要烧写的程序当作文件写入到Flash中 2、离线,通过JTAG烧写 3.3V、16位宽度的、工业标准Flash有4种,它们的引脚兼容,均为48引脚的TSOP封装在PCB布线时,以最大容量1M×16位Flash布线,则可根据容量需要安装如何一种FlashFlash的数据和地址线不可以等效交换BootLoader考虑Flash应定位于特殊的位置,设计时应参考相应器件的数据手册 1、VC33,Flash应定位在PAGE0的1000H、或PAGE1的400000H、或PAGE3的FFF000H,可支持8/16/32位数据宽度

存储器及其接口

存储器的种类、特性和结构 一、分类 按元件组成:半导体M,磁性材料存储器(磁芯), 激光存储器 按工作性质:内存储器:速度快,容量小(64K?8Gbyte) 外存储器:速度慢,容量大(20MB?640GB)二、半导体存储分类 RAM SRAM 静态 DRAM 动态 IRAM 集成动态 ROM 掩膜ROM PROM 可编程 EPROM 可改写 E PROM 可电擦除 三、内存储器性能指标 1. 容量M可容纳的二进制信息量,总位数。 总位数=字数×字长bit,byte,word 2. 存取速度 内存储器从接受地址码,寻找内存单元开始,到它 取出或存入数据为止所需的时间,T A。 T A越小,计算机内存工作速度愈高,半导体M存储 时间为几十ns?几百ns ns=mus 3.功耗 维持功耗操作功耗 CMOS NMOS TTL ECL (低功耗.集成度高)(高速.昂贵.功耗高) 4、可靠性 平均故障间隔时间 MTBF(Mean Time Between Failures) 越长,可靠性越高.跟抗电磁场和温度变化的能力有关. 5、集成度 位/片1K位/片?1M位/片

在一块芯片上能集成多少个基本存储电路 (即一个二进制位) 四、存储器的基本结构 随机存储器RAM 或读写存储器 一、基本组成结构 存储矩阵 寄存二进制信息的基本存储单元的集合体,为便于读写,基本存储单元都排列成一定的阵列,且进行编址。 N×1—位结构:常用于较大容量的SRAM,DRAM N×4 N×8 —字结构常用于较小容量的静态SRAM

2、地址译码器 它接收来自CPU的地址信号,产生地址译码信号。选中存储矩阵中某一个或几个基本存储单元进行读/写操作 两种编址方式: 单译码编址方式. 双译码编址方式 (字结构M)(复合译码) 存储容量

内存储器

1.内存储器主要分为哪两类?它们的主要区别是什么? 内存储器分为随机存取存储器RAM(Radom Access Memory)和只读存储器ROM(Read Only Memory)两类。 RAM中信息可以按地址读出,也可以按地址写入。RAM具有易失性,掉电后原来存储的信息全部丢失,不能恢复。 ROM 中的信息可以按地址读出,但是在普通状态下不能写入,它的内容一般不能被改变。ROM具有“非易失性”,电源关闭后,其中的信息仍然保持。 2.说明SRAM、DRAM、MROM、PROM和EPROM的特点和用途。 SRAM:静态RAM,读写速度快,但是集成度低,容量小,主要用作Cache或小系统的内存储器。 DRAM:动态RAM,读写速度慢于静态RAM,但是它的集成度高,单片容量大,现代微型计算机的“主存”均由DRAM构成。 MROM:掩膜ROM,由芯片制作商在生产、制作时写入其中数据,成本低,适合于批量较大、程序和数据已经成熟、不需要修改的场合。 PROM:可编程ROM,允许用户自行写入芯片内容。芯片出厂时,所有位均处于全“0”或全“1”状态,数据写入后不能恢复。因此,PROM只能写入一次。 EPROM:可擦除可编程只读存储器,可根据用户的需求,多次写入和擦除,重复使用。用于系统开发,需要反复修改的场合。 3.已知一个SRAM芯片的容量为8K×8,该芯片有一个片选信号引脚和一个读/写控制 引脚,问该芯片至少有多少个引脚?地址线多少条?数据线多少条?还有什么信号线? 根据存储芯片地址线数量计算公式,k=log2(1024*8)= log2(213)=13,即总计有13根地址线。另有8根数据线、2根电源线。所以该芯片至少有25(=13+8+1+1+2)根引脚。 4.巳知一个DRAM芯片外部引脚信号中有4根数据线,7根地址线,计算它的容量。 根据存储容量计算公式S=2k×I,可得该芯片的存储容量为:214*4=16K×4bit(位),也可表示为64Kb=8KB(字节)。 5.32M×8的DRAM芯片,其外部数据线和地址线为多少条? 根据存储芯片地址线数量计算公式,k=log2(1024*1024*32)= log2(225)=25,即需要25根地址线。但是,由于DRAM芯片的地址采用分时输入的方法,所以实际需要的地址线只有理论值的一半,此处为13根。数据线8根。 6.DRAM为什么需要定时刷新? DRAM靠MOS管极间电容存储电荷的有无决定所存信息是0还是1,由于漏电流的存在,它存储的信息不能长时间保存,需要定时重新写入,称为“刷新”。 7.74LS138译码器的接线如图2.28所示,写出0Y、2Y、4Y、6Y所决定的内存地址范 围。 从图看出,该存储系统的片内地址线有13根 (A12-A0),是一个由8KB存储芯片组成的存储系 图 2.28 译码

存储器类型综述及DDR接口设计的实现

存储器类型综述及DDR接口设计的实现 存储器类型综述及DDR接口设计的实现 存储器综述 在过去的数年里,电子市场,确切地说是存储器市场,经历了巨大的变化。在 2000 年电子工业低迷时期之前,设计师很少考虑他们下一个设计中元器件的成本,而更关注它们能够达到的最高性能。 今天,竞争的加剧以及利润率的下降迫使系统设计师在降低下一代产品成本的同时,保持、甚至提高系统的性能种转变的结果,有一个工业部门经历了实质性的增长,它就是 DRAM 存储器,尤其是双倍数据速率(DDR) S DRAM 存储DDR存储器最初是一种高性能、低成本的存储器解决方案,主要用于个人计算机和其它成本敏感的消费品市场。于施加在整个电子工业上的经济压力,非消费产品也开始采用DDR存储器了(图 1)。 图 1 来源:IC Insights DDR是一种基于S DRAM 的革命性的存储器技术。DDR S DRAM 的存取速度是S DRAM 的两倍,因为DDR的数据传时钟的所有两个边沿。而S DRAM 仅在时钟的上升沿传送数据。因此,DDR能够传送数据的速度高达2133MB/s。与传统AM 相比,DDR还具有更低的功耗。它的工作电压是直流2.5V,而S DRAM 是直流 3.3V 。 市场分析表明,在当今所有的电子系统中,超过50%采用了DDR存储器,并且预计在接下来的几年中将增长到80不是,并且永远也不会是一种针对所有设计的技术。DDR存储器非常适用于那些高读写比率的设计。而诸如四倍数据器,适用于50%读写比率的应用。图2确定了多种顶尖的存储器技术以及它门各自所属的读/写曲线。

图 2 不同存储器类型的读/写率的比较 如上所述,每个系统有各自独特的存储器要求。在服务器应用的例子中,读写趋于较高的比率,表示需要DDR。理器与支持大数据包的MAC的接口例子中,在处理之前,这些数据包需要进行缓冲和存储,接近1:1的读写比率,表一个合适的存储器结构。 图3展示了一个通用通信线卡印刷电路板的例子。基于系统设计者的要求,这张结构图上指出了在哪里一些通用型可以被采用。在很多系统中采用了相似的决策过程,从而选择合适的存储器结构。 图 3 下面的目录指出了针对不同的系统和功能的合适的存储器结构。这些选择基于系统结构和各自的性能/成本综合要·查找-快速的开关/访问时间 -临界延时,以读取为导向,较小的总线宽度(32/64位)

第三章 内存储器-教案

第三章内存储器 一、教学目的: 1、了解内存储器的概念和发展、结构和性能指标。 2、掌握内存条的区分、选购和测试。 二、教学重点、难点: 掌握内存条的区分、选购和性能测试。 三、教具使用: 计算机一台,多媒体幻灯片演示,内存条若干 四、教学方法: 分析法和问题讨论法,引导学生分析内存条的结构、选购方法,以及如何测试内存条。 五、教学过程: 导入:由人的大脑、书、纸张对比引入到内存储器的知识学习。 幻灯片或板书课题:第三章内存储器 一、基础知识-认识内存储器 提问:仓库对现代化工厂中的流水线的影响? 学生看书、思考并回答; 教师归纳总结并由仓库的作用引入内存条的工作原理,并进一步介绍内存条的的组成、分类及主要性能参数。 1. 内存条的工作原理(作用):中转数据 2. 内存条的组成: 内存条主要由印刷电路板、内存颗粒、SPD芯片、金手指等组成。 3. 内存条的分类和区别 讲解主流三种内存条引脚和定位键(缺口) 4. 内存的封装和技术指标 二、制定选购方案-选购原则及分析 提问:计算机运行需要什么类型、多大内存才能够发挥最佳性能? 学生思考看书进行回答; 教师归纳、引导学生根据计算机实际使用条件确定计算机内存的各项参数,进行进一步的分析和选购。 1. 确定内存容量 影响内存容量的要素:操作系统、使用模式、硬件设备和用户类型 2. 确定内存带宽 应保证内存带宽与主板和CPU前端总线一致 3. 确定内存种类和条数 根据主板内存插槽(定位键)或说明书确定所需内存条种类;应确保使用的内存条数最少,避免多条内存之间出现兼容性故障,方便内存扩充 三、实战:内存储器的选购 提问:如何购买内存条? 教师引导学生思考,并利用幻灯片介绍各种内存颗粒和内存条的鉴别与选择。

C8051F02X外部存储器接口和IO端口配置

https://www.sodocs.net/doc/7a106055.html,/news/html/70/show1598.htm 摘要:介绍美国Cygnal公司生产的C8051F02X系列单片机的外部存储器接口、I/O 端口配置方法和有关注意的问题;在此基础上列举两个关于EMIF、I/O的配置应用。 关键词:C8051F02X EMIF I/O 交叉开关 美国Cygnal公司C8051F02X系列单片机是集成在一起芯片上的混合信号系统级单片机。该单片机具有32/64位数字I/O端口(引脚)、25MIPS高速流水线式8051微控制器内核、64KB在系统可编程Flash存储器、64KB地址的外部存储器接口、4352(4096+256)B片内RAM、各自独立的SPI、SMBUS/I2C和两个UART串行接口等特点。其最突出的优点就是,通过设置交叉开关寄存器控制片内数字资源映射到外部I/O引脚,这就允许用户根据自己的特定应用,选择通用I/O端口和所需要数字资源。当然,在设置数字交叉开关寄存器时,应该首先考虑EMIF的配置问题。其配置不同,将导致单片机通过不同的端口(低或高)访问片外存储器和存储器映像的I/O部件,以及数字交叉开关是否分配外部设备给P0.7(WR)、P0.6(RD)、P0.5(ALE)引脚。(如图EMIF设置为多路器模式。) 1 EMIF和I/O配置方法 1.1 外部存储器接口(EMIF)配置 C8051F02X系列MCU有4KB的RAM可以只映射在片内,也可以映射在64KB外部数据存储器地址空间,还可以同时映射到片内和片外(4KB地址以内在片内存储器空间访问,4KB以上经过EMIF访问)三种方式。对于后两种存储器工作模式,需通过外部存储器接口使用MOVX和DPTR或MOVX和R0(R1)指令访问外部数据存储器和存储器映像的I/O设备。但是对于高8位地址,必须由外部存储器接口寄存器(EMI0CN)提供;而EMIF可将外部数据存储器接口映射到低端口(P0~P3)(F020/2/3系列)或高端口(P4~P7)(F020/2系列),以及配置为复用模式或非复用模式等。配置外部存储器接口的步骤下: *设置EMIF为低端口或高端口; *设置EMIF为复用模式或非复用模式;

TMS320C32 DSP的存储器接口设计方案

TMS320C32 DSP 的存储器接口设计方案 TMS320C32 是美国TI 公司生产的一款浮点数字信号处理器(DSP),是TMS320 系列浮点数字信号处理器的新产品,其CPU 是在TMS320C30 和TMS320C31 的基础上进行了简化和改进。在结构上的改进主要包括可变宽度 的存储器接口、更快速的指令周期时间、可设置优先级的双通道DMA 处理器、灵活的引导程序装入方式、可重新定位的中断向量表以及可选的边缘/电平触发 中断方式等。 1 TMS320C3 2 的外部存储器接口的特点 TMS320C32 是一个32 位微处理器,它可以通过24 位地址总线、32 位数据总线和选通信号对外部存储器进行访问。其外部存储器接口结构如下图l 所示。 在图l 中,引脚(引脚,又叫管脚,英文叫Pin。就是从集成电路(芯片)内部电路引出与外围电路的接线,所有的引脚就构成了这块芯片的接口)PRGW 是用来配置外部程序存储器的宽度的。当PRGW 引脚为低电平时程序 存储器宽度为16 位;当PRGW 引脚为高电平时程序存储器宽度为32 位。STRBO 和STRBl 各为一组访问外部存储器的选通信号,各有4 个信号引脚(STRBx_B3/A_1、STRBx_B2/A_2、STRBx_Bl 和STRBx_B0)。从图l 中我们可以看出,选通信号STRB0 和STRBl 能从8/16/32 位存储器中访问 8/16/32 位数据,或从16/32 位存储器中执行32 位程序;IOSTRB 是外设 I/O 的选通信号引脚,它只能从32 位宽度的存储器中访问32 位的数据和程序。 可以通过对STRBx 和IOSTRB 的设置,从8/16/32 位的存储器中访

ROM存储器内涵EPROM2716存储器的介绍

ROM存储器内涵EPROM2716存储器的介绍

课堂教学实施方案 授课时间:

课 题:只读存储器ROM 、主存储器的设计 5.3 只读存储器ROM 指在微机系统的在线运行过程中,只能对其进行读操作,而不能进行写操作的一类存储器,在不断发展变化的过程中,ROM 器件也产生了掩模ROM 、PROM 、EPROM 、EEPROM 等各种不同类型。 一、掩模ROM 如图4-11所示,是一个简单的4×4位的MOS ROM 存储阵列,采用单译码方式。这时,有两位地址输入,经译码后,输出四条字选择线,每条字选择线选中一个字,此时位线的输出即为这个字的每一位。 此时,若有管子与其相连(如位线1和位线4),则相应的MOS 管就导通,这些位线的输出就是低电表平,表示逻辑“0”;而没有管子与其相连的位线(如位线2和位线3),则输出就是高电平,表示逻辑“1”。 二、可编程的ROM 掩模ROM 的存储单元在生产完成之 后,其所保存的信息就已经固定下来了,这给使用者带来了不便。为了解决这个矛盾,设计制造了一种可由用户通过简易设备写入信息的ROM 器件,即可编程的ROM ,又称为PROM 。 PROM 的类型有多种,我们以二极管破坏型PROM 为例来说明其存储原理。 这种PROM 存储器在出厂时,存储体中每条字线和位线的交叉处都是两个反向串联的二极管的PN 结,字线与位线之间不导通,此时,意味着该存储器中所有的存储内容均为“1”。如果用户需要写入程序,则要通过专门的PROM 写入电路,产生足够大的电流把要写入“1”的那个存储位上的二极管击穿,造成这个PN 结短路,只剩下顺向的二极管跨连字线和位线,这时,此位就意味着写入了“1”。读出的操作同掩模ROM 。 除此之外,还有一种熔丝式PROM ,用户编程时,靠专用写入电路产生脉冲电流,来烧断指定的熔丝,以达到写入“1”的目的。 对PROM 来讲,这个写入的过程称之为固化程序。由于击穿的二极管不能再正常工作,烧断后的熔丝不能再接上,所以这种ROM 器件只能固化一次程序,数据写入后,就不能再改变了。 P + P + A l S i O 2S D 浮空多 晶硅栅 N 基体 字线 EPROM (a) (b) 位线

5 内存储器

第四课内存储器 第一节内存的类型 内存是一组,或多组具有数据输入/输出和数据存储功能的集成电路。存根据其存储信息的特点,主要有两种基本类型: 第一种类型是只读存储器ROM(Read Only Memory),只读存储器强调其只读性,这种内存里面存放一次性写入的程序和数据,只能读出,不能写入; 第二种类型是随机存取存储器RAM(Random Access Memory),它允许程序通过指令随机地读写其中的数据。 1. 只读存储器ROM 存储在ROM中的数据理论上是永久的,既使在关机后,保存在ROM中的数据也不会丢失。因此,ROM中常用于存储微型机的重要信息,如主板上的BIOS等。常见类型如下: (1) ROM 这是标准ROM,用于存储不随外界的因素变化而永久性保存的数据。在ROM中,信息是被永久性融刻在ROM单元中的,这使得ROM在完成融刻工作之后,不可能将其中的信息改变。 (2) PROM(Programmable Rom)

即可编程ROM,它的工作情况与CD-R相似,允许一次性地写入其中的数据,一旦信息被写入PROM后,数据也将被永久性地融刻其中了,其他方面与上面介绍的ROM就没有什么两样了。 (3) EPROM(Erasable Programmable Rom) 即可擦写、可编程ROM,它可以通过特殊的装置(通常是紫外线)反复擦除,并重写其中的信息。 (4) EEPROM(Electrically Erasable Programmable Rom) 即电可擦写、可编程ROM,可以使用电信号来对其进行擦写。因此便于对其中的信息升级,常用于存放系统的程序和数据。 (5) Flash Memory Flash Memory 即闪存存储器,又称闪存,是目前取代传统的EPROM和EEPROM的主要非挥发性存储器,目前主板上的BIOS 都是使用Flash Memory。它的存取时间仅为30ns,并具有体积小,高密度,低成本和控震性能好的优点,是目前为数不多的同时具有大容量、高速度、非易失性、可在线擦写特性的存储器。Flash Memory 除用于系统的BIOS外,在移动存储器和HUB、路由器等网络设备中也得到了广泛的应用。 2. 随机存取存储器RAM

计算机硬件——内存介绍

计算机硬件——内存介绍 计算机硬件分为5大部分,存储器是其中一个部分,那么,存储器中的内存是什么?小编带大家来了解。 计算机系统的一个重要特征是具有极强的“记忆”能力,能够把大量计算机程序和数据存储起来。存储器是计算机系统内最主要的记忆装置,既能接收计算机内的信息(数据和程序),又能保存信息,还可以根据命令读取已保存的信息。存储器按功能可分为主存储器(简称主存)和辅助存储器(简称辅存)。主存是相对存取速度快而容量小的一类存储器,辅存则是相对存取速度慢而容量很大的一类存储器。 主存储器 也称为内存储器(简称内存),内存直接与CPU相连接,是计算机中主要的工作存储器,当前运行的程序与数据存放在内存中。现代的内存储器多半是半导体存储器,采用大规模集成电路或超大规模集成电路器件。内存储器按其工作方式的不同,可以分为随机存取存储器(简称随机存储器或RAM)和只读存储器(简称ROM)。 随机存储器 允许随机的按任意指定地址向内存单元存入或从该单元取出信息,对任一地址的存取时间都是相同的。由于信息是通过电信号写入存储器的,所以断电时RAM中的信息就会消失。计算机工作时使用的程序和数据等都存储在RAM中,如果对程序或数据进行了修改之后,应该将它存储到外存储器中,否则关机后信息将丢失。通常

所说的内存大小就是指RAM的大小,一般以MB或GB为单位。 只读存储器 是只能读出而不能随意写入信息的存储器。ROM中的内容是由厂家制造时用特殊方法写入的,或者要利用特殊的写入器才能写入。当计算机断电后,ROM中的信息不会丢失。当计算机重新被加电后,其中的信息保持原来的不变,仍可被读出。ROM适宜存放计算机启动的引导程序、启动后的检测程序、系统最基本的输入输出程序、时钟控制程序以及计算机的系统配置和磁盘参数等重要信息。 辅助存储器 也称为外存储器(简称外存),计算机执行程序和加工处理数据时,外存中的信息按信息块或信息组先送入内存后才能使用,即计算机通过外存与内存不断交换数据的方式使用外存中的信息。

(整理)常用存储器芯片设计指南

常用存储器芯片设计指南 现代通讯产品中,各种存储器的应用已经是越来越广泛,可以这么说,产品中包含的存储器的特性的好坏,直接关系到产品整体性能。因此,存储器芯片的设计,在通讯产品的设计中,也显得愈发重要。 目前在通讯产品中应用的存储器,主要有FLASH、SSRAM、SDRAM、串行PROM等,由此延伸出去还有在接口电路中经常应用的FIFO、双口RAM等,下面的内容就是这些常用存储器芯片的原理介绍和在产品中的设计指南。 FLASH介绍 一、BOOT ROM简介 我们在CPU最小系统中一般采用AM29LV040B-90 // SST39VF040-90-4C-NH (代码:10300067,512kB,8位总线宽度,PLCC32封装,3.3V供电)作为BOOT ROM。 BOOT ROM中存放的是系统自举程序,实现CPU系统的自举。当系统上电后,CPU 首先运行BOOT ROM中的程序,完成对CPU系统的初始化。 图1 AM29LV040B-90 // SST39VF040-90-4C-NH引脚图 该FLASH芯片可在线读写,但作为BOOT ROM时,我们一般用烧录机烧写入程序,不对其进行在线写。其读操作时序如图2所示。

图2 读操作时序 下面给出一个MPC860最小系统的应用例子。 图3 MPC860 BOOT电路图 因为我们不需要在线写,所以为防止BOOT FLASH的程序被改写,一般将/WE信号接高电平。 MPC860用8位数据口的方式访问BOOT,经缓冲之后的数据线为BD00-BD07。MPC860地址线使用A31-A13,经一级驱动与BOOT相连。使用/CS0片选端,地址范围0x0800 0000~0x0807 FFFF,使用内部等待,等待周期为8。 BOOT ROM中存放的是系统自举程序,实现MPC860系统的自举。当系统上电后,MPC860首先运行BOOT ROM中的程序,该程序首先完成MPC860的初始化,然后根据参数,将Flash ROM中的应用程序复制到SDRAM空间中,然后将控制权移交给该应用程序运行;或准备应用程序加载,进入调试状态。

最新存储器及其接口

存储器及其接口

存储器的种类、特性和结构 一、分类 按元件组成:半导体M,磁性材料存储器(磁芯),激光存储器 按工作性质:内存储器:速度快,容量小(64K?8Gbyte)外存储器:速度慢,容量大(20MB?640GB) 二、半导体存储分类 RAM SRAM 静态 DRAM 动态 IRAM 集成动态 ROM 掩膜ROM PROM 可编程 EPROM 可改写 E PROM 可电擦除 三、内存储器性能指标 1. 容量 M可容纳的二进制信息量,总位数。 总位数=字数×字长 bit,byte,word 2. 存取速度 内存储器从接受地址码,寻找内存单元开始,到它

取出或存入数据为止所需的时间,T A。 T A越小,计算机内存工作速度愈高,半导体M存储时间为几十ns?几百ns ns=mus 3.功耗 维持功耗操作功耗 CMOS NMOS TTL ECL (低功耗.集成度高)(高速.昂贵.功耗高) 4、可靠性 平均故障间隔时间 MTBF(Mean Time Between Failures) 越长,可靠性越高.跟抗电磁场和温度变化的能力有关. 5、集成度 位/片 1K位/片?1M位/片 在一块芯片上能集成多少个基本存储电路 (即一个二进制位) 四、存储器的基本结构

随机存储器 RAM 或读写存储器 一、基本组成结构 存储矩阵 寄存二进制信息的基本存储单元的集合体,为便于读写,基本存储单元都排列成一定的阵列,且进行编址。 N×1—位结构:常用于较大容量的SRAM,DRAM

N×4 N×8 —字结构常用于较小容量的静态SRAM 2、地址译码器 它接收来自CPU的地址信号,产生地址译码信号。选中存储矩阵中某一个或几个基本存储单元进行读/写操作 两种编址方式: 单译码编址方式. 双译码编址方式 (字结构M)(复合译码) 存储容量

第3章内存储器详解

第三章内存储器 教学提示: 本章主要介绍了内存的概念和发展,了解内存的性能指标和结构,学会识别区分各种内存,掌握内存条的选购和测试。 教学目标: A级:(基本要求) 1. 了解内存的基本知识和性能指标。 2. 掌握内存的安装和基本设置。 B级:(较高要求) 1. 了解识别内存条的基本方法。 2. 掌握条据需要选购内存条的方法。 3. 对内存进行测试和维护。 历史回顾: 计算机内存的诞生。世界上第一台数字计算机可以追溯到上个世纪30 年代宋到40 年代初,约翰阿塔纳索夫和他的学生贝瑞在美国艾奥瓦州立大学组装出了世界上第一台数字计算机。该计算机具备了许多现代计算机的设计思想.包括使用二进制数字、可再生存储器、并行计算以及将计算单元和存储单元分离开来等。约翰阿塔纳索夫计算机的存储系统使用的是一个大的磁鼓,这也是计算机内存储器的雏形。

图3-1 早期的计算机的存储系统使用的是一个大的磁鼓内存储器(内存)是微型计算机主机的组成部分,用来存放当前正在使用的或随时要使用的程序。 在计算机的存储系统中内存储器直接决定CPU的工作效率,它是CPU与其它部件进行数据传输的纽带。内存储器是计算机中仅次于CPU的重要部件,内存的容量及性能是影响计算机性能主要因素之一。因此配置和维护计算机就要了解和掌握内存储器的基本知识。 知识补充: 内部存储器按存储信息的功能可分为只读存储器(ROM )、可改写的只读存储器EPROM和随机存储器RAM三大类。存放在RAM上的数据既可以快速写入,也能快速读出。“中转仓库”一般就是用RAM来搭建的。因此,如果不是特别说明,内存一般指的就是RAM。 3.1 基础知识:认识内存储器 内存储器有很多种类,通常所说的内存就是指内存条,下面就逐步介绍内存条。 3.1.1 认识内存条 1.内存的工作原理 当CPU 在工作时,需要从硬盘等外部存储器上读取数据,但由于硬盘这个“仓库”太大,加上离CPU 也很“远”,运输“原料”数据的速度就比较慢,会使CPU 的生产效率降低。为了解决这个问题,在CPU 与外部存储器之间,建了一个“小仓库”:内存。内存虽然容量不大,一般只有几十MB 到几百MB ,但中转速度非常快,当CPU 需要数据时,事先可以将部分数据存放在内存中,这样提高了CPU的工作效率,同时也减轻了硬盘的负担。由于内存只是一个“中转仓库”,因此它并不能用来长时间存储数据,当突然断电时,内存中的所有数据都会丢失。内存的工作如图3-2所示。

片机与存储器接口电路设计

目录 1、课程设计目的 (2) 2、课程设计内容和要求 2.1、设计内容 (2) 2.2、设计要求 (2) 3、设计方案 (2) 3.1、设计思路 (2) 3、1、 1 外部存储器的扩展 (2) 3、1、2静态RAM 6264扩展 (3) 3、1、3地址空间的分配 (3) 3.2、工作原理及硬件框图 (6) 3、2、1单片机系统的工作原理 (6) 3、2、2、6264芯片引脚和内部结构 (7)

3、2、3、74LS373引脚图内部结构原理图和电路连接图 (9) 3、2、4、74ls138芯片功能 (10) 3.3、硬件电路原理图 (11) 3.4、PCB版图设计 (12) 4、课程设计总结 (12) 5、参考文献 (13) 1、设计目的 1、1、掌握电子电路的一般设计方法和设计流程; 1、2、学习简单电路系统设计,掌握Protel99的使用方法; 1、3、掌握单片机、存储器的应用; 1、4、学习掌握硬件电路设计的全过程。 2、课程设计内容和要求 2、1、设计内容 对8051单片机实现外扩16KB RAM,采用两片6264作外扩RAM; 2、2、设计要求 2、2、1、学习掌握单片机及静态存储器SRAM的工作原理及应用;

2、2、2、熟练掌握应用Protel99设计原理图及制作PCB图的过程; 2、2、 3、整理设计内容,编写设计说明书。 3、设计方案 3、1、设计思路 3、1、1 、外部存储器的扩展 外部数据存储器的扩展方法及时序 扩展外部RAM电路原理图 读外部数据RAM时序

写外部数据RAM时序 3、1、2、静态RAM 6264扩展 6264是8K×8位的静态随机存储器芯片,它采用CMOS工艺制造,单一+5V供电,额定功耗200mW,典型存取时间200ns。 3、1、3、地址空间的分配 地址空间的分配,实际是16位地址线的具体安排与分配,是应用系统统硬件设计中至关重要的一个问题。它与外部扩展的存储器容量及数量、功能接口芯片部件的数量等等有关,必须综合考虑,合理分配。 在外部扩展多片存储和功能部件接口芯片时,主机通过地址总线发出的地址是用来选择某一个存储单元或某一个功能部件接口芯片(或芯片中的某一个寄存器)的。要完成这一功能,必须进行两种选择:一是必须选择出指定的芯片(称之为片选);二是必须选择出该芯片的某一个存储单元。第二种选择由地址总线来完成,现在讨论第一种选择,即选中该芯片。通常有两种片选的方法:线选法和译码法。 线选法 线选法就是将多余的地址总线(即除去存储容量所占用的地址总线外)中的某一根地址线作为选择某一片存储或某一个功能部件接口芯片的片选信号线。一定会有一些这样的地址线,否则就不存在所谓的“选片”的问题了。每一块芯片均需占用一根地址线,这种方法适用于存储容量较小,外扩芯片较少的小系统,其优点是不需地址译码器,硬件节省,成本低。缺点是外扩器件的数量有限,而且地址空间是不连续的。

内存储器

2.3.2内存储器 ?概述 ?存储器的层次结构 计算机中存储器分为内存和外存两大类。内存的存取速度比较快而存储容量相对较小,它与CPU直接相连,用来存放正在执行和即将执行的程序和数据。外存的存取速度比较慢而存储容量相对较大,它与CPU并不直接相连,用于存放计算机中几乎所有的信息。 内存储器芯片由称为存储器芯片的半导体集成电路组成。半导体存储器芯片按照是否能随机地进行读写,分为随机存取存储器(Random Access Memory,RAM)和只读存储器(Read Only Memory,ROM)两大类。 ? ?半导体存储器的类型及其在PC机中的应用 RAM目前多采用MOS型半导体集成电路芯片制成,根据其保存数据的机理又可分为DRAM和SRAM。 DRAM:动态随机存取存储器,适合内存储器的主体部分,但它的速度较慢,一般要比CPU慢得多,因此出现了许多不同的DRAM结构。 SRAM:静态随机存取存储器。与DRAM相比,它的电路较复杂、集成度低,功耗较大,制造成本

高,价格贵,但工作速度很快,适合用作高速缓冲存储器Cache。 无论是DRAM还是SRAM,当关机或断点时,其中的信息都将随之丢失,这是RAM与ROM的一个很大区别。 ROM,只读存储器。ROM是一种能够永久或永久性地保存数据地存储器,即使调电(或关机)后,存放在ROM中的数据也不会丢失,所以也叫做非易失性存储器。按照ROM的内容能否能(或怎样)改写,ROM可分为以下几类。 MaskROM,存储的数据有工厂在生产过程中一次形成,此后再也无法进行修改。 PROM和EPROM,用户可以使用专用装置写入信息。前者不能改写,后者可以通过专用设备改写其中的信息。 Flash ROM,这是一种新型的非易失性存储器,但又像RAM一样能方便地写入信息。 2. 主存储器 主存储器由若干DRAM芯片组成,它包含有大量的存储单元,每个存储单元可以存放1个字节。每个存储单元都有一个存储地址,CPU按存储地址对存储单元进行访问。存储器的容量是指存储器所能存储的二进制位数。 近几年流行的是DDR和DDR2两种类型。 DDR与CPU前端总线使用同一个时钟,数据通路宽度也与前段总线一样,均为64位,它利用存储器总线上时钟的上升沿与下降沿在同一个时钟内实现两次数据传送,因此数据读写速率为:存储器数据通路宽度×存储器总线时钟频率×2。 DDR2和DDR一样,都采用了在时钟的上升沿和下降沿同时进行数据传输的方式,但DDR2还拥有两倍于DDR的预读取数据的能力。也就是说,在同样的100MHz工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。当DDR和DDR2以双通道的方式使用时,它们的数据传输速度还能再提高一倍,从而更好地满足高速CPU的要求。

ROM存储器内涵EPROM2716存储器的介绍

课 堂 教 学 实 施 方 案 课 题:只读存储器ROM 、主存储器的设计 5.3 只读存储器ROM 指在微机系统的在线运行过程中,只能对其进行读操作,而不能进行写操作的一类存储器,在不断发展变化的过程中,ROM 器件也产生了掩模ROM 、PROM 、EPROM 、EEPROM 等各种不同类型。 一、掩模ROM 如图4-11所示,是一个简单的4×4位的MOS ROM 存储阵列,采用单译码方式。这时,有两位地址输入,经译码后,输出四条字选择线,每条字选择线选中一个字,此时位线的输出即为这个字的每一位。 此时,若有管子与其相连(如位线1和位线4),则相应的MOS 管就导通,这些位线的输出就是低电表平,表示逻辑“0”;而没有管子与其相连的位线(如位线2和位线3),则输出就是高电平,表示逻辑“1”。 二、可编程的ROM 掩模ROM 的存储单元在生产完成之后,其所保存的信息就已经固定下来了, 这给使用者带来了不便。为了解决这个矛盾,设计制造了一种可由用户通过简易设备写入信息 的ROM 器件,即可编程的ROM ,又称为PROM 。 PROM 的类型有多种,我们以二极管破坏型PROM 为例来说明其存储原理。 这种PROM 存储器在出厂时,存储体中每条字线和位线的交叉处都是两个反向串联的二极管的PN 结,字线与位线之间不导通,此时,意味着该存储器中所有的存储内容均为“1”。如果用户需要写入程序,则要通过专门的PROM 写入电路,产生足够大的电流把要写入“1”的那个存储位上的二极管击穿,造成这个PN 结短路,只剩下顺向的二极管跨连字线和位线,这时,此位就意味着写入了“1”。读出的操作同掩模ROM 。 除此之外,还有一种熔丝式PROM ,用户编程时,靠专用写入电路产生脉冲电流,来烧断 P + P + A l S i O 2S D 浮空多 晶硅栅 N 基体 字线 EPROM (a) (b) 位线

TMS320C32的存储器接口设计

TMS320C32的存储器接口设计 1 TMS320C32的外部存储器接口的特点 TMS320C32是一个32位微处理器,它可以通过24位地址总线、32位数据总线和选通信号对外部存储器进行访问。其外部存储器接口结构如下图l所示。 图1,TMS320C32的外部存储器接口图 在图1中,引脚(引脚,又叫管脚,英文叫Pin。就是从集成电路(芯片)内部电路引出与外围电路的接线,所有的引脚就构成了这块芯片的接口)PRGW是用来配置外部程序存储器的宽度的。当PRGW引脚为低电平时程序存储器宽度为16位;当PRGW引脚为高电平时程序存储器宽度为32位。STRBO和STRBl各为一组访问外部存储器的选通信号,各有4个信号引脚(STRBx_B3/A_1、STRBx_B2/A_2、STRBx_Bl和STRBx_B0)。从图l中我们可以看出,选通信号STRB0和STRBl能从8/16/32位存储器中访问8/16/32位数据,或从16/32位存储器中执行32位程序;IOSTRB是外设I/O的选通信号引脚,它只能从32位宽度的存储器中访问32位的数据和程序。 可以通过对STRBx和IOSTRB的设置,从8/16/32位的存储器中访问8/16/32位数据或程序。也就是说,可以从任何一个外部存储器中访问任何一种类型的数据。这就说明可以通过设置IOSTRB、STRB0和STRB1的选通信号来寻址整个外部存储器空间。例如,一个32位外部存储器可以被设定为只存放一个32位的双字,但是也可以被分为具有2个连续地址的16位字或者4个连续地址的8位字节。反之,一个32位双字可以放在一个32位外部存储器中,也可以放在2个16位或4个8位宽度的外部存储器中。 TMS320C32内部总共提供了64 MB的存储器映射空间。其中,STRB0所对应的存储映像区间是不连续的两段区问,一段是03FH~7FFFFFH(共31.999 MB),另一段是880000H~8FFFFFH(共2 MB);STRBl所对应的存储映像区间是900000H~FFFFFFH(共28 MB);IOSTRB所对应的存储映像区间是810000H~82FFFFH(共512KB)。当外部总线访问这些空间时,相应的选通信号就使能。 负责控制信号的输入和输出叫做使能,是一个动词,英文‘Enable’。使能通俗点说就是一个“允许”信号,进给使能也就是允许进给的信号,也就是说当进给使能信号有效的时候电机才能转动。一般的数控系统会将电机的进给使能信号跟急停开关和行程限位开关串联起来,当按下急停开关或者电机运转超出行程后,进给使能信号被断开,电机不能继续转动,从而保护机床在安全的行程内运行。 2 TMS320C32的3种存储器设计方案 2.1 8位存储器宽度 设计为8位的存储器,其硬件接线方案。STRBx_B3/Al_1和STRBx_B2/A_2引脚作为地址引脚,STRBx_B0引脚作为片选引脚,而STRBx_B1则不用。 图2,8位存储器的硬件接线图 图3,16位存储器的硬件接线图 设计为16位的存储器,其硬件接线方案。STRBx_B3/A_1引脚作为地址引脚,STRBx_B0

存储器类型综述及DDR接口设计的实现

存储器类型综述及DDR接口设计的实现 技术分类:微处理器与DSP | 2004-12-30 Laxmi Vishwanathan;Dan Schaffer;Jock Tomlinson,莱迪思半导体公司 存储器综述 在过去的数年里,电子市场,确切地说是存储器市场,经历了巨大的变化。在 2000年电子工业低迷时期之前,电子系统设计师很少考虑他们下一个设计中元器件的成本,而更关注它们能够达到的最高性能。 今天,竞争的加剧以及利润率的下降迫使系统设计师在降低下一代产品成本的同时,保持、甚至提高系统的性能。作为这种转变的结果,有一个工业部门经历了实质性的增长,它就是DRAM存储器,尤其是双倍数据速率(DDR) SDRAM存储器。 DDR存储器最初是一种高性能、低成本的存储器解决方案,主要用于个人计算机和其它成本敏感的消费品市场。近来,由于施加在整个电子工业上的经济压力,非消费产品也开始采用DDR存储器了(图 1)。 图 1 来源:IC Insights DDR是一种基于SDRAM的革命性的存储器技术。DDR SDRAM的存取速度是SDRAM的两倍,因为DDR的数据传送发生在时钟的所有两个边沿。而SDRAM仅在时钟的上升沿传送数据。因此,DDR能够传送数据的速度高达2133MB/s。与传统的SDRAM相比,DDR还具有更低的功耗。它的工作电压是直流2.5V,而SDRAM是直流3.3V。 市场分析表明,在当今所有的电子系统中,超过50%采用了DDR存储器,并且预计在接下来的几年中将增长到80%。DDR不是,并且永远也不会是一种针对所有设计的技术。DDR存储器非常适用于那些高读写比率的设计。而诸如四倍数据速率存储器,适用于50%读写比率的应用。图2确定了多种顶尖的存储器技术以及它门各自所属的读/写曲线。

第五章存储器习题

第五章存储器及其接口 1.单项选择题 (1)DRAM2164(64K╳1)外部引脚有() A.16条地址线、2条数据线 B.8条地址线、1条数据线 C.16条地址线、1条数据线 D.8条地址线、2条数据线 (2)8086能寻址内存贮器的最大地址范围为() A.64KB B.512KB C.1MB D.16KB (3)若用1K╳4b的组成2K╳8b的RAM,需要()。 A.2片 B.16片 C.4片 D.8片 (4)某计算机的字长是否2位,它的存储容量是64K字节编址,它的寻址范围是()。 A.16K B.16KB C.32K D.64K (5)采用虚拟存储器的目的是() A.提高主存的速度 B.扩大外存的存储空间 C.扩大存储器的寻址空间 D.提高外存的速度 (6)RAM存储器器中的信息是() A.可以读/写的 B.不会变动的 C.可永久保留的 D.便于携带的 (7)用2164DRAM芯片构成8086的存储系统至少要()片 A.16 B.32 C.64 D.8 (8)8086在进行存储器写操作时,引脚信号M/IO和DT/R应该是() A.00 B。01 C。10 D。11 (9)某SRAM芯片上,有地址引脚线12根,它内部的编址单元数量为()A.1024 B。4096 C。1200 D。2K (11)Intel2167(16K╳1B)需要()条地址线寻址。 A.10 B.12 C.14 D.16 (12)6116(2K╳8B)片子组成一个64KB的存贮器,可用来产生片选信号的地址线是()。 A.A 0~A 10 B。A ~A 15 C。A 11 ~A 15 D。A 4 ~A 19 (13)计算一个存储器芯片容量的公式为() A.编址单元数╳数据线位数B。编址单元数╳字节C.编址单元数╳字长D。数据线位数╳字长(14)与SRAM相比,DRAM() A.存取速度快、容量大B。存取速度慢、容量小 C.存取速度快,容量小D。存取速度慢,容量大 (15)半导动态随机存储器大约需要每隔()对其刷新一次。A.1ms B.1.5ms C.1s D.100μs (16)对EPROM进行读操作,仅当()信号同时有效才行,。A.OE、RD B。OE、CE C。CE、WE D。OE、WE 2.填空题 (1)只读存储器ROM有如下几种类型:_________. (2)半导体存储器的主要技术指标是_________。

相关主题