搜档网
当前位置:搜档网 › 平行四边形的性质及判定 典型例题

平行四边形的性质及判定 典型例题

平行四边形的性质及判定 典型例题
平行四边形的性质及判定 典型例题

平行四边形的性质及判定(典型例题)

1.平行四边形及其性质

例1 如图,O是ABCD对角线的交点.△OBC的周长为59,BD=38,AC=24,则AD=____若△OBC与△OAB的周长之差为15,则AB=ABCD的周长=____.

分析:

AC,可得BC,再由平行四边形对边相等知AD=BC,由平行四边形的对角线互相平分,可知△OBC与△OAB的周长之差就为BC 与AB之差,可得AB,进而可得ABCD的周长.

对角线互相平分)

∴△OBC的周长=OB+OC+EC

=19+12+BC=59

∴BC=28

ABCD中,

∴BC=AD(平行四边形对边相等)

∴AD=28

△OBC的周长-△OAB的周长

=(OB+OC+BC)-(OB+OA+AB)

=BC-AB=15

∴AB=13

∴ABCD的周长

=AB+BC+CD+AD

=2(AB+BC)

=2(13+28)

=82

说明:本题条件中的“△OBC占△OAB的周长之差为15”,用符

号语言表示出来后,便容易发现其实质,即BC与AB之差是15.例2 判断题

(1)两条对边平行的四边形叫做平行四边形.( )

(2)平行四边形的两角相等.( )

(3)平行四边形的两条对角线相等.( )

(4)平行四边形的两条对角线互相平分.( )

(5)两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.( )

(6)平行四边形的邻角互补.( )

分析:根据平行四边形的定义和性质判断.

解:

(1)错

“两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD∥BC.显然四边形

ABCD不是平行四边形.

(2)错

平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.

(3)错

平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).

(4)对

根据平行四边形的性质定理3可判断是正确的.

(5)错

线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.

(6)对

由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.

例3 .如图1,在ABCD中,E、F是AC上的两点.且AE=CF.求证:ED∥BF.

分析:欲址DE∥BF,只需∠DEC=∠AFB,转证=∠ABF≌△CDF,因ABCD,则有AB CD,从而有∠BAC=∠CDA.再由AF=CF 得AF=CE.满足了三角形全等的条件.

证明:

∵AE=CF

AE+EF=CF+EF

∴AF=CE

在ABCD中

AB∥CD(平行四边形的对边平行)

∴∠BAC=∠DCA(两直线平行内错角相等)

AB=CD(平行四边形的对边也相等)

∴△ABF≌△CDE(SAS)

∴∠AFB=∠DCE

∴ED∥BF(内错角相等两直线平行)

说明:解决平行四边形问题的基本思想是化为三角形问题不处理.

例4 如图已知在△ABC中DE∥BC∥FG,若BD=AF、求证;DE+FG=BC.

分析1:要证DE+FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH∥AB(或DM∥AC),得到DE=BH、只需证HC=FG,因AF=BD=EH,∠CEH=∠A.∠AGF=∠C所以△AFG≌∠EHC.此方法称为截长法.分析2:过C点作CK∥AB交DE的延长线于K,只需证

FG=EK,转证△AFG≌△CKE.

证法1:

过E作EH∥AB交于H

∵DE∥BC

∴四边形DBHE是平行四边形(平行四边形定义) ∴DB=EH

DE=BH(平行四边形对边也相等)

又BD=AF

∴AF=EH

∵BC∥FG

∴∠AGF=∠C(两直线平行同位角相等)

同理∠A=∠CEH

∴△AFG≌△EHC(AAS)

∴FG=HC

∴BC=BH+HC=DE=FG

即CE+FG=BD

证法2:

. 过C作CK∥AB交DE的延长线于K.

∵DE∥BC

∴四边形DBCK是平行四边形(平行四边形定义) ∴CK=BD DK=BC

(平行四边形对边相等)

又BD=AF

∴AF=CK

∵CK∥AB

∴∠A=∠ECK(两直线平行内错角相等)

∵BC∥FG

∴∠AGF=∠AED(两直线平行同位角相等)

又∠CEK=∠AED(对顶角相等)

∴∠AGF=∠CEK

∴△AFG≌△CKE(AAS)

FG=EK

DE+EK=BC

∴DE+FG=BC

例5 如图ABCD中,∠ABC=3∠A,点E在CD上,CE=1,EF⊥CD交CB延长线于F,若AD=1,求BF的长.

分析:根据平行四边形对角相等,邻角互补,可得∠C=∠F=45°进而由勾股定理求出CF,再根据平行四边形对边相等,得BF的长.

解:在ABCD中,AD∥BC

∴∠A+∠ABC=180°(两直线平行同旁内角互补)

∵∠ABC=3∠A

∴∠A=45°,∠ABC=135°

∴∠C=∠A=45°(平行四边形的对角相等)

∴EF⊥CD

∴∠F=45°(直角三角形两锐角互余)

∴EF=CE=1

∵AD=BC=1

例6 如图1,ABCD中,对角线AC长为10cm,∠CAB=30°,AB长为6cm,求ABCD的面积.

解:过点C作CH⊥AB,交AB的延长线于点H.(图2)

∵∠CAB=30°

∴S ABCD=AB·CH=6×5=30(cm2)

答:ABCD的面积为30cm2.

说明:由于=底×高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C作高.

例7 如图,E、F分别在ABCD的边CD、BC上,且EF∥BD

求证:S△ACE=S△ABF

分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.

证明:将EF向两边延长分别交AD、AB的延长线于G、H.

ABCD DE∥AB

∴∠DEG=∠BHF(两直线平行同位角相等)

∠GDE=∠DAB(同上)

AD∥BC

∴∠DAB=∠FBH(同上)

∴∠GDE=∠FBH

∵DE∥BH,DB∥EH

∴四边形BHED是平行四边形

∵DE=BH(平行四边形对边相等)

∴△GDE≌△FBH(ASA)

∴S△GDE=S△FBH(全等三角形面积相等)

∴GE=FH(全等三角形对应边相等)

∴S△ACE=S△AFH(等底同高的三角形面积相等)

∴S△ADE=S△ABF

说明:平行四边形的面积等于它的底和高的积.即S=a·ha.a可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.

例8 如图,在ABCD中,BE平分∠B交CD于点E,DF 平分∠D交AB于点F,求证BF=DE.

证明:

∵四边形ABCD是平行四边形

∴DE∥FB,∠ABC=∠ADC(平行四边形的对边也平行对角相等)

∴∠1=∠3(两直线平行内错角相等)

∴∠1=∠2

∴∠2=∠3

∴DF∥BE(同位角相等两条直线平行)

∴四边形BEDF为平行四边形(平行四边形定义)

∴BF=DE.(平行四边形的对边相等)

说明:此例也可通过△ADF≌△CBE来证明,但不如上面的方法简捷.

例9 如图,CD的Rt△ABC斜边AB上的高,AE平分∠BAC 交CD于E,EF∥AB,交BC于点F,求证CE=BF.

分析作EG∥BC,交AB于G,易得EG=BF.再由基本图,可得EG=EC,从而得出结论.

证明:

过E点作EG∥BC交AB于G点.

∴∠EGA=∠B

∵EF∥AB

∴EG=BF

∵CD为Rt△ABC斜边AB上的高

∴∠BAC+∠B=90°.∠BAC+∠ACD=90°

∴∠B=∠ACD

∴∠ACD=∠EGA

∵AE平分∠BAC

∴∠1=∠2

又AE=AE

∴△AGE≌△ACE(AAS)

∴CE=EG

∴CE=BF.

说明:

(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE.(连F点作FG∥AE,交AB于G)

例10 如图,已知ABCD的周长为32cm,AB∶BC=5∶3,AE⊥BC于E,AF⊥DC于F,∠EAF=2∠C,求AE和AF的长.

分析:

从化简条件开始

①由ABCD的周长及两邻边的比,不难得到平行四边形的边长.

②∠EAF=2∠C告诉我们什么?

这样,立即可以看出△ADF、△AEB都是有一个锐角为30°的直角三角形.

再由勾股定理求出

解:ABCD的周长为32cm

即AB+BC+CD+DA=32

∵AB=CD BC=DA(平行四边形的对边相等)

又AB∶BC=5∶3

∠EAF+∠AFC+∠C+∠CEA=360°(四边形内角和等于360°) ∵AE⊥BC ∠AEC=90°

AF⊥DC ∠AFC=90°

∴∠EAF+∠C=180°

∠EAF=2∠C

∴∠C=60°

∵AB∥CD(平行四边形的对边平行)

∴∠ABE=∠C=60°(两直线平行同位角相等)

同理∠ADF=60°

说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.

2.平行四边形的判定

例1 填空题

(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则

四边形AEFD是__,理由是__

(2) 如图2,D、E分别在△ABC的边AB、AC上,DE=EF,AE=EC,DE∥BC则四边形ADCF是__,理由是__,四边形BCFD 是__,理由是___

分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC,DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD∥CF即BD∥CF,再由条件,可得四边形BCFD是平行四边形.

解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形

(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

平行四边形典型例题精编版

平行四边形典型例题 1 如图,□ABCD的对角线AC、BD 相交于点O,则图中全等三角形有() A .2 对 B .3对 C .4 对 D .5对 17如图,□ABCD中,∠ B、∠ C的平分线交于点O ,BO 和CD 的延长线交于求证:BO=OE. 例3】如图,在ABCD中,AE⊥ BC于E ,AF⊥DC 于F ,∠ ADC=60°,BE=2,CF=1, 求△ DEC 的面积. 解】在中,,、 在Rt △ABE 中,, 在△ 中,

例 4】已知:如图, D 是等腰△ ABC 的底边 BC 上一点, DE//AC , DF//AB 求证: DE+DF=A .B , ,从而可以利用平行四边形的定义和性质,等腰 三角 形的判定和性质来证. 解】∵ , ∴四边形 是平行四边形. ∴. ∵ ,∴ . ∵ ,∴ 说明:证明一条线段等于另外两条线段的和常采用的方法是: 分为两段,证明这两段分别等于另两条线段. 于 ,求证: 分析】 分析】由于 把三条线段中较长的线段 例 5】如图, 已知: 中, 相交于 点, 于 ,

解】因为四边形是平行四边形,所以,又因为、交于点, 所以. 又因为, 所以 从而例6】已知:如图,AB//DC ,AC、BD交于O,且 AC=BD。 求证:OD=OC. 证明:过B 作交DC延长线于E,则 于是△≌△ ∵ ,, E

∵, ∴∴ 说明:本题条件中有“夹在两条平行线之间的相等且相交的线 段 时用不上,为此通过作平行线,由“夹在两条平行线间的平行线B BE ,得到等腰△ BDE ,使问题得解. 例 7】如图, □ABCD 的对角线 AC 的垂直平分线与边 AD 、BC 分别交于 E 、F , 例 8】如图所示, □ABCD 中,各内角的平分线分别相交于点 E 、 F 、 G 、 H , 证明:四边形 EFGH 是矩形。 例 9】如图所示,已知矩形 ABCD 的对角线 AC 、BD 交于点 O ,过顶点 C ,作 BD 的垂线与∠ BAD 的平分线相交于点 E ,交 BD 于 G ,证明: AC=CE 。 求证:四边形 AFCE 是菱形. 解:略。 置交错而 A 由 AC 平移到 E

平行四边形的性质(一)

第六章平行四边形 1. 平行四边形的性质(一) 杨家湾二中顾怀林 一、学生起点分析 学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。 学生活动经验基础:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。 二、学习任务分析 四边形和三角形一样,也是基本的平面图形,在三角形有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索平行四边形的性质并培养学生的探索意识。 教学目标: 1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯; 2.探索并掌握平行四边形的性质,并能简单应用; 3.在探索活动过程中发展学生的探究意识。 教学重点:平行四边形性质的探索。 教学难点:平行四边形性质的理解。 教学方法:探索归纳法 三、教学过程设计 本节课分5个环节: 第一环节:实践探索,直观感知 第二环节:探索归纳,交流合作 第三环节:推理论证,感悟升华 第四环节:应用巩固,深化提高 第五环节:评价反思,概括总结

第一环节:实践探索,直观感知 1.小组活动一 内容: 问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。 (1)你拼出了怎样的四边形?与同桌交流一下; (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。 目的: 通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形; 平行四边形的相邻的两个顶点连成的一段叫做它的对角线。 教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示“”。 2.小组活动二 内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗? 目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。 效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。 第二环节探索归纳、合作交流 小组活动三: 内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?⑵你还发现平行四边形的那些性质呢? 活动目的: 这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。

北师大版八年级数学下册 平行四边形的性质与判定 专题(附答案)

综合滚动练习:平行四边形的性质与判定 时间:45分钟分数:100分得分:________ 一、选择题(每小题4分,共32分) 1.在?ABCD中,若∠A+∠C=120°,则∠A的度数是() A.100°B.120°C.80°D.60° 2.如图,在?ABCD中,点O是对角线AC,BD的交点,下列结论错误的是() A.AB∥CD B.AB=CD C.AC=BD D.OA=OC 第2题图第5题图 3.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是() A.4∶3∶3∶4 B.7∶5∶5∶7 C.4∶3∶2∶1 D.7∶5∶7∶5 4.平面直角坐标系中,已知?ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是() A.(-2,1) B.(-2,-1) C.(-1,-2) D.(-1,2) 5.如图,?ABCD中,点E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为() A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2 6.如图,在?ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E.若AB=6,EF=2,则BC的长为() A.8 B.10 C.12 D.14 第6题图第7题图7.如图,在?ABCD中,∠B=80°,AE平分∠BAD交BC于E,CF∥AE交AD于F,则∠BCF等于() A.40°B.50°C.60°D.80° 8.(2017·龙东中考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是() A.22 B.20 C.22或20 D.18 二、填空题(每小题4分,共24分) 9.已知AB∥CD,添加一个条件____________,使得四边形ABCD为平行四边形.10.如图,在?ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为________.

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

《平行四边形》的性质与判定 专题练习题 含答案

人教版数学八年级下册第十八章平行四边形平行四边形的性质与判定专题练习题1.在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各 点中不能作为平行四边形顶点坐标的是() A.(-3,1) B.(4,1) C.(-2,1) D.(2,-1) 2.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有?ADCE中,DE最小的值是() A.2 B.3 C.4 D.5 3.如图,E是?ABCD内任意一点,若平行四边形的面积是6,则阴影部分的面积为____. 4.如图,?ABCD与?DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_______. 5.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE. (1)求证:△ABC≌△EAD; (2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数. 6.如图,在?ABCD中,E是BC的中点,AE=9,BD=12,AD=10. (1)求证:AE⊥BD; (2)求?ABCD的面积.

7 如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E. (1)求证:BE=CD; (2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求?ABCD的面积 8. 如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF. 求证:四边形BECF是平行四边形. 9. 如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′的位置,则四边形ACE′E的形状是_____________. 10. 如图,已知点E,C在线段BF上,BE=CE=CF,AB∥DE,∠ACB=∠F. (1)求证:△ABC≌△DEF;

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

平行四边形的性质与判定 专题练习题

平行四边形的性质与判定专题练习题 1.在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是() A.(-3,1) B.(4,1) C.(-2,1) D.(2,-1) 2.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以 AC为对角线的所有?ADCE中,DE最小的值是() A.2 B.3 C.4 D.5 3.如图,E是?ABCD内任意一点,若平行四边形的面积是6,则阴 影部分的面积为____. 4.如图,?ABCD与?DCFE的周长相等,且∠BAD=60°,∠F=110°, 则∠DAE的度数为_______. 5.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE. (1)求证:△ABC≌△EAD; (2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数. 6.如图,在?ABCD中,E是BC的中点,AE=9,BD=12,AD=10. (1)求证:AE⊥BD; (2)求?ABCD的面积.

7 如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交 CD于点F,交BC的延长线于点E. (1)求证:BE=CD; (2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求?ABCD的面积 8. 如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF. 求证:四边形BECF是平行四边形. 9. 如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′的位置,则四边形ACE′E的形状是_____________.

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

(完整版)平行四边形经典练习题

挑战自我: 1、 (2010年眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ ABC 的度数为( ) A .90° B .60° C .45° D .30° 2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形 3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( ) A .9 B .8 C .6 D .4 4、(2010年福建福州中考)如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 。 5、(2010年宁德市)如图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____. 6题 6、 (2010年滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE ∥BD,EF ⊥BC,DF=2,则EF 的长为 7、 (2010年福建晋江)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)关系:①∥,②,③,④. 已知:在四边形中, , ;求证:四边形是平行四边形. 8、(2010年宁波市)如图1,有一张菱形纸片ABCD ,8=AC ,6=BD 。 (1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四 边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD 剪开, F E D C B A ABCD AD BC CD AB =C A ∠=∠?=∠+∠180C B ABCD ABCD D A B C A B C D 第5题图 F A E B C D

平行四边形及其性质

平行四边形及其性质

课题: 4 . 1 平行四边形及其性质 教材:北师大版义务教育课程标准实验教科书八年级上册 一、教材分析 1.教材的地位与作用 平行四边形是最基本的几何图形,也是“空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用. 本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用. 2.教学目标: 知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力. 数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力. 解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性. 情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐. 3.教学重点、难点: 重点:理解并掌握平行四边形的概念及其性质. 难点:运用平移、旋转的图形变换思想探究平行四边形的性质. 4.教材处理: 基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合. 首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性. 然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的

平行四边形性质专题

C F B E D A 一、平行四边形基本定义: 1、平行四边形 定义:有两组对边分别平行的四边形是平行四边形。 表示:平行四边形用符号“□ ”来表示。 2、平行四边形性质: 3、扩展性质: 二.平行四边形的面积: 平行四边形的面积: 等于底和高的积,即S □ABCD =ah ,其中a 可以是平行四边形的任何一边,h 必须是a 边到其对边的距离,即对应的高。 平行四边形中的等积法使用: DF BC DE AB ?=? 三、总结: (1)平行四边形的性质和扩展性质要能够理解并灵活运用。 (2)平行四边形中对角线是常用辅助线。 平行四边 形性质 平行四边形对边相等; 平行四边形对角相等; 平行四边形对角线互相平分。 平行四边形对角线分平行四边形成面积相等的四个小三角形。 平行四边形对角线分平行四边形成四个小三角形中,相邻两个小三角形周长差等于边长差 平行四边形对角线的一半和大于任意一边长 过平行四边形对角线交点的任意一条直线分平行四边形成面积相等两部分

例题1如图,在?ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( )A .4 B .3 C . 2 5 D .2 例题2如图,平行四边形ABCD 中,A E 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的延长线交于点 F .下列结论中:①△ABC ≌△AED ;②△ABE 是等边三角形;③AD=AF ;④S △ABE =S △CDE ;⑤S △ABE =S △CEF .其中正确的是( )A .①②③B .①②④C .①②⑤D .① ③④ 平行四边形的面积问题 实例:如图,已知四边形ABDE 是平行四边形,C 为边BD 延长线上一点,连结AC 、CE ,使AB=AC . (1)求证:△BAD ≌△AEC ; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积. 平行四边形中的折叠 实例:如图,在?ABCD 中,点E ,F 分别在边DC ,AB 上,DE=BF ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在B′,C′处,线段EC′与线段AF 交于点G ,连接DG ,B′G. 求证:(1)∠1=∠2; (2)DG=B′G. DE=B′F,∴△DEG ≌△B′FG,∴DG=B′G.

平行四边形典型例题

平行四边形典型例题 【例1】如图,□ABCD的对角线AC、BD相交于点O,则图中全等三角形有() A.2对 B.3对 C.4对 D.5对 【分析】由平行四边形的对边平行、对角线互相平分,可得全等三角形有:△ABD和△CDE, △ADC和△CBA ,△AOD 和△BOC 、△AOB 和△COD . 【答案】C 【例2】如图,□ABCD中,∠B、∠C的平分线交于点O ,BO 和CD 的延长线交于E ,求证:BO=OE . 【分析】证线段相等,可证线段所在三角形全等.可证△COE ≌△COB .已知OC 为公共边,∠OCE=∠OCB,又易证∠E=∠EBC.问题得证. 【证明】在□ABCD中,∵AB//CD, ∴, 又∵(角平分线定义). ∴, 又∵, ∴△≌△ ∴. 说明:证线段相等通常有两种方法:(1)在同一三角形中证三角形等腰;(2)不在同一三角形则证两三角形全等.本题也可根据等腰三角形“三线合一”性质证明结论.

【例3】如图,在ABCD中,AE⊥BC于E ,AF⊥DC 于F ,∠ADC=60°,BE=2,CF=1,求△DEC 的面积. 【解】在中,,、. 在Rt △ABE 中,,. ∴,. ∴. 在△中,. ∴. 故. 【例4】已知:如图,D 是等腰△ABC 的底边BC 上一点,DE//AC ,DF//AB .求证:DE+DF=AB. 【分析】由于,,从而可以利用平行四边形的定义和性质,等腰三角形的判定和性质来证. 【解】∵, ∴四边形是平行四边形. ∴. ∵,∴.

∵,∴. ∴. ∴. 说明:证明一条线段等于另外两条线段的和常采用的方法是:把三条线段中较长的线段分为两段,证明这两段分别等于另两条线段. 【例5】如图,已知:中,、相交于点,于, 于,求证:. 【分析】 【解】因为四边形是平行四边形, 所以,. 又因为、交于点, 所以. 又因为,, 所以.

18.1.1 平行四边形的性质(教学设计)

第十八章平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质 第一课时 【岩帅中学李光兴】 一、教学目标: 1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3.培养学生发现问题、解决问题的能力及逻辑推理能力. 二、重点、难点 【重点】平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 【难点】运用平行四边形的性质进行有关的论证和计算. 三、课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象? 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗? 你能总结出平行四边形的定义吗? (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“”来表示. 如图,在四边形ABCD中,AB∥DC,AD∥BC, 那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定); ②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质). 平行四边形性质一:平行四边形的两组对边分别平行;

注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下. 猜想平行四边形的对边相等、对角相等. 下面证明这个结论的正确性. 已知:如图ABCD, 求证:AB=CD,CB=AD,∠B=∠D, ∠BAD=∠BCD. 分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论. (作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.) 证明:连接AC, ∵AB∥CD,AD∥BC, ∴∠1=∠3,∠2=∠4. 又AC=CA, ∴△ABC≌△CDA (ASA). ∴AB=CD,CB=AD,∠B=∠D. 又∠1+∠4=∠2+∠3, ∴∠BAD=∠BCD. 由此得到: 平行四边形性质二:平行四边形的对边相等. 平行四边形性质三:平行四边形的对角相等.

平行四边形性质专题

一、平行四边形基本定义: 1、平行四边形 定义:有两组对边分别平行得四边形就是平行四边形。 表示:平行四边形用符号“□”来表示、 2、平行四边形性质: 3、扩展性质: 平行四边形得面积: 等于底与高得积,即S□ABCD=ah,其中a可以就是平行四边形得任何一边,h必须就是a边到其对边得距离,即对应得高。 平行四边形中得等积法使用: 三、总结: (1)平行四边形得性质与扩展性质要能够理解并灵活运用。 (2)平行四边形中对角线就是常用辅助线。 例题1如图,在?ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB得长为()A.4 B.3 C. D.2 例题2如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE得延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE就是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确得就是()A.①②③B。①②④C.①②⑤D。①③④ 平行四边形得面积问题 实例:如图,已知四边形ABDE就是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.?(1)求证:△BAD≌△AEC; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE得面积。 平行四边形中得折叠 实例:如图,在?ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.

求证:(1)∠1=∠2; (2)DG=B′G. DE=B′F,∴△DEG≌△B′FG,∴DG=B′G。 一、选择题 1、如图,平行四边形ABCD得对角线交于点O,且AB=5,△OCD得周长为23,则平行四边形ABCD得两条对角线得与就是()A、18 B.28 C.36 D、 46 A、246 B.216 C、-216D。274 2如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线得所有?ADCE中,DE最小得值就是( )A.2B、3 C.4 D、5 *3如图,在平行四边形ABCD中,AB〉CD,按以下步骤作图:以A为圆心,小于AD得长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF得长半径画弧,两弧交于点G;作射线AG交CD于点H、则下列结论:①AG平分∠DAB,②CH=DH,③△ADH就是等腰三角形,④S△ADH=S四边形ABCH、其中正确得有()A。①②③B.①③④C、②④D、①③. **4如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F就是BC得中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( ) A、3:4 B:2C:2 D。2: **5、如图,四边形ABCD就是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G、若使EF=AD,那么平行四边形ABCD应满足得条件就是()A.∠ABC=60°B.AB:BC=1:4C.AB:BC=5:2 D.AB:BC=5:8 **6如图,在?ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确得就是( )①△CD F≌△EBC;②∠CDF=∠EAF;③△ECF就是等边△;④CG⊥AE。A.只有①②B、只有①②③C.只有③④D、①②③④ 二、填空题: *7如图,过?ABCD得对角线BD上一点M分别作平行四边形两边得平行线EF与GH,那么图中得?AEMG得面积S1与?HCFM得面积S2得大小关系就是 **8 在?ABCD中,∠DAB得平分线分对边BC为3cm与5cm两部分,则?ABCD 得周长为 **9、如图,?ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在得同一平面内,若点B得落点记为B′,则DB′得长为、 三、解答题: *10如图,在?ABCD中,点E就是AB边得中点,DE与CB得延长线交于点F、?(1)求证:△ADE≌△BFE; (2)若DF平分∠ADC,连接CE、试判断CE与DF得位置关系,并说明理由. **11如图,在平行四边形ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE与△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点G,点G在E、C两点之间,连接AE、AF. (1)求证:△ABE≌△FDA;?(2)当AE⊥AF时,求∠EBG得度数. **12(2007?黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F、若点P在BC边上(如图

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

平行四边形知识点与经典例题

第十八章平行四边形 18.1.1 平行四边形的性质 第一课时平行四边形的边、角特征 知识点梳理 1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。 2、平行四边形的对边相等,对角相等,邻角互补。 3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。知识点训练 1.(3分)如图,两对边平行的纸条,随意交叉叠放在一起,转动其中一,重合的部分构成一个四边形,这个四边形是________. 2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( ) A.6个B.7个C.8个D.9个 3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为cm. 4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为cm. 5.(4分)在□ABCD中,若∠A∶∠B=1∶5,则∠D=;若∠A+∠C=140°,则∠D=. 6.(4分)(2014·)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是. 7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( ) A.53°B.37°C.47°D.123°

8.(8分)(2013·)如图所示,已知在平行四边形ABCD中,BE=DF. 求证:AE=CF. 9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,若△EBC的面积为10 cm2,则△DCF的面积为。 10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,则S1,S2的大小关系是( ) A.S1>S2 B.S1=S2 C.S1<S2 D.无法比较 11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.2∶1∶2∶1 12.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,下列说确的是( ) A.①②都对B.①②都错C.①对②错D.①错② 13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,则□ABCD的周长为__.

相关主题