搜档网
当前位置:搜档网 › 《平行四边形的判定》典型例题

《平行四边形的判定》典型例题

《平行四边形的判定》典型例题
《平行四边形的判定》典型例题

《平行四边形的判定》典型例题

例1如图,△DAB、△EBC、△FAC都是等边三角形,试说明四边形AFED 是平行四边形.

例2如图,E、F分别是ABCD边AD和BC上的点,并且AE=CF,AF 和BE相交于G,CE和DF相交于H、EF与GH是否互相平分,请说明理由.

例3如图,在平行四边形ABCD中,A1、A2、A3、A4和B1、B2、B3、B4分别是AB和DC的五等分点,C1、C2和D1、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD.

例4已知:如图,E,F分别为ABCD的边CD,AB上一点,AE∥CF,

BE,CF分别交CF,AE于H,G.

求证:EG=FH.

例5如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF,∠BAC=DCA.

求证:四边形ABCD是平行四边形.

参考答案

例1分析要证四边形AFED是平行四边形,应观察:两组对边是否相等、两组对角是否相等,或一组对边是否平行且相等、对角线是否相互平分.但在本题中没有对角线,也没有明显的对角之间的关系,因此可以先考虑去证明四边形AFED的对边是否相等.

事实上,AD=AB=BD,EF是否能等于这三条边中的一条呢?可以看到

,∴EF=AB=BD.同理DE=AC=AF,因此,所要证的四边形AFED 是平行四边形.

证明,∴,

且,∴,∴

又,同理.∴AFED是平行四边形.

例2分析若EF、GH互相平分,那么四边形EGFH应是平行四边形.观察已知条件,可以证明四边形EGFH是平行四边形.

证明是平行四边形,∴

又,∴,且

∴四边形AECF是平行四边形,∴,∴

又四边形EDFB是平行四边形,∴,∴

在四边形GEHF中,,

∴四边形GEHF是平行四边形,∴EF和GH互相平分.

说明:本题中多次使用了平行四边形的性质:对边平行且相等以及平行四边形的判断方法:对边平行且相等的四边形是平行四边形.通过解题应熟悉平行四边形的性质及判别.

例3 分析平行四边形ABCD被和分别成15个相等的小平行四边形。

而是4个小平行四边形面积的一半,是2个小平行四边形面积的一半。

因此四边形的面积等于9个小平行四边形的面积,所以平行四边形

ABCD的面积为。

说明: 通过本题可知:由分别是5等分点,则可知,四边

形是平行四边形,并且的面积是平行四边形ABCD面积的。

例4证明:∵,

∴四边形AECF是平行四边形.

∵,

∵,

∴四边形BFDE是平行四边形.

∴.

∵,

∴四边形GFHE是平行四边形.

∴.

说明:本题考查平行四边形的判定定理,解题关键是设法证四边形GFHE 是平行四边形.

例5

证法1 ∵,,

∵,

在和中,

∵,

∴,

∵,

∴四边形ABCD是平行四边形.

证法2设AC与BD交点为O.

∵,

在和中,

,,,∴.

∴.

在和中,

∵,

∴,

∵,

∴四边形ABCD是平行四边形.

说明由垂直得到平行是关键

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

判定平行四边形的五种方法

判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明. 一、运用“两条对角线互相平分的四边形是平行四边形”判别 例1 如图1,在平行四边形ABCD中,E、F在对角线AC上, 且AE=CF,试说明四边形DEBF是平行四边形. 分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD. 解:连接BD交AC于点O. 因为四边形ABCD是平行四边形, 所以AO=CO,BO=DO. 又AE=CF, 所以AO-AE=CO-CF,即EO=FO. 所以四边形DEBF是平行四边形. 二、运用“两组对边分别相等的四边形是平行四边形”判别 例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由. 分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别. 解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1, 所以四边形ABCF是平行四边形. 同样可知四边形FCDE、四边形ACDF都是平行四四边形. 因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形. 三、运用“一组对边平行且相等的四边形是平行四边形”判别 例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形. 分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件. 解:因为DF∥BE,所以∠AFD=∠CEB. 因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE, 所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE, 所以AD∥BC.所以四边形ABCD是平行四边形 . 图1 图2 A B C D E F 图3

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

平行四边形的判定典型例题

《平行四边形的判定》典型例题 例1如图,△DAB、△EBC、△FAC都是等边三角形,试说明四边形AFED 是平行四边形. 例2如图,E、F分别是ABCD边AD和BC上的点,并且AE=CF,AF和BE 相交于G,CE和DF相交于H、EF与GH是否互相平分,请说明理由. 例3如图,在平行四边形ABCD中,A1、A2、A3、A4和B1、B2、B3、B4分别是AB和DC的五等分点,C1、C2和D1、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD. 例4已知:如图,E,F分别为ABCD的边CD,AB上一点,AE∥CF,BE,CF分别交CF,AE于H,G. 求证:EG=FH.

例5如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF,∠BAC=DCA. 求证:四边形ABCD是平行四边形.

参考答案 例1分析要证四边形AFED是平行四边形,应观察:两组对边是否相等、两组对角是否相等,或一组对边是否平行且相等、对角线是否相互平分.但在本题中没有对角线,也没有明显的对角之间的关系,因此可以先考虑去证明四边形AFED的对边是否相等. 事实上,AD=AB=BD,EF是否能等于这三条边中的一条呢可以看到 ,∴EF=AB=BD.同理DE=AC=AF,因此,所要证的四边形AFED是平行四边形. 证明,∴, 且,∴,∴ 又,同理.∴AFED是平行四边形. 例2分析若EF、GH互相平分,那么四边形EGFH应是平行四边形.观察已知条件,可以证明四边形EGFH是平行四边形. 证明是平行四边形,∴ 又,∴,且 ∴四边形AECF是平行四边形,∴,∴ 又四边形EDFB是平行四边形,∴,∴ 在四边形GEHF中,, ∴四边形GEHF是平行四边形,∴EF和GH互相平分. 说明:本题中多次使用了平行四边形的性质:对边平行且相等以及平行四边形的判断方法:对边平行且相等的四边形是平行四边形.通过解题应熟悉平行四边形的性质及判别. 例3 分析平行四边形ABCD被和分别成15个相等的小平行四边形。 而是4个小平行四边形面积的一半,是2个小平行四边形面积的一半。

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

平行四边形的判定

[文件] sxc2jja0010.doc [科目] 数学 [年级] 初二 [章节] [关键词] 平行四边形/判定 [标题] 平行四边形的判定 [内容] 教学目标 1.掌握平行四边形的判定定理及应用. 2.会综合运用平行四边形的判定定理和性质定理来解决问题. 3.会根据条件来画出平行四边形. 4.培养用类比、逆向联想及运动的思维方法来研究问题. 教学重点和难点 重点是平行四边形的判定定理及应用; 难点是平行四边形的判定定理与性质定理的灵活应用. 教学过程设计 一、用类比、逆向思维的方式探索平行四边形的判定方法 1.复习平行四边形的主要性质, 角:(c)两组对角相等.(性质3)(等价命题:两组邻角互补) 对角线:(d)对角线互相平分.(性质4) 2.逆向思维:怎样判定一个四边形是平行四边形? (1)学生容易由定义得出:两组对边分别平行的四边形是平行四边形(判定方法一).也就是说,定义既是平行四边形的一个性质,又是它的一个判定方法.(2)观察判定方法一与性质1的关系,寻找逆命题的特征: ①由两个独立条件和一个结论组成; ②两个独立条件属于同类条件(即都分别属于:(a)对边的位置关系,(b)对边的数量关系,(c)对角的数量关系或(d)对角线关系的条件,简称为同类条件); ③逆命题正确. (3)类比联想,猜想其他性质的逆命题也能判定平行四边形,构造逆命题如下: ①两组对边分别相等的四边形是平行四边形(猜想1); ②两组对角分别相等的四边形是平行四边形(猜想2); ③对角线互相平分的四边形是平行四边形(猜想3). (4)证明猜想,得到平行四边形的判定定理1,2,3. 教师引导学生根据平行四边形的定义以及平行线的性质、三角形全等的知识对以上猜想进行证明. 注意利用新证定理简化后来读定理的证明过程及选择简捷方法. 3.进一步探求用两个独立的非同类条件判定平行四边形的方法.(这部分内容的设计意图和处理方法详见设计说明部分) (1)教师解释“两个独立的非同类条件”的含义,指从平行四边形四方面的性质(a),

初中数学判定平行四边形的五种常用方法

判定平行四边形的五种常用方法 名师点金:判定平行四边形的方法通常有五种,即定义和四种判定定理,选择判定方法时,一定要结合题目的条件,选择恰当的方法,从而简化解题过程. 利用两组对边分别平行判定平行四边形 1.如图,在?ABCD中,E,F分别为AD,BC上的点,且BF=DE,连接AF,CE,BE,DF,AF与BE相交于M点,DF与CE相交于N点.求证:四边形FMEN为平行四边形. (第1题) 利用两组对边分别相等判定平行四边形 2.如图,已知△ABD,△BCE,△ACF都是等边三角形. 求证:四边形ADEF是平行四边形. (第2题) 利用一组对边平行且相等判定平行四边形 3.如图,在△ABC中,∠ACB=90°,点E为AB上一点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形. (第3题)

利用两组对角分别相等判定平行四边形 4.如图,在?ABCD中,BE平分∠ABC,交AD于点E,DF平分∠ADC,交BC于点F,那么四边形BFDE是平行四边形吗?请说明理由. (第4题) 利用对角线互相平分判定平行四边形 5.【中考·哈尔滨】如图①,?ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH. (1)求证:四边形EGFH是平行四边形; (2)如图②,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图②中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外). (第5题)

答案 1. 证明:∵四边形ABCD 是平行四边形,DE =BF ,∴DE 平行且等于BF . ∴四边形BFDE 为平行四边形. ∴BE ∥DF .同理,AF ∥CE . ∴四边形FMEN 为平行四边形. 2.证明:∵△ABD ,△BCE ,△ACF 都是等边三角形, ∴BA =BD =AD ,BC =BE ,AF =AC ,∠DBA =∠EBC =60°. ∴∠EBC -∠EBA =∠DBA -∠EBA , 即∠ABC =∠DBE . ∴△ABC ≌△DBE .∴AF =AC =DE . 同理,可证△ABC ≌△FEC , ∴AD =AB =EF . ∴四边形ADEF 是平行四边形. 3.证明:过A 作AM ⊥DF 于M . ∵∠ACB =90°,ED ⊥BC , ∴DF ∥AC .∴AM =DC . 在Rt △AMF 和Rt △CDE 中, ? ????AM =CD ,AF =CE , ∴Rt △AMF ≌Rt △CDE . ∴∠F =∠CED .∴AF ∥CE . 又∵AF =CE , ∴四边形ACEF 是平行四边形. 4.解:四边形BFDE 是平行四边形.理由:在?ABCD 中,∠ABC =∠CDA ,∠A =∠C . ∵BE 平分∠ABC ,DF 平分∠ADC , ∴∠ABE =∠CBE =12∠ABC ,∠CDF =∠ADF =12 ∠ADC .∴∠ABE =∠CBE =∠CDF =∠ADF .∵∠DFB =∠C +∠CDF ,∠BED =∠ABE +∠A ,∴∠DFB =∠BED .∴四边形BFDE 是平行四边形. 5.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAO =∠FCO . ∵O 是AC 的中点,∴OA =OC . 在△OAE 与△OCF 中, ?????∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF , ∴△OAE ≌△OCF ,∴OE =OF . 同理OG =OH , ∴四边形EGFH 是平行四边形. (2)解:与四边形AGHD 面积相等的平行四边形有?GBCH ,?ABFE ,?EFCD ,?EGFH .

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC中,C=90°,AB=c,AC=b,BC=a。 2 2 2 (1)三边之间的关系: a + b =c 。(勾股定理) (2)锐角之间的关系:A+B=90°; (3)边角之间的关系:(锐角三角函数定义) sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 2.斜三角形中各元素间的关系: 在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 a sin A b sin B c sin C 2R (R为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 2 2 2 2 2 2 2 2 2 a = b + c -2bc cos A; b =c +a -2ca cos B; c =a +b -2ab cos C。 3 .三角形的面积公式: (1)S =1 2 ah a= 1 2 bh b= 1 2 ch c(h a、h b、h c 分别表示a、b、c 上的高); (2)S =1 2 ab sin C= 1 2 bc sin A= 1 2 ac sin B; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

平行四边形的判定(1)

平行四边形的判定 教学目标:1、经历平行四边形的判别条件的探索过程,在活动中发展学生的合情推理意识和主动探究的习惯,使学生逐步掌握说理的基本方法; 2、探索并掌握平行四边形的判别条件; 3、在探究过程中,培养学生的动手实践水平、转化水平、反思水平、 归纳水平,积累数学活动经验,增强学生的创新意识。 教学重点:1、平行四边形的三种判别条件; 2、平行四边形的判别条件的初步应用。 教学难点:平行四边形的判别条件的初步应用 教学过程: 新课讲解: 一、动手操作 小明的爸爸在制作平行四边形框架时采用了下面两种方法 (1)他把两根木条AC、BD的中点O重叠并固定后得到了 理由:∵AO=CO,BO=DO,∠AOB=∠COD ∴⊿AOB≌⊿COD ∴∠ABO=∠CDO ∴AB∥CD 同理可得BC∥AD ∴四边形ABCD是平行四边形 判别方法一:两条对角线互相平分的四边形是平行四边形 (2)他把两根等长的木条AB、C D平行摆放并固定后得到了四边 形ABCD,它是平行四边形,请你说明理由。

理由:连接AC ∵AB ∥CD ∴∠BAC =∠ACD 又∵AB =CD,AC =CA ∴⊿ABCC ≌⊿CDA ∴∠ACB =∠CAD ∴AD ∥BC ∴四边形ABCD 是平行四边形 判别方法二:一组对边平行且相等的四边形是平行四边形 二、应用 例1、 如图,AC ∥ED,点B 在AC 上且AB =ED =BC ,找出图中的平行四边形 解:四边形ABDE 、BCDE 都是平行四边形 理由:∵AB =DE, AB ∥ED ∴ 四边形ABDE 是平行四边形 ∵BC =DE, BC ∥ED ∴ 四边形BCDE 是平行四边形 三、随堂练习: 书上 104页,第1题 四、小结:本节课主要学习了什么内容?你有何收获? 五、作业:书上 104页,习题4.3,知识技能1,2,数学理解3 平行四边形的判定 教学目标:1、经历平行四边形的判别条件的探索过程,在活动中发展学生的合情 推理意识和主动探究的习惯,使学生逐步掌握说理的基本方法; 2、探索并掌握平行四边形的判别条件; C B D C

平行四边形的判定教学设计 (1)

《平行四边形的判定》教学设计 柴沟堡二中 张彦春 教学目标: 知识与技能:1、运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法。 2、理解平行四边形形的判定方法,并学会简单运用。 过程与方法:1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培 养学生的动手能力、合情推理能力;使学生学会将平行四边形的问题转化为三角形的问题, 渗透化归意识。 2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生 的逻辑思维能力和推理论证的表达能力;通过对平行四边形判定方法的探究,提高学生解决 问题的能力。 情感、态度与价值观: 通过对平行四边形判定方法的探究和运用,使学生感受数学思考过程中的合理 性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辩证的观点分析事物。 重点难点 重点 平行四边形判定方法的探究、运用以及平行四边形的性质和判定的结合运用。 难点 对平行四边形判定方法的证明以及平行四边形的性质和判定的综合运用。 学情分析: 经过近两年的初中学习,学生推理意识与能力有所加强。在知识储备上,学生已经学习了平 行四边形的性质,对命题与逆命题、定理与逆定理已经有了初步认识。 教学过程: 一、复习、引入新课 复习: 问题(多媒体展示问题) 1、平行四边形的定义是什么?它有什么作用? 2、平行四边形的性质有哪些?(从三个方面:边、角、对角线,两个角度:文字语言、符 号语言回答) 引入新课 我们知道了平行四边形的性质,那么,有哪些方法可以判断一个四边形是平行四边形呢? 二、新课 活动一: 1、教师明确平行四边形的第一种判定方法——根据定义。 平行四边形判定定理 1 两组对边分别平行的四边形是平行四边形。 2、学生结合图形,用符号语言表述这一定理。 符号语言: ∵AB ∥CD ,AD ∥BC (已知) ∴四边形ABCD 是平行四边形(两组对边分别平行的四边形 是平行四边形。) 活动二: 1、探究1:如图,将两长两短的四条线段首尾顺次连接,拼成一个四边形,使等长的线段 成为对边,转动这个四边形,使它形状改变。在图形变化过程中,它一直是一个什么四边形? (如图) A B C D A B C D

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A -ο 120)=3,整理得 sin(A+ο30)=1 ∴A+ο ο ο 60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 222222222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

平行四边形判定方法.

平行四边形的判定 【知识要点】 同学们都知道,平行四边形具有对边平行且相等,对角相等,对角线互相平分等性质, 并且我们得到了平行四边形的五种判定方法: ①定义法:两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形. ③一组对边平行且相等的四边形是平行四边形. ④对角线互相平分的四边形是平行四边形. ⑤两组对角分别相等的四边形是平行四边形. 【能力解读】 1. 掌握平行四边形的判定方法,会利用平行四边形的性质和判定进行有关线段的证明和角 的计算。 2. 将平行四边形转化成三角形来研究,深入理解平行四边形的性质和判定。 3. 平行四边形的性质和判定是中考命题的热点,特别是平行四边形的判定多与其他知识点 结合命题,以平行四边形为基架而精心设计的的中考题更是璀璨夺目,精彩四射。 【平行四边形判定方法的选择】 判定平行四边形的五种方法各有妙用,我们应仔细观察题目所给出的条件,仔细选择合 适于题目的判定方法进行解答。在解题时,如何有针对性的选择使用这些方法呢?这里列表 例1(条件开放题)如图1,四边形ABCD 中,BC AD =, 要使四边形ABCD 为平行四边形,还需补充的一个条件是 . 课标剖析:熟练地掌握平行四边形的判定方法是解题的关键。 解:答案不唯一,如:(1)AB CD =(2)AD BC ∥(3) ?=∠+∠180B A ,(4) ?=∠+∠180D C . 例2.(结论开放题)如图2,在□ABCD 中,两条对角线相交于点O ,点E 、F 、G 、H 分别 是OA 、OB 、OC 、OD 的中点,以图中的任意四点(即点A 、B 、C 、D 、 E 、 F 、 G 、 H 、O 中的任意四点)为顶点画两种不同的平行四边形. 课标剖析::根据平行四边形的判定方法④解答. 【解】第一种:可画为□EFGH 第二种:可画为□DEBG (或画为□AHCF ) 分析:□ABCD 可得OA=OC ,OB=OD ,又因为点E 、F 、G 、H 分别是OA 、OB 、OC 、OD D 2 D C 图1

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B =tan ,知 ; (3)由c a B = cos ,知860cos 4cos =?==B a c . 说明 此题还可用其他方法求b 和c . 例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 133330tan =?=?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手. 解在Rt中,有: ∴ 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有 ; 在中,,且 , ∴; 于是,有, 则有 说明还可以这样求:

平行四边形的判定教学设计(1)

平行四边形的判定教学设计(1) 学情分析 认知基础:本节课是学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。它既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是以后学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力;从思想方法上讲,通过平行四边形和三角形之间的相互转化,渗透了化归思想。 学生在初一学习平行线、三角形全等证明及本学期学习勾股定理、平行四边形性质的过程中已经初步掌握的简单几何推理,也初步体会到解决四边形问题转化为三角形问题的转化思想。但对于几何逻辑尚处于起始阶段的八年级学生来讲,推理的认知与规范证明难度仍然较大。 活动经验基础:在学习平行四边形性质的过程中,学生的观察、测量、画图、模型操作、拼摆等的能力有了很大的提高,在活动中学生有了体验和经验,同时活动中培养了学生良好的情感态度。教材的地位和作用 “平行四边形的判定”是初中数学几何部分一节十分重要的内容。主要体现在知识技能和思想方法两个方面。 从知识技能上讲,它既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是以后学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力;从思想方法上讲,通过平行四边形和三角形之间的相互转化,渗透了化归思想。 数学思维品质。 教学目标 1、经历平行四边形判别条件的探索过程,在活动中发展学生的合情推理意识和主动探究的习惯,使学生。 2、学生能归纳平行四边形判定方法并且能运用它判定是否是平行四边形 3、培养学生动手、独立思考、归纳概括、创新的能力,激发学生探究创新的热情。 教学重点 平行四边形的判定涉及平行四边形的元素各个方面同时又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其它问题的基础。 教学难点 1、能寻求多种方法画平行四边形。 2、对已解决的问题加以归纳总结判定方法。 设计理念 现行教材中的定理教学,多数是沿用“定义——定理——证明——应用”这样的模式。按照这

解三角形经典例题及解答

知识回顾: 4、理解定理 (1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ; (2)」 b J 等价于 ______________________ sin A sin B sin C (3) 正弦定理的基本作用为: 正弦、余弦定理 1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a ,AG=b , AB=c , 根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 c c c 角形ABC 中,-?- sin A b sin B c si nC 2、当 ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义, 有 CD=asinB bsinA ,则 一- b ,同理可得一 sin A sin B sin C b sin B 从而」- sin A b sin B c sin C 3、正弦定理:在一个三角形中,各边和它所对角的 ____ 的比相等,即旦 sin A b sin B c sin C c b a c sin C sin B ' sin A sin C

① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; b sin B ② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如 sin A a sin B ; sinC . b (4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形? 5、知识拓展 6、 勾股定理: ___________________________________ 7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 _____________ ______________ 的两倍,即a 2 b 2 8、余弦定理的推论: cosC ____________________________ 。 9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题: a b sin A sin B c si nC 2R ,其中2R 为外接圆直径. c 2 cosA cosB

《平行四边形的判定》典型例题知识讲解

《平行四边形的判定》典型例题

《平行四边形的判定》典型例题 例1如图,△DAB、△EBC、△FAC都是等边三角形,试说明四边形AFED是平行四边形. 例2如图,E、F分别是ABCD边AD和BC上的点,并且AE=CF,AF 和BE相交于G,CE和DF相交于H、EF与GH是否互相平分,请说明理由. 例3如图,在平行四边形ABCD中,A1、A2、A3、A4和B1、B2、B3、B4分别是AB和DC的五等分点,C1、C2和D1、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD. 例4已知:如图,E,F分别为ABCD的边CD,AB上一点,AE∥CF,BE,CF分别交CF,AE于H,G. 求证:EG=FH.

例5如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF,∠BAC=DCA. 求证:四边形ABCD是平行四边形.

参考答案 例1分析要证四边形AFED是平行四边形,应观察:两组对边是否相等、两组对角是否相等,或一组对边是否平行且相等、对角线是否相互平分.但在本题中没有对角线,也没有明显的对角之间的关系,因此可以先考虑去证明四边形AFED的对边是否相等. 事实上,AD=AB=BD,EF是否能等于这三条边中的一条呢?可以看到,∴EF=AB=BD.同理DE=AC=AF,因此,所要证的四边形AFED是平行四边形. 证明,∴, 且,∴,∴ 又,同理.∴AFED是平行四边形. 例2分析若EF、GH互相平分,那么四边形EGFH应是平行四边形.观察已知条件,可以证明四边形EGFH是平行四边形. 证明是平行四边形,∴ 又,∴,且 ∴四边形AECF是平行四边形,∴,∴ 又四边形EDFB是平行四边形,∴,∴ 在四边形GEHF中,, ∴四边形GEHF是平行四边形,∴EF和GH互相平分. 说明:本题中多次使用了平行四边形的性质:对边平行且相等以及平行四边形的判断方法:对边平行且相等的四边形是平行四边形.通过解题应熟悉平行四边形的性质及判别. 例3 分析平行四边形ABCD被和分别成15个相等的小平行四边形。 而是4个小平行四边形面积的一半,是2个小平行四边形面积的一半。

《平行四边形的判定(2)》参考教案

18.1.2 平行四边形的判定(2) 一、教学目标 1.掌握用一组对边平行且相等来判定平行四边形的方法. 2.会综合运用平行四边形的四种判定方法和性质来证明问题. 3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力. 二、重点、难点 1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法. 2.难点:平行四边形的判定定理与性质定理的综合应用. 3.难点的突破方法: 本节课是平行四边形判定的第二节课,本节课在上节课的基础上,学习平行四边形的判定方法,使同学们会应用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力.本节课的知识点不难,但学生灵活运用判定定理去解决相关问题并不容易,在以后的教学中还应加强一题多解和寻找最佳解题方法的训练. (1)平行四边形的判定方法4不是性质的逆命题.它可以用平行四边形定义或平行四边形判定方法1或3来证明,可以看作是巩固前面两个判定方法的一个很好的练习题.教学中可引导学生用不同的方法进行证明,以活跃学生的思维.(2)注意强调:判定方法是“一组对边平行且相等的四 边形是平行四边形”,而“一组对边平行另一组对边相等的四 边形不一定是平行四边形”.例如:如图,AD∥BC,AB= DC,但四边形ABCD不是平行四边形. (3)学过本节后,应使学生掌握平行四边形的四个(或五个)判定方法,这些判定的方法是: 从边看:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形. 从对角线看:对角线互相平分的四边形是平行四边形.

平行四边形的性质及判定(提升版)

第11讲 平行四边形的性质及判定 小测试 总分10分 得分___________ 1.(4分)分式方程 12x x +-= 1 32 x +-的解为x =___________.3 2.(6分)若221x x x +-=1 4 ,则242331x x x -+=___________.1 【教学目标】 1.掌握平行四边形的性质定理和判定定理; 2.能熟练利用平行四边形的性质定理和判定定理进行证明和计算. 【教学重难点】 能熟练利用平行四边形的性质定理和判定定理进行证明和计算,证明线段平行、相等是常考点. 知识点1:平行四边形 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 知识点2:平行四边形的性质 1.平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分. 2.若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线平分平行四边形的面积. 3.平行四边形是中心对称图形. 4.平行四边形的面积: ①如图1,S □ABCD =BC ·AE =CD ·AF . ②同底(等底)同高(等高)的平行四边形面积相等.如图2,□ABCD 与□EBCF 有公共边BC ,则S □ABCD =S □EBCF .特别地,当点P 是平行四边形任意一条边所在直线上的一点时,点P 与这条边的对边的两个顶点所构成的三角形的面积是平行四边形的面积的一半,如图3. 知识点3:平行四边形的判定 1.两组对边分别平行的四边形是平行四边形. 2.两组对边分别相等的四边形是平行四边形. 3.一组对边平行且相等的四边形是平行四边形. 4.对角线互相平分的四边形是平行四边形. 注意:两组对角分别相等的四边形不能直接作为平行四边形的判定依据,在证明题或计算题中不能直接使用,必须转化成两组对边分别平行的四边形是平行四边形(利用四边形的内角和是360°,一半则为180°,同旁内角互补,得到两组对边分别平行). 在平行四边形中熟悉下列基本图形、基本结论: A D B C E F A D B C E F P A D B C 图1 图2 图3

相关主题