搜档网
当前位置:搜档网 › 金属材料在高温下性能的变化

金属材料在高温下性能的变化

金属材料在高温下性能的变化

金属材料在高温下性能的变化以下是几个金属材料在高温下性能变化相关的几个名词解释

①蠕变钢材在高温下受外力作用时,随着时间的延长,缓慢而连续产生塑性变形的现象,称为蠕变。钢材蠕变特征与温度和应力有很大关系。温度升高或应力增大,蠕变速度加快。例如,碳素钢工作温度超过300~350℃,合金钢工作温度超过300~400℃就会有蠕变。产生蠕变所需的应力低于试验温度钢材的屈服强度。因此,对于高温下长期工作的锅炉、蒸汽管道、压力容器所用钢材应具有良好的抗蠕变性能,以防止因蠕变而产生大量变形导致结构破裂及造成爆炸等恶性事故。

②球化和石墨化在高温作用下,碳钢中的渗碳体由于获得能量将发生迁移和聚集,形成晶粒粗大的渗碳体并夹杂于铁素体中,其渗碳体会从片状逐渐转变成球状,称为球化。由于石墨强度极低,并以片状出现,使材料强度大大降低,脆性增加,称为材料的石墨化。碳钢长期工作在425℃以上环境是地,就会发生石墨化,在大于475℃更明显。SH3059规定碳钢最高使用温度为425℃,G B150则规定碳钢最高使用温度为450℃。

③热疲劳性能钢材如果长期冷热交替工作,那么材料内部在温差变化引起的热应力作用下,会产生微小裂纹而不断扩展,最后导致破裂。因此,在温度起伏变化工作条件下的结构、管道应考虑钢材的热疲劳性能。

④材料的高温氧化金属材料在高温氧化性介质环境中(如烟道)会被氧化而产生氧化皮,容易脆落。碳钢处于570℃的高温气体中易产生氧化皮

而使金属减薄。故燃气、烟道等钢管应限制在560℃下工作。

常见八种金属材料及其加工工艺

常见八种金属材料及其加工工艺 1、铸铁——流动性 下水道盖子作为我们日常生活环境中不起眼的一部分,很少会有人留意它们。铸铁之所以会有如此大量而广泛的用途,主要是因为其出色的流动性,以及它易于浇注成各种复杂形态的特点。铸铁实际上是由多种元素组合的混合物的名称,它们包括碳、硅和铁。其中碳的含量越高,在浇注过程中其流动特性就越好。碳在这里以石墨和碳化铁两种形式出现。 铸铁中石墨的存在使得下水道盖子具有了优良的耐磨性能。铁锈一般只出现在最表层,所以通常都会被磨光。虽然如此,在浇注过程中也还是有专门防止生锈的措施,即在铸件表面加覆一层沥青涂层,沥青渗入铸铁表面的细孔中,从而起到防锈作用。金属加工微信,内容不错,值得关注。生产砂模浇注材料的传统工艺如今被很多设计师运用到了其他更新更有趣的领域。 材料特性:优秀的流动性、低成本、良好的耐磨性、低凝固收缩率、很脆、高压缩强度、良好的机械加工性。 典型用途:铸铁已经具有几百年的应用历史,涉及建筑、桥梁、工程部件、家居、以及厨房用具等领域。 2、不锈钢——不生锈的革命 不锈钢是在钢里融入铬、镍以及其他一些金属元素而制成的合金。其不生锈的特性就是来源于合金中铬的成分,铬在合金的表面形成了一层坚牢的、具有自我修复能力的氧化铬薄膜,这层薄膜是我们肉眼所看不见的。我们通常所提及的不锈钢和镍的比例一般是18:10。 20世纪初,不锈钢开始作为元才来噢被引入到产品设计领域中,设计师们围绕着它的坚韧和抗腐蚀特性开发出许多新产品,涉及到了很多以前从未涉足过的领域。这一系列设计尝试都是非常具有革命性的:比如,消毒后可再次使用的设备首次出现在医学产业中。 不锈钢分为四大主要类型:奥氏体、铁素体、铁素体-奥氏体(复合式)、马氏体。家居用品中使用的不锈钢基本上都是奥氏体。 材料特性:卫生保健、防腐蚀、可进行精细表面处理、刚性高、可通过各种加工工艺成型、较难进行冷加工。 典型用途:奥氏体不锈钢主要应用于家居用品、工业管道以及建筑结构中;马氏体不锈钢主要用于制作刀具和涡轮刀片;铁素体不锈钢具有防腐蚀性,主要应用在耐久使用的洗衣机以及锅炉零部件中;复合式不锈钢具有更强的防腐蚀性能,所以经常应用于侵蚀性环境。

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性 《职业性接触毒物危险程度分级》GB5044分级原则是什么? 答:(1)职业性接触毒物危险程度分级,是以急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高容许浓度等六项指标为基础的定级标准。 (2)分级原则是依据六项分级指标综合分析,全面权衡,以多数指标的归属定出危害程度的级别,但对某些特殊毒物,可按其急性、慢性或致癌性等突出危害程度定出级别。 《职业性接触毒物危险程度分级》GB5044分级依据是什么? 答:(1)急性毒性 以动物试验得出的呼吸道吸入半数致死浓度(LC )或经口、经皮半数致死量(LD50) 50 或LD50最低值作为急性毒性指标。 的资料为准,选择其中LC 50 (2)急性中毒发病状况 是一项以急性中毒发病率与中毒后果为依据的定性指标:可分为易发生、可发生、偶而发生中毒及不发生急性中毒四级。将易发生致死性中毒或致残定为中毒后果严重;易恢复的定为预后良好。 (3)慢性中毒患病状况 一般以接触毒物的主要行业中,工人的中毒患病率为依据,但在缺乏患病率资料时,可取中毒症状或中毒指标的发生率。 (4)慢性中毒后果 依据慢性中毒的结局,分为脱离接触后,继续进展或不能治愈、基本治愈、自行恢复四级。并可依据动物试验结果的受损病变性质(进行性、不可逆性、可逆性)、靶器官病理生理特性(修复、再生、功能储备能力),确定其慢性中毒后果。 (5)致癌性 主要依据国际肿瘤研究中心公布的或其他公认的有关该毒物的致癌性资料,确定为人体致癌物、可疑人体致癌物、动物致癌物及无致癌性。 (6)最高容许浓度 主要以《工业企业设计卫生标准》TJ36-70中表4车间空气中有害物质最高容许浓度值为准。

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

金属材料性能

金属材料性能 金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金属氧化物(如氧化铝)不属于金属材料) 性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。 种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。 金属材料特质 1.塑性 塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。 金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。 2.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

最新常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 .生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性 能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在 于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化 铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生 铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低, 它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件 的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会 使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可 提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了 生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬 脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达 1.2%。硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁 化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高 的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是 由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定 影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格 的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 部分常用钢的牌号、性能和用途 1 《信息来源:无缝钢管》

材料的腐蚀与防护

姓名:贾永乐学号:201224190602 班级:机械6班 检索主题:材料的腐蚀与防护 数据库:中国知识资源总库——中国期刊全文数据库 检索方法:用高级检索,主题词:腐蚀与防护关键词:材料相与检索结果:1456篇,其中关于航空材料的13篇;金属材料的腐蚀的183篇;材料的防护的522篇,其余为腐蚀与防护相关 的其它技术和方法。 文献综述 1材料腐蚀与防护的发展史: 所有的材料都有一定的使用寿命,在使用过程中将遭受断裂、磨损、腐蚀等损坏。其中,腐蚀失效的危害最为严重,它所造成的经济损失超过了各种自然灾害所造成的损失总和,造成许多灾难性的事故,造成了资源浪费和环境污染。因此,研究与解决材料的腐蚀问题,与防止环境污染、保护人民健康息息相关。在现代工程结构中,特别足在高温、高压、多相流作用下,以及在磨损、断裂等的协同作用下,腐蚀损坏格外严重。据统计,材料腐蚀带来的经济损失约占国民生产总值的1.8%~4.2%。而常用金属材料最容易遭受腐蚀,因此金属腐蚀的研究受到广泛的重视【1】。我们只有在搞清楚材料腐蚀的原因的基础上,才能研制适宜的耐腐蚀材料、涂层及采取合理的保护措施,以达到防止或控制腐蚀的目的。从而减少经济损失和事故,保护环境保障人类健康。 每年由于腐蚀引起的材料失效给人类社会带来了巨大的损失。航

空材料的腐蚀损失尤为巨大。我国针对航空产品的腐蚀与防护的研究和应用起始于上世纪五十年代,经过几十年的曲折发展,取得了很大进步。目前在航空产品的常温腐蚀与防护上,已经进入了向国际接轨的发展阶段。航空材料由于服役环境复杂多变, 不同构成材料相互配合影响, 导致航空材料在飞行器的留空阶段、停放阶段遭受多种不同种类的腐蚀, 增加了飞行器的运营成本, 对飞行器的功能完整性和使用安全性造成严重的危害。英美空军每架飞机每年因腐蚀造成的直接修理费用为11 000~ 55 000美元之间【2】。1985年8月12日,日本一架B747客机因应力腐蚀断裂而坠毁,死亡500余人。因此航空材料的腐蚀防护技术研究对航空业的发展具有举足轻重的作用。 1978.10国家科委主任方毅在全国聘任27位科学家组建了我国《腐蚀科学》学科组,笔者作为学科组成员,第三专业组(大气腐蚀专业组)副组长,承担了航空航天部分的调查任务。1980.1—1982.6广泛函调一百多个工厂,并深入26个厂、所、部队,机场进行了实地考查,发现了大量的腐蚀问题,笔者1985年在我国首次出版了《航空产品腐蚀故障事例集》,汇集了数据比较周全,二十世纪六、七十年代的46个腐蚀故障【3】。 1990年前,铁道车辆车体结构通常采用普碳钢制造,加之使用涂料档次低,对表面处理和涂装工艺不够重视,车辆锈蚀严重,修理时车体钢板的更换率相当高,有些客车甚至仅使用1个厂修期就报废。1985年,耐大气腐蚀钢(即Corten钢,又称耐候钢)开始用于车辆,到1990年,已在全部新造车辆上采用。由于这类钢材含有(0.2%~0.4%

金属材料的点腐蚀和缝隙腐蚀

金属材料的点腐蚀和缝 隙腐蚀 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料的点腐蚀和缝隙腐蚀 点腐蚀和缝隙腐蚀(pitting and crevice corrosion)金属材料接触某些溶液,表面上产生点状局部腐蚀,蚀孔随时间的延续不断地加深,甚至穿孔,称为点腐蚀(点蚀),也称孔蚀。通常点蚀的蚀孔很小,直径比深度小得多。蚀孔的最大深度与平均腐蚀深度的比值称为点蚀系数。此值越大,点蚀越严重。一般蚀孔常被腐蚀产物覆盖,不易发现,因此往往由于腐蚀穿孔,造成突然性事故(见金属腐蚀)。 缝隙腐蚀是两个连接物之间的缝隙处发生的腐蚀,金属和金属间的连接(如铆接、螺栓连接)缝隙、金属和非金属间的连接缝隙,以及金属表面上的沉积物和金属表面之间构成的缝隙,都会出现这种局部腐蚀。 许多金属材料都能产生点蚀和缝隙腐蚀。不锈钢、铝合金等靠钝化来增强耐蚀性的金属材料,也易产生点蚀和缝隙腐蚀。许多环境介质都能引起金属材料的点蚀和缝隙腐蚀,尤其是含氯离子的溶液。 点腐蚀 金属表面的电化学不均匀性是导致点蚀的重要原因。金属材料的表面或钝化膜等保护层中常显露出某些缺陷或薄弱点(如夹杂物、晶界、位错等处),这些地方容易形成点蚀核心。金属浸入含有某些活化阴离子(特别是氯离子)的溶液中,只要腐蚀电位达到或超过点蚀电位(或称击穿电位),就能产生点蚀。这是由于钝化膜在溶液中处于溶解以及可再度形成的动平衡状态,而溶液中的活化阴离子(氯离子)会破坏这种平衡,导致金属的局部表面形成微小蚀点,并发展为点蚀源。例如不锈钢表面的硫化物夹杂的溶解,暴露出钢的新鲜表面,就会形成点蚀源。 点蚀的发展是一个在闭塞区内的自催化过程。在有一定闭塞性的蚀孔内,溶解的金属离子浓度大大增加,为保持电荷平衡,氯离子不断迁入蚀孔,导致氯离子富集。高浓

(完整版)金属材料知识大全

金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金 属氧化物(如氧化铝)不属于金属材料) 1.意义 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后 出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。 2.种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬 度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及 金属基复合材料等。 3.性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制 造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工 艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、 切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它 包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它 的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和 非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷 的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为 机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载 荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求 的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、 多次冲击抗力和疲劳极限等。 金属材料特质

东北大学 材料腐蚀与防护 复习

第一章 耐蚀性:指材料抵抗环境介质腐蚀的能力。 腐蚀性:指环境介质腐蚀材料的强弱程度。 高温氧化:在高温条件下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程称高温氧化,亦称高温腐蚀。 毕林—彼得沃尔斯原理或P-B 比:氧化时所生成的金属氧化膜的体积2MeO V 与生成这些氧化膜所消耗的金属的体积Me V 之比。 腐蚀过程的本质:金属 → 金属化合物 (高温)热腐蚀:指金属材料在高温工作时,基体金属与沉积在其工作表面上的沉积盐及周围工作气体发生总和作用而产生的腐蚀现象称为热腐蚀. p 型半导体:通过电子的迁移而导电的半导体; n 型半导体:通过空穴的迁移而导电的半导体。 n 型:加Li (低价),导电率减小,氧化速度增加;加Al (高价),导电率增加,氧化速度降低。 p 型:加Li (低价),导电率增加,氧化速度降低;加Cr (高价),导电率减小,氧化度增加。 腐蚀的危害 1)造成巨大的经济损失;2)造成金属资源和能源的浪费造成设备破坏事故,危及人身安全;3)引起环境污染。 金属一旦形成氧化膜,氧化过程的继续进行将取决于两个因素 1)界面反应速度,包括金属/氧化物界面以及氧化物/气体两个界面上的反应速度;2)参加反应物质通过氧化膜的扩散速度。(这两个因素实际上控制了继续氧化的整个过程,也就是控制了进一步氧化速度。在氧化初期,氧化控制因素是界面反应速度,随着氧化膜的增厚,扩散过程起着愈来愈重要的作用,成为继续氧化的速度控制因素)反映物质通过氧化膜的扩散,一般可有三种传输形式 1)金属离子单向向外扩散;2)氧单向向内扩散;3)两个方向的扩散。 反应物质在氧化膜内的传输途径 1)通过晶格扩散:温度较高,氧化膜致密,而且氧化膜内部存在高浓度的空位缺陷的情况下,如钴的氧化;2)通过晶界扩散。在较低的温度下,由于晶界扩散的激活能小东北大学 材料腐蚀与防护 整理人 围安 E-mail jr_lee@https://www.sodocs.net/doc/856336648.html, 2016.1.2

论文-金属材料的腐蚀与防护

金属材料的腐蚀和防护 罗--(学号:1230060054) (-----大学物理与材料科学学院物理学1202班) 专题授课老师:---- 摘要:自从人类发现并使用金属到如今已有5000年的历史,然而人类在享受金属材料的使用带来便利的同时,也在苦恼着金属腐蚀带来的烦恼。人类在使用金属的同时,也在尽最大的努力对金属进行防护。金属的有效防护,一方面可以降低成本,提高劳动生产率,赢得最大的经济效应;另一方面对加强国防建设也有重要的意义。 关键词:金属材料腐蚀防护 引言:当金属和周围气态或液态介质接触时常常由于发生化学作用或电化学作用而逐渐损坏的过程成为金属腐蚀,每年金属腐蚀给国家带来巨大的经济损失,所以金属的有效防护对于一个企业和国家是至关重要的。 1.金属材料的腐蚀机理 1.1金属腐蚀的分类 按照金属的腐蚀机理可以将金属腐蚀分为化学腐蚀与电化学腐蚀两大类。化学腐蚀就是金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程;电化学腐蚀就是铁和氧形成两个电极,组成腐蚀原电池。金属腐蚀的实质都是金属原子被氧化转化成金属阳离子的过程。 1.2金属腐蚀的发生

自然界中只有极少数金属(例如金、铂等)能以游离状态存在,而大多数金属都需要从它们的矿石中用不同的能量冶炼出来。因此,金属受周围介质的化学及电化学作用而被破坏,这种现象叫做金属的腐蚀。 1.3金属腐蚀的危害 金属腐蚀的危害首先在于腐蚀造成了巨大的经济损失。这种损失可分为直接损失和间接损失。直接损失包括材料的损耗、设备的失效、能源的消耗。由于腐蚀,使大量有用材料变为废料,估计全世界每年因腐蚀报废的钢铁设备约为其年产量的10% 。间接损失包括因腐蚀引起的停工停产,产品质量下降,大量有用有毒物质的泄漏、爆炸,以及大规模的环境污染等。一些腐蚀破坏事故还造成了人员伤亡,直接威胁着人民群众的生命安全。 2.金属腐蚀防护的方法 2.1 改变金属的组成 这种方法最常见的是不锈钢材料。通过在钢铁中加入12-30%的金属铬而改变钢铁原有的组成,从而改善性能,不易腐蚀。如目前迅速发展起来的不锈钢炊具,餐具等就是以此为材料的。2.2 形成保护层 在金属表面覆盖各种保护层,把被保护金属与腐蚀性介质隔开,是防止金属腐蚀的有效方法。可以形成以下几种保护层来对金属腐蚀进行防护: (1)磷化处理: 钢铁制品去油、除锈后,放入特定组成的磷酸

GLEEBLE实验1-高温强度.

GLEEBLE实验 实验一金属材料高温强度的测定 一.实验目的 (1)了解典型金属材料的高温强度与塑性及其随温度的变化规律。 (2)掌握用材料加工物理模拟设备即动态热-力学模拟试验机Gleeble3500测定材料抗拉强度、屈服强度和塑性的原理。 (3)掌握Gleeble 3500试验机的简单操作与编程.并了解其一般应用。 (4)测定不同钢种如20、45、40Cr和1Crl8Ni9不锈钢的拉伸强度及其塑性随温度的变化并进行比较;测定并分析变形速度对强度的影响规律。 二.概述 材料的力学性能在科学研究和工程应用中具有非常重要的作用。例如,数值模拟研究必须以力学性能为依据;负载结构的设计和材料热加工工艺方案(如焊接、锻压、热处理、表面改性等工艺)的制定必须以力学性能为基础等等。温度对材料的力学性能功能影响很大。高温强度和塑性是材料高温使用和热加工时需要考虑的重要力学性能指标,了解其测试方法及其随温度的变化规律,是对高温结构材料进行科学研究和应用的基础。本次实验主要研究金属材料高温短时拉伸的力学性能。

金属材料如钢材的强度和塑性由基体组织类型(如马氏体M,铁素体F,珠光体P,贝氏体B,奥氏体A)、晶粒大小、基体强化类型(固溶强化和弥散强化),以及与此有关的加工变形程度、热处理条件等决定,因此,不同类型的金属及其合金的强度和韧性及其随温度变化的规律存在明显区别,一般来讲,材料按高温强度由低到高的排列顺序为:碳素钢,低合金钢,高合金钢,不锈钢,镍基高温合金。 金属力学性能指标一般按金属材料室温拉伸试验方法(GB/T228-2002)和金属材料室温拉伸试验方法(GB/T4338-1995)进行测试。测试数据全面,但较繁琐。本实验用动态热-力学模拟试验机Gleeble快速测定金属材料的高温强度。 动态热-力学模拟试验机Gleeble3500测定材料高温性能的原理如下:用主机中的变压器对被测定试样通电流,通过试样本身的电阻热加热试样,使其按设定的加热速度加热到测试温度。保温一定时间后,通过主机中的液压系统按一定的加载速率给试样施加载荷使其变形,直至试样断裂。由于试样两端由通水的冷却块夹持,冷却快,所以整个试样在加热和保温过程中存在一定的温度梯度,中间段温度高,但当试样足够长(90~120mm)时,热电偶检测的中间部位约有8~18mm)长度的均温区,这样就能保证试样断裂发生在试样的中间部位,且测试所有强度能与检测温度对应。断面收缩率可以通过测定室温时的断面面积,并与原始截面面积进行比较而获得。 在材料种类和热处理状态一定的情况下,高温强度除受温度影响外,还与加载速度有直接关系。一般情况下,加载速率即变形速度越快,强度越高。动态热-力学模拟试验机Gleeble3500的简介见附件。

金属材料基础知识汇总

《金属材料基础知识》 第一部分金属材料及热处理基本知识 一,材料性能:通常所指的金属材料性能包括两个方面: 1,使用性能即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等)。使用性能决定了材料的应用范围,使用安全可靠性和寿命。 2,工艺性能即材料被制造成为零件、设备、结构件的过程中适应的各种冷、热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。 工艺性能对制造成本、生产效率、产品质量有重要影响。 二,材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当达到或超过某一限度时,材料就会发生变形以至于断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。 承压类特种设备材料的力学性能指标主要有强度、硬度、塑性、韧性等。这些指标可以通过力学性能试验测定。 1,强度金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。抗拉强度σb和屈服强度σs是评价材料强度性能的两个主要指标。一般金属材料构件都是在弹性状态下工作的。是不允许发生塑性变形,所以机械设计中一般采用屈服强度σs作为强度指标,并加安全系数。2,塑性材料在载荷作用下断裂前发生不可逆永久变形的能力。评定材料塑性的指标通常用伸长率和断面收缩率。 伸长率δ=[(L1—L0)/L0]100% L0---试件原来的长度L1---试件拉断后的长度 断面收缩率φ=[(A1—A0)/A0]100% A0----试件原来的截面积A1---试件拉断后颈缩处的截面积 断面收缩率不受试件标距长度的影响,因此能够更可靠的反映材料的塑性。 对必须承受 强烈变形的材料,塑性优良的材料冷压成型的性能好。 3,硬度金属的硬度是材料抵抗局部塑性变形或表面损伤的能力。硬度与强度有一定的关系,一般情况下,硬度较高的材料其强度也较高,所以可以通过测试硬度来估算材料强度。另外,硬度较高的材料耐磨性也较好。 工程中常用的硬度测试方法有以下四种 (1)布氏硬度HB (2)洛氏硬度HRc(3)维氏硬度HV (4)里氏硬度HL 4,冲击韧性指材料在外加冲击载荷作用下断裂时消耗的能量大小的特性。 材料的冲击韧性通常是在摆锤式冲击试验机是测定的,摆锤冲断试样所作的功称为冲击吸收功。以Ak表示,Sn为断口处的截面积,则冲击韧性ak=Ak/Sn。 在承压类特种设备材料的冲击试验中应用较多。 三金属学与热处理的基本知识 1,金属的晶体结构--物质是由原子构成的。根据原子在物质内部的排列方式不同,可将物质分为晶体和非晶体两大类。凡内部原子呈现规则排列的物质称为晶体,凡内部原子呈现不规则排列的物质称为非晶体,所有固态金属都是晶体。 晶体内部原子的排列方式称为晶体结构。常见的晶体结构有:

常用金属材料的特性

它们都是含碳量比较低的优质碳素结构钢。它们不同的主要是两方面,一是含碳量不同;而是机械性能不同。 从化学成分上来看,是含碳量不同,10#钢平均含碳量为万分之10,20#钢平均含碳量为万分之20。 由于含碳量的不同就导致了它们的机械性能的不同。碳素结构钢随着含碳量的增加,强度硬度都相应提高,塑性纫性相应降低。10#、20#属于低碳钢,强度硬度不高,塑性纫性都很好。它们之间比较来说,10#钢的强度和硬度比20#钢要低;10#钢的塑性和纫性比20#钢要好,也是说要软些。 我国钢号表示方法的分类说明 1.碳素结构钢 ①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。 ③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如20MnVB钢中。钒为0.07-0.12%,硼为0.001-0.005%。 ④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。 ⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如,铆螺专用的30CrMnSi钢,

金属材料的腐蚀与防护

金属材料的腐蚀与防护 摘要:扼要介绍了金属的腐蚀机理,腐蚀发生的原因。金属的腐蚀现象和机理比较复杂,但可以通过合理地选用材料、有效地采取防腐蚀措施来减缓金属材料的腐蚀速度,这对于延长设备寿命、降低成本、提高劳动生产率都具有十分重要的意义。 关键词:金属材料;腐蚀;防护 钢铁生锈、铜器泛绿、银具变黑等都是材料(通常是指金属)及其结构物,制件与其所处环境介质之间的化学反应或电化学反应所引起的破坏或变质。这类破坏或变质被称之为材料的腐蚀。腐蚀科学则是一门涉及化学、物理、冶金学、表面科学、力学、机械学和生物学等多学科的应用科学。金属的腐蚀严重破坏了国民经济和国防建设,研究金属的腐蚀这门科学对于提高国民经济和加强国防建设都有重要的意义。 1 金属材料的腐蚀机理 1.1金属腐蚀的分类 按照金属的腐蚀机理可以将金属腐蚀分为化学腐蚀与电化学腐蚀两大类。化学腐蚀就是金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程;电化学腐蚀就是铁和氧形成两个电极,组成腐蚀原电池,因为铁的电极电位总比氧的电极电位低,所以铁是阳极。遭到的腐蚀不管是化学腐蚀还是电化学腐蚀,金属腐蚀的实质都是金属原子被氧化转化成金属阳离子的过程[1] 1.2金属腐蚀的发生 自然界中只有极少数金属(例如金、铂等)能以游离状态存在,而大多数金属都需要从它们的矿石中用不同的能量冶炼出来。因此,从热力学观点来看,金属的腐蚀是很自然的事。金属受周围介质的化学及电化学作用而被破坏,这种现象叫做金属的腐蚀。由于腐蚀导致的金属破坏都从表面开始,而破坏的程度,一般来说也是表面最大。在液态和固态电解质中腐蚀过程是电化学过程。因此,腐蚀能否进行取决于金属能否离子化,而金属离子化的趋势可以用电极电位(E)表示。 金属在电解质中的腐蚀是一种电化学变化[2],它的进行依照法拉第定律及欧姆定律,△W=(Ec-Ea)te/(96500AR) 式中,e为常数,如粗略地认为R不变时,则腐蚀速率(△W/t)与(Ec-Ea)成正比,而与A成反比。(Ec-Ea)因极化关系有所变化,因此腐蚀率也会随时间变化;阳极面积(A)较小时,腐蚀率将会随着提高。金属腐蚀时,阳极释放电子的阳极过程和阴极获得电子的阴极过程是在同一金属表面进行的。 2 金属防护的方法

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 材料的工艺性能指材料适应冷、热加工方法的能力。 (一)、机械性能 机械性能是指金属材料在外力作用下所表现出来的特性。 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 5 、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm2 ) . (二)、工艺性能 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。(三)、化学性能 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回

材料的高温蠕变

材料的高温蠕变 摘要:从蠕变的定义,金属材料在高温下蠕变的形成机理,相关的理论解释和材料蠕变的因素等几个方面阐述了材料的高温蠕变现象。其中也对多晶A12 O3陶瓷以及镁质耐火材料提高抗蠕变性能给予介绍,解释。 关键词:高温蠕变;蠕变机理;多晶A12 O 3陶瓷;抗蠕变性能 1引言 材料具有许多的性能,有的性能在材料的使用时是有利的,但有的性能在材料的使用时是不利的。由于蠕变的产生我们就不能笼统的说材料在高温下的性质是如何的,材料在高温条件下的性能与在常温下的性能不同,在高温下材料发生蠕变,因此,材料的高温蠕变使得材料在高温条件下使用时性能变差,影响了材料在高温条件下的使用。如果能提高材料在高温条件下的抗蠕变性能,能够改善材料在高温条件下使用的品质,使得材料的使用寿命延长,可以节省材料,避免浪费。高温蠕变理论是在对多种金属所做的完整的蠕变实验的基础上建立起来的,因此介绍材料的蠕变机理也是根据金属的蠕变机理来进行解释的。 我们是这样定义材料蠕变这个现象的,材料在高温下长时间承受恒温、恒载荷作用,缓慢产生塑性变形的现象。所以,蠕变是在恒定压力作用下,随着时间的延长而材料持续形变的过程。在高温条件下,材料都有着与常温下不同的蠕变行为。借助于高温作用和外力作用,材料的形变障碍得到克服,内部质点发生迁移,晶界相对移动,于是蠕变现象产生了。 2.1 蠕变阶段 材料的高温蠕变分为几个阶段,几个区域有着不同的变化。 图1 图1表示在三个不同的恒定应力作用下,材料的应变ε随时 间t变化的典型蠕变曲线。曲线的终端表示材料发生断裂。t=0时的应变表示加载结束时的即时应变,它包括弹性应变和塑性应变。蠕变曲线可分为三个阶段,

相关主题