搜档网
当前位置:搜档网 › 三相不平衡治理装置对比参考表

三相不平衡治理装置对比参考表

三相不平衡治理装置对比参考表
三相不平衡治理装置对比参考表

配电网三相之间低压负荷的不对称接入是三相不平衡的基本机理。根据三相不平衡的表现特点,有以下分类:

I类-用户接线造成的三相不平衡。由于低压台区前期规划和后期管理的缺位,三相间承担的用户数量极不均衡,各相用户用电量差异较大。此类主要表现为负荷过大的相总是大,负荷相对小的相总是小,并且相差的比例在全天的各个时段基本保持不变。

II类-时段性的不平衡。白天时段负荷较轻,三相负载基本保持平衡,但到了晚上负荷高峰时段不平衡程度就变得严重。工厂的三相生产用电和单相生活用电混合的场合,白天以三相生产用电为主,相间电流基本平衡;到了晚上生活用电高峰时段,三相电流数值相差很大。

III类-季节性的不平衡。由于三相生产用电和单相生活用电的比例会因季节不同有较大的变动,而单相负载在三相上分配不均,典型大负载如农忙时节的灌溉、夏季的空调等。

IV类-随机性的不平衡。三相电流随时间变化,没有规律性。造成这种情况的原因是单相负载波动很大,而该波动在三相上是不同步的。

根据配电网三相负荷不平衡的不同类型,应当采取相应的不平衡控制策略以及调节装置。配变自动化控制装置适用于各种类型的三相不平衡,是十分优质的三相不平衡问题解决方案。

投切晶闸管开关、IGBT模块(英飞凌、西门康、IXSY艾赛斯、富士、ABB)

电容器(无锡康派特)

三相不平衡调节装置技术方案汇总

三相不平衡调节装置方案 1 产品研发背景 目前,在国家电网公司中、低压配电网系统中,存在着大量的单相、不对称、非线性、冲击性负荷,三相负荷系统是随机变化的,这些负荷会使配电系统产生三相不平衡,三相负荷不平衡会导致供电系统三相电压、电流的不平衡,引起电网负序电压和负序电流,影响供电质量,进而增加线路损耗,降低供电可靠性。 三相不平衡治理装置是专门针对上述问题而研发的一款产品,不同于传统的治理装置,它融合了半导体器件与接触器开关的优点,能够避免接触器开关在负荷投切瞬间产生的较大涌流和开通、关断时间间隔长的问题,使负载用户在负载换相投切过程中可正常供电;也能避免半导体器件长期运行带来的发热问题。配网三相不平衡治理装置的应用,将大幅提高配网运行稳定性和智能化,可对国网公司提出的建设坚强智能电网的要求起到很好的支撑作用。 2 产品技术参数

3 技术方案 3.1总体方案 三相不平衡调节装置主要由主控制器与换相开关组成。主控制器是整个装置的控制核心,换相开关是装置的执行机构,它们之间通过GPRS无线通讯进行信息交互,相互配合完成对配网三相不平衡问题的治理。装置系统示意图如下所示。 主控制器是整个装置的控制终端,每套装置只有一个主控制器。它负责采集整个装置的各种状态信息和数据,通过逻辑运算发出各种指令完成整个装置的操控。它检测配网总线的电压信号;接收换相开关上传的负载电流数据,计算负载平衡度及分布情况,通过分析计算给各个换相开关发出换相命令;接收换相开关上传的运行状态和故障信息,然后做出相应的控制操作。 换相开关是装置的分支和执行机构,根据配变的容量与负载的分布情况不同可灵活选择换相开关的容量和数量。它负责采集负载电流数据,与自身的状态信息一起通过GPRS无线通讯上传给主控制器;接收主控制器的换相命令进行换相操作;接收主控制器的故障保护命令进行相应的操作;显示自身的运行状态信息。

电力系统三相不平衡度的评估

电力系统三相不平衡度的评估 摘要 电能质量越来越受到各国的重视,其中三相不平衡对于电力系统的影响也越来越不容忽视,各国纷纷制定了三相不平衡度的标准,以防范三相不平衡度超标过高对电力系统的严重伤害。为了解决电力系统中三相不平衡问题,就要对实际监测数据进行评估,本文通过使用Matlab仿真进行评估。首先使用Matlab仿真一个三相信号,用于校准算法的正确性。然后对三相信号进行采样,运用Matlab中的快速傅里叶变换(FFT)进行数字信号处理,滤除信号中的谐波和噪声成分,得到三相电压的基波。最后,应用对称分量法得出三序分量,根据电压不平衡度的定义,得出此电力系统模型的不平衡度。本文通过仿真结果表明该方法的有效性,并说明使用Matlab仿真可以使三相不平衡度监测不够精确、便捷,设计周期长,浪费资源等问题得到很好的解决。 关键词:电力系统;三相不平衡度; Matlab;仿真;快速傅里叶变换;对称分量法Assessment of Three-phrase Unbalance of Power System Abstract The quality of electricity attracts more and more attention of every country. Influences caused by the three-phase's unbalance to power system are also more and more severe. Every country formulates the standard of three-phase unbalance degree in succession in order to prevent from the damage made by the excessive standard of three-phase's unbalance to power system. To solve this problem in power system, people should evaluate the actual monitoring data. This thesis will make evaluation by Matlab simulation. Firstly, it’ll check the correctne ss of calculation through a three-phrase signal simulated by Matlab. Secondly, collecting sample from the signal and use the FFT in Matlab to carry on the deal of digital signal and filter the harmonics and noise components in the digital for obtaining the fundamental wave. Finally, the result will arrive at the three sequence components by the application of symmetrical component method. The unbalance degree in this power system model will be reached according to the definition. This thesis shows the effectiveness of the method by means of simulation result and explain that through Matlab simulation, the problems such as the inaccurate, inconvenient monitor, the long design period and the waste of resources in monitoring the three-phrase unbalance degree and so on can also be solved. Keywords: power system; three-phrase unbalance degree; Matlab; simulation; fast fournier transformation; method of symmetrical components

三相不平衡损耗计算

农村低压电网改造后低压电网结构发生了很大的变化,电网结构薄弱环节基本上已经解决,低压电网的供电能力大大增强,电压质量明显提高,大部分配电台区的低压线损率降到了11%以下,但仍有个别配电台区因三相不平衡负载等原因而造成线损率居高不下,给供电管理企业特别是基层供电所电工组造成较大的困难和损失,下面针对这些情况进行分析和探讨。 一、原因分析 在前几年的农网改造时,对配电台区采取了诸如增添配电变压器数量,新增和改造配电屏,配电变压器放置在负荷中心,缩短供电半径,加大导线直径,建设和改造低压线路,新架下户线等一系列降损技术措施,也收到了很好的效果。但是个别台区线损率仍然很高,针对其原因,我们做了认真的实地调查和分析,发现一些台区供电采取单相二线制、二相三线制,即使采用三相四线制供电,由于每相电流相差很大,使三相负荷电流不平衡。从理论和实践上分析,也会引起线路损耗增大。 二、理论分析 低压电网配电变压器面广量多,如果在运行中三相负荷不平衡,会在线路、配电变压器上增加损耗。因此,在运行中要经常测量配电变压器出口侧和部分主干线路的三相负荷电流,做好三相负荷电流的平衡工作,是降低电能损耗的主要途经。 假设某条低压线路的三相不平衡电流为IU、IV、IW,中性线电流为IN,若中性线电阻为相线电阻的2倍,相线电阻为R,则这条线路的有功损耗为ΔP1=(I2UR+I2VR+I2WR+2I2NR)×10-3 (1) 当三相负荷电流平衡时,每相电流为(IU+IV+IW)/3,中性线电流为零,这时线路的有功损耗为 ΔP2=■2R×10-3 (2)

三相不平衡负荷电流增加的损耗电量为 ΔP=ΔP1-ΔP2=■(I2U+I2V+I2W-I2UI2V-I2VI2W+I2WI2U+3I2N)R×10-3 (3)同样,三相负荷电流不平衡时变压器本身也增加损耗,可用平衡前后的负荷电流进行计算。由此可见三相不平衡负荷电流愈大,损耗增加愈大。 三相负荷电流不平衡率按下式计算 K=■×100 (4)■代表平均电流 一般要求配电变压器出口三相负荷电流的不平衡率不大于10%,低压干线及主要支线始端的三相电流不平衡率不大于20%。可见若不平衡,线损可能增加数倍。据了解,目前农村单相负荷已成为电力负荷的主要方面,农村低压线路虽多为三相四线,但很多没有注意到把单相负荷均衡的分配到三相电路上,并且还有一定数量的单相两线、三相三线制供电。按一般情况平均测算估计,单相负荷的线损可能增加2~4倍,由此可知,调整三相负荷平衡用电是降损的主要环节。 三、现场调查分析、试验情况 实践是检验真理的标准,理论需要在实践中验证。2004年我们在庄寨供电所检查分析个别台区线损率高的原因,发现庄寨供电所杨小湖配电台区损耗严重,我们重点进行了解剖分析: 该台区配电变压器容量为100kV·A,供电半径最长550m,由上表得该配变台区267户用电量12591kW·h,没有大的动力用户,只有1户轧面条机,户均月用电46.98kW·h,低压线损一直17%左右,用钳流表测量变压器出口侧24h电流平均值为: IU=9A,IV=15A,IW=35A,IN=21A。三相负荷电流不平衡率计算为: K=■×100%=■×100%=35.59%

三相电流不平衡

近年来,由于城农网改造及加强供用电管理,使供电企业的经济和社会效益有了明显提高。但一些单位在加强管理、降损节能的同时,只看到了许多表面化现象,而对有关技术改进方面缺少足够的重视。 低压电网的三相平衡一直就是困扰供电单位的主要问题之一,低压电网大多是经10/0.4KV变压器降压后,以三相四线制向用户供电,是三相生产用电与单相负载混合用电的供电网络。在装接单相用户时,供电部门应该将单相负载均衡地分接在A、B、C三相上。但在实际工作及运行中,线路的标志、接电人员的疏忽再加上由于单相用户的不可控增容、大功率单相负载的接入以及单相负载用电的不同时性等,都造成了三相负载的不平衡。低压电网若在三相负荷不平衡度较大情况下运行,将会给低压电网与电气设备造成不良影响。 一、低压电网三相平衡的重要性 1.三相负荷平衡是安全供电的基础。三相负荷不平衡,轻则降低线路和配电变压器的供电效率,重则会因重负荷相超载过多,可能造成某相导线烧断、开关烧坏甚至配电变压器单相烧毁等严重后果。 2.三相负荷平衡才能保证用户的电能质量。三相负荷严重不对称,中性点电位就会发生偏移,线路压降和功率损失就会大大增加。接在重负荷相的单相用户易出现电压偏低,电灯不亮、电器效能降低、小水泵易烧毁等问题。而接在轻负荷相的单相用户易出现电压偏高,可能造成电器绝缘击穿、缩短电器使用寿命或损坏电器。对动力用户来说,三相电压不平衡,会引起电机过热现象。 3.三相负荷保持平衡是节约能耗、降损降价的基础。三相负荷不平衡将产生不平衡电压,加大电压偏移,增大中性线电流,从而增大线路损耗。实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。 有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。通过电网技术改造,要真正使低压电网线损达到12%以下,上述指标只能紧缩,不能放大。 4.只有三相阻抗平衡,才能保证低压漏电总保护良好运行,防止人身触电伤亡事故。 二、三相负载不平衡的影响 1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。 当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。 2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。 3.配变出力减少。配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的限制。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。 4.配变产生零序电流。配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。(高压侧没有零序电流)这迫使零序磁通只能以油

三相不平衡治理-20180409

三相不平衡治理 一、概述: 三相不平衡是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。各相负载分布不均、单相负载用电的不同时性、以及单相大功率负载接入是导致三相不平衡的主要原因,由于城市民用电网及农用电网中存在大量单相负载,使得当今三相不平衡现象普遍存在且尤为严重。 电网中的三相不平衡会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成因三相电压不平衡而降低供电质量,甚至会影响电能变的精度而造成计量损失。 三种不平衡特征: 1、有功功率不平衡 2、无功功率不平衡 3、电流相位不平衡(有功无功组合不平衡) 二、危害: 1.增加线路及配电变压器电能损耗 在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比,当相电流平衡的时候,系统的电能损耗最小。 例如设某系统的三相线路、变压器绕组每相的总阻抗为Z(暂不记中性线),如果三相电流平衡,IA=100A,IB=100A,IC=1OOA,则;

总损耗=1002Z+1002Z+1002Z=30000Z。 如果三相电流不平衡,IA=50A,IB=100A,IC=15OA,则; 总损耗=502Z+1002Z+1502Z=35000Z。比平衡状态的损耗增加了17%。 在最严重的状态下,如果IA=0A,IB=0A,IC=30OA,则; 总损耗=3002Z =90000Z。比平衡状态的损耗增加了3倍。 可见不平衡度愈严重,所造成损耗越大。 2.降低配变变压器出力以及增加铁损 配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的限制。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。 其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。 配变产生零序电流。配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较

CYCR5500换相开关式三相不平衡治理装置技术规范书

产品技术规范书 (图片仅供参考) 设备名称:换相开关式三相不平衡治理装置型号:CYCR5500 生产厂家: 产品编码: 品牌:

一、概述 在0.4KV低压三相四线制城网和农网供电系统中,用电负荷大多为单相负荷。用电的不同期及用电量大小的差异,致使按三相户数平均设计的台区配网在实际运行中存在严重的不平衡状况,绝大多数台区三相不平衡度严重超标。 CYCR5500换相开关式三相不平衡治理装置是一种实时、智能的自动负荷调控系统,对单相负荷进行有载换相调度,完美有效地解决低压配网三相不平衡问题。 CYCR5500换相开关式三相不平衡治理装置由主控器CYCR5500-BMC和换相器CYCR5500-PEX组成。主控器CYCR5500-BMC负责采集台区实时负荷数据;分析各换相器的负荷电压、电流;形成并发送指令到换相器。换相器CYCR5500-PEX接受主控器的指令并执行指令。主控器与换相器之间通过230MHz无线通信。可根据台区变压器容量及不平衡的严重程度,配置一台主控器及若干台换相器。 换相器是一种安装于三相四线制配网系统中将单相负荷在三相之间无中断供电切换装置,与本系统的台区主控器配合使用,解决配网中三相负荷不平衡问题。 二、仪器特点 1,独特的0毫秒无缝换相技术,带载换相不中断供电、无电压跌落、无涌流,对敏感性负荷无影响;相间互锁,无相间断路风险。。换相时间0毫秒,换相时间精准可控。 换相过程由电力电子器件完成,不产生电弧;换相结束后由永磁开关保持稳态,无损耗。 2,换相过程无涌流,换相平稳可靠。由于换相时间为0毫秒,换相过程仅在两相电压相等的时刻相位跳变120°,属于自然换相,因此无电压突变、无涌流。 3,精准定位换相器,确保配网各支路逐段平衡。独有的逐段压降综合算法,精准判定线路最不平衡位置,优先调整与线路不平衡度极值处最近的换相器,由此可确保线路每处的平衡度最优,确保全网逐段平衡。更加有效的降低中性线电流,提高末端供电电压。 4,对各类用电设备无不良影响。等电压0毫秒无缝换相技术,不会造成供电中断和电压暂降,完全不影响用户用电;对感性、容性、阻性负载均可稳定可靠换相。

三相不平衡电流

三相不平衡电流 一般电机的三相不平衡电流值误差是多少? JB8680.1-1998《电机技术条件》中有明确规定,4. 20 当三相电源平衡时,电动机的三相空载电流中任何一相与三相平均值的偏差应不大于三相平均值的10%。 中华人民共和国机械行业标准(JB/T 8680-2008?代替JB/T 8680.1-1998):Y2系列(IP54)三相异步电动机(技术条件?机座号63~355) 当三相电压不平衡度达 5%时,可使电动机相电流超过正常值的 20%以上。三相电压不平衡主要表现在: (1)变压器三相绕组中某相发生异常,输送不对称电源电压。 电动机三相电流不平衡的原因及表现 三相电压不平衡,如果三相电压不平衡,电动机内就有逆序电流和逆序磁场存在,产生较大的逆序转矩,造成电动机三相过热。 三相不平衡的危害和影响 三相不平衡是指三相电源各相的电压不对称。是各相电源所加的负荷不均衡所致,属于基波负荷配置问题。发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。《电能质量三相电压允许不平衡度》(GB/T15543-1995)适用于交流额定频率为50赫兹。在电力系统正常运行方式下,由于负序分量而引起的PCC点连接点的电压不平衡。该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为2%,短时间不得超过4%。 对变压器的危害。在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的25%。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。 对用电设备的影响。三相电压不平衡的发生将导致达到数倍电流不平衡的发生。诱导电动机中逆扭矩增加,从而使电动机的温度上升,效率下降,能耗增加,发生震动,输出亏耗等影响。各相之间的不平衡会导致用电设备使用寿命缩短,加速设备部件更换频率,增加设备维护的成本。断路器允许电流的余量减少,当负载变更或交替时容易发生超载、短路现象。中性线中流入过大的不平衡电流,导致中性线增粗。 对线损的影响。三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负

台区三相不平衡问题及补偿实践

台区三相不平衡问题及补偿实践 近年来,由于城农网改造及加强供用电管理,使供电企业的经济和社会效益有了明显提高。但一些单位在加强管理、降损节能的同时,只看到了许多表面化现象,而对有关技术改进方面缺少足够的重视。 低压电网的三相平衡一直就是困扰供电单位的主要问题之一,低压电网大多是经10/0.4KV变压器降压后,以三相四线制向用户供电,是三相生产用电与单相负载混合用电的供电网络。在装接单相用户时,供电部门应该将单相负载均衡地分接在A、B、C三相上。但在实际工作及运行中,线路的标志、接电人员的疏忽再加上由于单相用户的不可控增容、大功率单相负载的接入以及单相负载用电的不同时性等,都造成了三相负载的不平衡。低压电网若在三相负荷不平衡度较大情况下运行,将会给低压电网与电气设备造成不良影响。一、低压电网三相平衡的重要性 1.三相负荷平衡是安全供电的基础。三相负荷不平衡,轻则降低线路和配电变压器的供电效率,重则会因重负荷相超载过多,可能造成某相导线烧断、开关烧坏甚至配电变压器单相烧毁等严重后果。 2.三相负荷平衡才能保证用户的电能质量。三相负荷严重不对称,中性点电位就会发生偏移,线路压降和功率损失就会大大增加。接在重负荷相的单相用户易出现电压偏低,电灯不亮、电器效能降低、小水泵易烧毁等问题。而接在轻负荷相的单相用户易出现电压偏高,

可能造成电器绝缘击穿、缩短电器使用寿命或损坏电器。对动力用户来说,三相电压不平衡,会引起电机过热现象。 3.三相负荷保持平衡是节约能耗、降损降价的基础。三相负荷不平衡将产生不平衡电压,加大电压偏移,增大中性线电流,从而增大线路损耗。实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。 有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。通过电网技术改造,要真正使低压电网线损达到12%以下,上述指标只能紧缩,不能放大。 4.只有三相阻抗平衡,才能保证低压漏电总保护良好运行,防止人身触电伤亡事故。 二、三相负载不平衡的影响 1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。 2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的

电力需求侧三相不平衡治理的理论及应用

电力需求侧三相不平衡治理的理论及应用 发表时间:2018-05-31T10:16:14.573Z 来源:《电力设备》2018年第2期作者:李秀华1 郭继伟1 王子琪2 岳昕贝2 [导读] 摘要:针对电力需求侧普遍存在的三相不平衡问题,分析其成因及治理的必要性,介绍智能负载调节装置的技术原理及其在实际中的应用效果。 (1广西云涌科技有限公司广西南宁 530000;2广西高捷中加国际学校广西南宁 530000)摘要:针对电力需求侧普遍存在的三相不平衡问题,分析其成因及治理的必要性,介绍智能负载调节装置的技术原理及其在实际中的应用效果。 关键词:三相不平衡;智能负载调节 1、三相不平衡的成因及治理必要性 三相不平衡几乎存在于所有低压配电网台区,由于用户用电行为的不确定,早中晚、节假日、季节性等用电行为不同,尤其是近年来充电桩等各类大功率设备的接入,造成三相负荷变化频繁,甚至有些台区的三相不平衡度高达80%以上。 三相不平衡给电网带来的主要困扰有: ①增加配电变压器和线路的电能损耗;②降低配电台区中重载相的供电电压质量(引起低电压);③降低配电变压器的输出能力,电能转换效率下降(功率因数低);④引起中性点偏移,危及设备安全。所以电网公司对用户的三相不平衡管理非常重视,国家电网及南方电网公司均要求低压配电台区三相不平衡度要小于15%。 2、三相不平衡治理装置 2.1技术原理 本文介绍一种低压配电网三相不平衡治理装置,它的原理是根据监测到三相线路的电流负载数据,将负载较重某相线路上的部分用电户,换接到负载较轻的单相线路上。即实时跟踪监测线路电流负载,通过自动换相来实现线路负载电流的三相平衡。如下图1所示,整套系统由1台主控器(安装在变压器出线侧)和若干台自动负载调节装置(安装在线路分接处)组成。 图1 系统原理图 要实现最佳负载自动调节、使得电流的三相不平衡度降低到15%之内,需要主控器根据变压器出线侧电流及控制器电流计算出最优负载调节方案,生成换相指令,通过载波或无线通信方式发送给负载调节装置,负载调节装置接受并执行换相指令,有载动态调节三相不平衡度。 2.2关键技术 智能负载调节装置需要将高负荷相的一部分用电户切换到低负荷相,切换速度为毫秒级。为保障电网的安全可靠,有以下关键技术: 1)严禁相间短路。必须是确保一相断开后再接入另一相,相间短路会造成严重事故。 2)换相时间最短。为不影响用户用电,换相时间要求越短越好,一般不超过10ms。 3)为了减少涌流、电弧对设备的冲击,基于“电流过零切除,电压过零投入”的原则,调节装置要求做到“过零换相”。我们知道,我国的三相交流电频率为50Hz,周期为20ms,如下图2所示:

三相不平衡度

三相不平衡度 三相不平衡度在三相电力系统中指三相不平衡的程度,用电压、电流的负序基波分量或零序基波分量与正序基波分量的方均根百分比表示。 一、定义 国家标准《GB/T15543-2008电能质量三相电压不平衡》(下称“国标”)对三相不平衡度及相关定义如下: 不平衡度unbalance factor 在三相电力系统中三相不平衡的程度,用电压、电流的负序基波分量或零序基波分量与正序基波分量的方均根百分比表示。电压、电流的负序不平衡度和零序不平衡度分别用εu2、εu0、εi2、εi0表示。 电压不平衡voltage factor 三相电压在幅值上不同或相位差不是120°,或兼而有之。 正序分量positive-sequence component 将不平衡三相系统的电量按对称分量法分解后其正序对称系统中的分量。 负序分量negative-sequence component 将不平衡三相系统的电量按对称分量法分解后其负序对称系统中的分量。 零序分量zero-sequence component 将不平衡三相系统的电量按对称分量法分解后其零序对称系统中的分量。 公共连接点point of common coupling 电力系统中一个以上用户的连接处。 二、电压不平衡度限值 电网正常运行时,公共连接点电压不平衡度限值为: εU2≯2%,短时(3s~1min)εU2≯4%。

接于公共连接点的每个用户引起的电压不平衡度限值为: εU2≯1.3%,短时(3s~1min)εU2≯2.6%。 三、不同的计算方法 1、三相不平衡度的国标计算方法 国标定义的三相不平衡度需要知道三相相电压的大小和相位,运算较复杂。此外,在三相三线制系统中,相电压不易测量,电机试验电参数测量多数属于这种情况,可参考其它相关标准。以下汇集了国标及相关标准对三相不平衡度的计算方法。 2、三相不平衡度的国标简化计算方法 对于没有零序分量的三相系统,国标推荐的三相不平衡度的简化计算方法如下: 3、三相不平衡度的IEEE std936-1987计算方法

HYSPC三相不平衡自动调节装置

- 3 - HYSPC 乾坤大挪移效果示意图 从B 相引进100A ,转移到A 相、C 相各50A 使变压器的A 、B 、C 相输出均衡,避免了电能质量问题的发生。 HYSPC 三相不平衡自动调节效果示意图 a 有效治理因中线局部发热老化,甚至是火灾的风险; b 有效治理因局部电压不平衡,引起的设备误报警; c 有效治理因零地电压偏高而导致控制系统弱电设备烧毁的风险; d 不会增加有功损耗。 HYSPC - 100/400-4-W HYSPC 三相不平衡自动调节装置 3正常工作条件和安装条件 3.1环境温度:-10℃~ +40℃ 3.2相对湿度:5%~95%,无凝露 3.3海拔高度:≤1500m ,1500~4000m 之间,根据GB/T3859.2,每增加100m ,功率降低1%3.4环境条件:无有害气体和蒸汽,无导电性或爆炸性尘埃,无剧烈的机械振动 3.5户外安装:模块上下出风口至少要保留 15cm 空间,机柜前后至少保留60cm 空间以方便维护 2型号及含义 户外 4:三相四线 3:三相三线 电压等级:400V 容量: 35kvar 、70kvar 、100kvar 三相不平衡调节企业代码 HY SPC 100 / 400 - 4 - W 1概述及自动调节效果示意图 低压配网中的三相不平衡是普遍存在的。在城网及农网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。电网中的电流不平衡会增加线路及变压器的损耗、降低变压器的出力、影响变压器的运行安全,还会造成零点漂移,导致三相电压不平衡,降低供电质量。针对上述情况,我公司本着优化电能质量、实现节能减排的目的,精心设计研发出了三相不平衡自动调节装置。该装置在额定容量内将零序电流滤除90%以上,三相不平衡度控制在10%以内。

三相不平衡的程度

1主题内容与适用范围 本标准规定了三相电压不平衡度的允许值及其计算、测量和取值方法。 本标准适用于交流额定频率为50Hz电力系统正常运行方式下由于负序分量而引起的公共 连接点的电压不平衡。 2术语、符号 2.1不平衡度ε unbalance facor ε 指三相电力系统中三相不平衡的程度,用电压或电流负序分量与正序分量的方均根值百分比表示。电压或电流不平衡度分别用εu或εI表示。 2.2正序分量Positive—sequence component 将不平衡的三相系统的电量按对称分量法分解后,其正序对称系统中的分量。 2.3负序分量negative—sequence component 将不平衡的三相系统的电量按对称分量法分解后,其负序对称系统中的分量。 2.4公共连接点Point of common coupling 电力系统中一个以上用户的连接处。 3电压不平衡度允许值 3.1电力系统公共连接点正常电压不平衡度允许值为2%,短时不得超过4%(取值见附录A)。

电气设备额定工况的电压允许不平衡度和负序电流允许值仍由各自标准规定,例如旋转电机按GB755《旋转电机基本技术要求》规定。 3.2接于公共接点的每个用户,引起该点正常电压不平衡度允许值一般为1.3%,根据连接点的负荷状况,邻近发电机、继电保护和自动装置安全运行要求,可作适当变动、但必须满足3.1条的规定。 4用户引起的电压不平衡度允许值换算电压不平衡度允许值一般可根据连接点的正常最小短路容量换算为相应的负序电流值,为分析或测算依据;邻近大型旋转电机的用户,其负序电流值换算时应考虑旋转电机的负阻抗。有关不平衡度的计算见附录B。 5不平衡度的测量(见附录A) 附录A不平衡度的测量和取值(补充件) A1本标准中ε值指的是在电力系统正常运行的最小方式下负荷所引起的电压不平衡度为最大的生产(运行)周期中的实测值。例如炼钢电弧炉应在熔化期测量;对于日波动负荷,可取典型日24h测量。 A2本标准规定的正常ε允许值,对于波动性较小的场合,应和实测的五次接近数值的算术平均值对比;对于波动性较大的场合,应和实测值的95%概率值对比,以判断是否合格。其短时允许值是指任何时刻均不能超过的限值。

低压配变台区三相不平衡治理浅析

低压配变台区三相不平衡治理浅析 摘要:在低压配电网络中一般都存在三相不平衡问题,随着居民生活水平的提高、用电设备的增多,用电负荷也随之快速增加,若三相负荷的增长水平不一致,则会加剧原本就存在的三相负荷不平衡问题。三相负荷不平衡严重时,可能造成 配电变压器烧毁等问题。因此,针对台区低压负荷不平衡现状,提出合理的解决 三相负荷不平衡方案显得尤为重要。文章介绍了三相不平衡产生的原因与危害, 介绍了现有的三相负荷不平衡治理措施,并根据北京地区低压台区负荷的表现形式,初步确定了针对不同类型台区的三相负荷不平衡的治理方法。 关键词:三相不平衡;低压;配电网 1目前治理配网三相不平衡负荷主要方法 1.1人工离线负荷调整人工离线负荷调整是目前供电企业治理三相负荷不平衡采取的主要方法。它是指运行管理人员通过用电信息采集系统或对用户负荷进行 实测,及时掌握配变台区三相负荷不平衡及负荷分布情况,然后制定用户负荷调 整方案,采取停电的方式对配变台区中部分用户负荷进行调整,达到将低压线路 各相上的负荷平衡分配的目的。该方法无需新增投资,操作实施方便。但由于用 电负荷的随机性和不确定性,依靠人工无法根据实际负荷不平衡状况进行在线实 时调整,只能在一定程度上降低配变台区三相负荷不平衡的严重程度。同时人工 离线负荷调整不可避免地影响用户供电可靠性,且在一定程度上存在安全隐患。 1.2三相负荷不对称调补三相负荷不对称调补有配变相间无功补偿和用电负荷不对称调补两种方案。配变相间无功补偿是指在配电变压器低压侧通过相间无功 补偿方式调整三相负荷不平衡状况,该方案只能在一定程度上改善配变自身问题,而不能够解决配变台区低压线路的三相负荷不平衡情况。用电负荷不对称调补是 指通过将一个理想补偿网络与负载相并联,把不平衡、线性及中性点不接地的负 载变换成单位功率因数相同且负荷平衡的三相有功负荷,在进行无功补偿的同时 补偿三相负荷不平衡。但是该方案需要增加并联补偿装置,费用较高、控制难、 可靠性低,主要是针对大用电负荷。 2低压负荷在线自动换相治理三相负荷不平衡的新构思 2.1工作原理分析三相负荷不平衡问题产生的根本原因是配变台区中存在着时空分布不平衡的单相负荷。要达到治理配变台区三相负荷不平衡问题的目的,必 须采用相关方法在A、B、C三相之间合理地调整用电负荷的相序,使用电负荷在A、B、C三相上平衡分配。根据配网用电负荷的特点,进行负荷相序调整必须满 足以下几个需求: 2.1.1可控性,低压负荷三相不平衡是由于用电负荷在A、B、C三个相序上分 布不平衡,要使负荷三相平衡或最大限度的平衡,用电负荷的相序应可以在A、B、C三相之间自由可控地调整; 2.1.2实时性,用电负荷具有时变性特点,相应的配变台区三相负荷不平衡度 也在不断变化,因此必须在负荷三相不平衡度超限的情况下及时进行用电负荷相 序调整; 2.1.3在线性,在进行用电负荷相序调整时,如果进行停电调整将影响供电可 靠性,影响居民的正常生产生活用电,所以应尽量做到在线调整; 2.1.4无冲击性,在进行用电负荷相序调整时,应该对用电负荷的电压质量无 冲击。 2.1.5无损性,在进行用电负荷相序调整时,相关换相设备应损耗小或最好无

配变三相不平衡解决方案及控制策略

配变三相不平衡解决方案及控制策略 发表时间:2018-07-02T11:46:01.237Z 来源:《电力设备》2018年第8期作者:刘宝娟袁林涛[导读] 摘要:现阶段,我国的经济发展的十分的迅速,电力工程的发展也有了很大的提高。 国网山东省电力公司枣庄供电公司山东枣庄 277100 摘要:现阶段,我国的经济发展的十分的迅速,电力工程的发展也有了很大的提高。当前,农村部分地区仍然存在着台区三相负荷不平衡现象,特别是季节性、时段性用户用电时间不统一造成配变三相负荷不平衡,通过人工调整三相负荷平衡是很难实现的,要实现真正三相负荷平衡,必须采用自动化方式完成,采用自动调节三相负荷平衡也解决了因台区负荷分布变化、新增用户等原因造成的三相负荷不 平衡现象。自动调节三相不平衡装置的推出是适应当前智能电网建设要求,通过调整三相负荷分配,降低三相负荷不平衡率,可以有效平衡低压线路电流,解决偏负荷相电流大压降高的问题,从而提高末端电压,降低线损。 关键词:配变三相不平衡;解决方案;控制策略引言 三相不平衡使我们评价电能质量的重要指标。就目前而言,当前造成三项不平衡的因素主要可以分为事故性和正常性两种类型,其中事故性的主要诱因是电路系统故障,而正常性则是由三相元件、线路参数以及负荷等因素的不对称引起的。属于允许长期存在或长时间存在的三项不平衡现象。在低压电网中,配电变压器是中心枢纽,而三相负荷的平均分配则是确保电能质量、为用电单位输出高安全系数电能的重要保障。近年来,国家采取了诸多措施改变农村等偏远地区低压电网状况,使配电台区的供电能力和电压质量有了一定程度的提高。但三相负荷不平衡这一问题仍将导致低压电网的可靠性与稳定性降低、电能质量差、线损率与故障率高,甚至影响电力系统的安全运行。 1基本概念 在电路理论中,根据供电是系统的电量是否对称将其分为了对称系统和不对称系统。其中对称系统表示的电动势、电压以及电流等数值大小相等,而且彼此的相互移动角度均为2π/m。此外,根据多相系统是否平衡的特点,又可以将其分为多相平衡系统和多相不平衡系统与不平衡的,两者的根本区别在于电路系统中的功率是都根据时间的变动而变动,若变动,则是不平衡系统,若不变动,则是平衡系统。最后,我们还应该明白系统不对称的多相系统并不是衡量其是否平衡的标准。例如,在不对称二相系统中,其主要组成单元为两个大小相等,夹角互为90度角的电动势,这种电路的对称性与平衡性则是相互对应。而在单相系统中,其功率受时间变化的影响,波动范围为:p1+1/cosφ,p1-1/cosφ。其中p代表系统的有功功率。这种电路的对称性和平衡性则不能对应。但是,本文的主要目的是为了论述三相系统的不平衡,所以将“不平衡”和“不对称”定义为同种含义。 2配变三相不平衡的危害 2.1影响电能质量、危及安全 对电能质量的影响主要体现在由于中性点漂移引起三相电压不对称。当配电变压器在三相负荷不对称运行时,变压器次级线圈发生三相电流运行异常,异常现像导致中性线产生零序电流。此类现状下,使得三相电流电压对称性出现异常,三相电流中性点产生位移,这时将出现三相电压不对称的电能质量问题。当配电变压器长期处于不平衡运行时容易造成如下问题:1)低压相电用电户电器设备,因电压异常现象无法正常应用。高压相电用电户,电器设备则因电压变动存在设备烧坏的可能性。2)三相电流运行异常,造成中性线出现零序电流。零序电流的移动,导致中性线产生电流。最终造成中性线路熔断,相电压运行失效,转换为线电压。此类现状下,对于用电设备以及操作人员的人身安全,都造成了较大的危害。3)电流负荷较大区域,最终用电线路在供电的过程中,产生了大量的热能。热能现象使得用电线路绝缘性快速降低,最终造成人员触电等危害。4)三相电流不平衡运行时间加长,超负荷区域负载超限。最终造成相电导线熔断,电器设备烧毁。严重时可能造成变压器设备的爆炸等后果,严重影响电网的安全运行。 2.2配变产生零序电流 配变在三相负荷不平衡工况下运行,将产生零序电流,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则铁芯中将产生零序磁通(高压侧没有零序电流),迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。配变的绕组绝缘因过热而加快老化,导致设备寿命降低,同时,零序电流的存在也会增加配变的损耗。 2.3增加线路的电能损耗 在三相四线制供电网络中,电流通过线路导线时因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当线路三相负载不平衡运行时,中性线即有电流通过,这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。 3配变三相不平衡的控制措施 3.1换相控制策略 基于台区配变终端的三相不平衡治理系统换相控制策略是关键。配变终端根据设定的周期定时计算三相不平衡率,当计算值大于设定的三相不平衡门槛值时,将对分散安装的换相开关进行控制换相。首先找出配变低压侧三相电流中的最大值及其所在相序、最小值及其所在相序以及中间值所在相序,然后查寻是否有换相开关所带负荷位于配变低压侧三相电流最大值和中间值所在相序,若无本轮调节结束。若存在则遍历所有符合条件的换相开关,将换相开关负荷所在相序为转出相、配变低压侧三相电流中的最小值所在相序为转入相,计算出转换后的三相不平衡率,该值小于转换前的三相不平衡率则存入可控队列。 3.2预测控制策略 换相开关根据采集的电流值,实时调整不平衡负载的方式节能效果最好,但换相动作过于频繁会给用户生活带来干扰,例如引起白炽灯跳闪等现象发生。预测控制策略是基于用户历史负荷数据,采用时间序列分析、模糊理论等算法对未来负荷变化情况作出预测,在凌晨等非高峰时段调整换相开关,避免在用电高峰期的频繁换相给居民生活带来影响。系统对用电随机性的准确预测是影响治理效果的主要因素,换相开关的提前或滞后动作减少了对用户的影响,但总体来说牺牲了节能效果。 3.3加强对配变的监测,形成闭环管理

相四线不平衡电流计算

N线的电流为10+20+30-3*10=30A 因为,每相10A可在零线上,实现三相归零,那就只剩下L1、L2的10+20=30A的电流.又因相对相是380V,如L1、L2没有零线,它们的电压为380V.但有零线时,它们的各相的10A串联在380V上,各负载只承担了190V,但对零电压有220V,比相对相的电压要高,所以它挑高电势的走了.剩下的L1的10A,别无选择,更会经零线走了. 所以经过零线的有30A. 在低压三相四线制(380/220V)供电中系统,零线的作用是什么?零线断线时有什么后果?

变压器二次侧中性点直接接地称为工作接地,由于中性点直接与大地零电位连接。因此,引出的中性线称为零线 即TN-C系统(三相四线制供电系统)中的PEN线。在 三相四线制(380/220V)供电系统中零线的主要作用是: 1、在三项负载不平衡的情况下,零线导通,不平衡电流流回中性点,从而使供电系统的线电压、相电压基本保持平衡。 2、当采用保护接零的电气设备绝缘损坏发生碰壳时,短路电流将通过零线构成回路。由于零线阻抗较小,所以短路电流将很大,它促使保护装置迅速动作以断开电源,从而起到保护作用。 3、零线还是单相220V电气设备的电源回路。如下图所示在三相负载不平衡(A相负载最小、B相负载稍大、C相负载最大)的情况下,零线一旦断线将产生严重后果。 分析如下 1、当零线在a点发生断线时,凡连接在断开点以后的单相负载,其火线、零线都带电。 但没有电压,因此,负载无法正常工作。 2、当零线在b点发生断线时,接在断开点以后的B相(L2)和C相(L3)的单相负载相当于串联后接在B、C两相(380V)上,造成负载大的C相电压低,负载小的B相电压高。如果B相和C相负载一样大,则B相和C相负载各承受电压190V。 3、当零线在c点发生断线时,由于没有零线导通不平衡电流,为维持三相电流的矢量和等于零,其中性点必将向负载大的C相方向位移,造成三相电压不平衡,即负载大的C相电压低,而负载小的A相电压高。三相负载不平衡程度越严重,中性点位移量越大,三相电压不平衡程度也越严重。 4、由于零线断线造成的三相电压畸形,使电气设备工作特性发生变化。电压过低无法工作,电压过高将缩短使用寿命,甚至烧毁设备造成经济损失。 5、零线一旦断线,采用保护接零的电气设备将失去保护,设备一旦漏电,将会造成人身触电。这时,即使设备不漏电,由于零线本身带有危险电压使设备外壳带电,同样会造成人身触电事故。在低压三相四线制(380/220V)供电系统中,由于单相负载的存在,必然造成三相负载不平衡。为保证零线的安全性和可靠性,规程规定零线电流不得超过相线电流的25%,在主干零线上不得装设开关和熔断器,零线的截面不得小于相线截面的1/2 三相四线不对称电路绝不能省去中性线,这样就是相电压加在负载上。如果没有中性线,电路将变成不对称星形电路,负载所承受的电压为线电压。电阻大的用电分压多就有可能被烧毁,电阻小的用电器分压小就有可能不工作。

相关主题