搜档网
当前位置:搜档网 › 颜色测量方法及其局限性

颜色测量方法及其局限性

颜色测量方法及其局限性
颜色测量方法及其局限性

phi;(λ)全印展,对于光源的测量,实际上

是要测定光源的相对光谱功率分布P(λ);对于物体色的测量,则是测定物体的光谱光度特性,如反射物体的光谱辐亮度因数β(λ)和光谱反射比P(λ)、透射物体的光谱透射比τ(λ)等。在测得了色刺激函数φ(λ)之后,就可以根据色度学的三个基本方程求出被测颜色的CIE三刺激值X、Y、Z区域报道,将所选择的标准照明体的Y值调整到100。

颜色测量包括光源颜色的测量与物体色的测量两大类。物体色测量又分为荧光物体测量和非荧光物体测量。在实际生产和日常生活中,涉及到大量的非荧光物体测色颜色测量的方法分为目视测色和仪器测色两大类。其中,仪器测色又包括密度法、光电积分法和分光光度法。

一、目视法

目视法是一种传统的颜色测量方法。它是一种完全主观评价方法,同时也是最简单的一种方法。它将印刷品与标准样张直接进行人为比对,评价印刷品与标准样张呈色差异印刷商巡礼,同时还借助放大镜来细微地观察各色网点的形状和叠印状况,对网点的调值作定性评估。其实质是一种目视光度测定法,原理是利用加色混合定律,将各个分量的未知色加在一起,以描述所得的未知色。虽然对于色彩评价来说最可靠的方式是借助人眼出版,而且简单灵活,但是由于观测人员的经验和心理、生理因素的影响,使得该方法可变因素太多,并且无法进行定量描述,从而影响到评估的准确性和可靠性。故障分析与排除

二、密度检测法

密度测量实际上并不直接测量密度值承印材料,只是测量反射光量和入射光量的大小,其中假设了反射光和密度计提供的光之间的差别是光的吸收量,也即印刷表面油墨层的吸收光量大小。密度测量考虑的是整个反射光谱的总体光量特性,实质上是评价印刷表面各色的亮度因数,而与色调无关。在彩色印刷中DTP,印刷油墨呈色实际上就是,油墨印在反射率较高的白纸上,从照射其上的光线中选择性地吸收了一部分波长的光,而反射剩余的光,此时密度反映了油墨对光波的吸收特性。习惯上所指的“彩色密度”是指测量时北人集团,通过红、绿、蓝三种滤色片分别来测量黄、品、青油墨的密度。密度只是物理吸收特性的度量,只表示黑或灰的程度。从这个意义上说彩色密度测量也只是黑度的测量,是同一种油墨饱和度的相对值的反映。密度测量法中使用的密度计有透射和反射两种,透射密度计测量透过胶片的光量或透过率,反射密度计测量从测试表面反射的光量或反射率利通,其基本工作原理如图一所示。由于印刷品上油墨膜层由湿到干过程中反射光的强弱是不一样的,故测定密度有一定误差,而加有偏振滤光镜的密度计可以克服墨膜的干湿造成的密度变化。彩色反射密度计已经成为印刷车间不可或缺的工具,它直观地反映了C、M、Y、K四色印刷的密度、网点百分比、油墨叠印率等,被广泛用于颜色和墨层厚度控制当中。当纳利

三、光电积分法

长期以来数字印刷机,密度法在颜色测量中占有很高的地位,但是随着CIE1976L*,a*,b*的应用逐渐普遍,并已遍及从印前到印刷的整个工作流程展会,以及密度测量已不足以满足印刷或其它行业的需要,人们越来越意识到色度的重要性,并且现代色度学的迅速发展也为光电积分仪器客观地评价颜色奠定了基础。

光电积分法是20世纪60年代仪器测色中采用的常见方法。它不是测量某一波长的色刺激值,而是在整个测量波长区间内,通过积分测量测得样品的三刺激值X、Y、Z糊盒,再由此计算出样品的色品坐标等参数。通常用滤光片覆盖在探测器上,把探测器的相对光谱灵敏度S(λ)修正成CIE推荐的光谱三刺激值x(λ)、y(λ)、z(λ)。用这样的三个光探测器接收光刺激时,就能用一次积分测量出样品的三刺激值X、Y、Z。滤光片需满足卢瑟条件,以精确匹配光探测器。卢瑟条件如下:

此类型仪器的测色准确度是与仪器符合卢瑟条件的程度有直接关系的,要做到完全符合上述条件是很困难的。在实际的滤色修正中流程,由于色玻璃的品种有限,仪器不可能完全符合卢瑟条件,只能近似符合应用部分滤光片法可使x(λ)和z(λ)曲线的匹配积分误差小于2%,y(λ)曲线的匹配积分误差小于0.5%。PS版

光电积分式仪器不能精确测量出色源的三刺激值和色品坐标,但能准确测出两个色源的色差立体印刷,因而又被称为色差计。国外色差计从上世纪60年代开始大量生产,如日本美能达台式色差仪CR-400/410、色彩色差计CR-321。我国从上世纪80 年代初开始研制这类仪器,现在已使用比较好的有北京光学仪器厂生产的TG-PIIG全自动测色色差计,但和国外相比,我国研制的不同色差计的一致性不够。彩色亮度计也是一种光电积分式仪器原稿,通过望远镜系统对远距离目标进行颜色参数测量。

四、分光光度法

分光光度法又叫测色光谱光度计,它是通过样品反射(透射)的光能量与同样条件下标准反射(透射)的光能量进行比较得到样品在每个波长下的光谱反射率,然后利用CIE提供的标准观察者和标准光源按如下公式计算,从而得到三刺激值X、Y、Z,再由X、Y、Z 按CIEYxy原稿,CIELab等公式计算色品坐标x.y,CIELAB色度参数等。

它通过探测样品的光谱成分确定其颜色参数,不仅可以给出X、Y、Z的绝对值和色差值△E,还可以给出物体的分光反射率值,并可以画出物体色的分光反射率曲线。因此被广泛用于颜色的配色及色彩分析中去柯尼卡美能达,采用此类仪器可实现高准确度的色测量,可对光电积分测色仪器进行定标,建立色度标准等,故分光式仪器是颜色测量中的权威仪器。《中国印刷蓝皮书》五、目前颜色测量方法的局限性

目前有许多关于颜色测量方法的学术报告展会,但是很多人只是一再介绍色度计的优点,使用的方便,测量结果与人眼的一致性,而很少有学者谈及颜色测量仪器存在的缺陷。因此,本文最后简单的举例介绍一下目前使用的测量仪器的不足之处酒品包装,希望能引起有关人员的注意,以此来推动颜色测量的进一步发展。

1.工作原理上的缺陷

光电积分仪器测色准确度是与仪器符合卢瑟条件的程度有直接关系的,但是完全绝对符合是达不到的,因而测量的结果会产生误差。并且,不同型号、不同厂家的色度计在利用卢瑟条件模拟上会存在差别包装设计,因此可比性不强。

在分光光度法下,利用分光光度计的分光部分直接得出样品在每个波长下的r(λ),然后利用CIE提供的标准观察者x(λ)、y(λ)、z(λ)和标准光源S(λ)进行计算,从而得到X、Y、Z。在该方法下,由于须得到每个波长的反射率r(λ)的值。则该仪器的分光部分比较昂贵包装安全,操作、维修十分不便。不利于印刷质量的现场管理。此外,由于这类仪器主要以计算来进行,在某些光源(如D65)下算出的数据可能与实际观察到的数据不符.因为D65光源并未实际投入使用。字体

2.测量上的缺陷

①需考虑背景时的情形。

在对印刷品进行质量管理的过程中,有时不得不考虑背景对颜色的影响。然而,在考虑背景的情况下《中国印刷业年度报告》,目前还无法对颜色做出正确的标定。例如一个红样品分别放在绿背景下和白背景下,如果此时用分光光度计(或色度计)进行测量,应该得出在两个背景下的红样品的三刺激值相等,即颜色是互相匹配的。然而,实际上这完全是两个不同的颜色。因此网印,目前的颜色测量仪器还不能对背景色所产生的影响进行定量的估计,这妨碍了它的应用范围。

②对用UV油墨印刷的印刷品。

UV油墨目前在印刷业中也得到了广泛的使用,这种油墨的紫外部分丰富,用不同的光

源测出的结果差异很大,如何对这类颜色进行规范化的测量晒版,国际上还没有好的方法,问题在于没有理想的光源存在。CIE推荐D65可以作为对UV油墨印刷品的标定,因为该光源的紫外部分丰富。但由于该光源的光谱能量曲线十分复杂,难以用人工模拟。

③对于用微粒油墨印刷的印刷品。

微粒油墨目前也广泛地应用于包装印刷行业中,这类印刷品的最大特点是:当你从不同的角度去观看样品时CTP,得到不同的颜色。显然,对这类样品用目前的颜色测量仪器(只能从一个方向进行测量)进行标定是不客观的。最好的解决方法是在颜色测量仪器的所有方向上都安装光接收器,以便对来自各个方向上的所有颜色分别进行标定。这样仪器必须做得很庞大,价格也必然特别昂贵。测评

④对于透明介质的印刷品。

当光照射在该类印刷品上时,因光的透射以及反射的作用个性印品,会产生所谓的边缘损耗。此时对于该类样品进行正确的测量,需要特殊的照明与接收系统,即照明面积需远大于接收面积,但现有的颜色测量仪器并没有配备该类光学系统。

⑤在其它方面的不足。

颜色是评价印刷品质量的一个重要因素,但不是唯一因素。对印刷品进行客观的评价时媒体,还需要对其色泽感、手触感、纹理感、颜色深浅的均匀性等做出综合评价。但目前还没有这样具有智能性的颜色测量仪器出现。

3.与密度性测量仪器比较

近来,国内一些学者认为可以用色度仪器来完全取代密度计,这实际上是混淆了两类仪器应用上的不同性质。在密度计上也采用了三个滤色片来分别测量黄、品、青油墨的值,但这一数值与由色度计给出的数值有着完全不同的含义。密度的大小直接反映了从印刷品、胶片反射的光量多少,因而从该数值可以直接判断颜色的深浅、油墨的厚薄等等印刷设备,这对于指导生产管理人员正确地加网、确定墨量、曝光量、水墨平衡等是至关重要的。相反,任何颜色测量仪器还不能做到这一点。因此,可以说颜色测量仪器与密度计在印刷生产中的两个不同的阶段分别发挥重要的作用,互相不能取代。即密度计的作用贯穿于实际生产环节,而颜色测量仪器在印刷成品的管理上作用重大。印刷设备

通过上述的讨论可以发现洗涤用品包装,尽管颜色测量仪器得到了广泛的使用,发展迅速,但仍然存在很多缺陷,如果能对这些缺陷完全克服的话,那么它们在印刷领域中的应用将会有很大的飞跃科雷,前途不可限量。前途不可限量。AdobeAdobe

GPS跨河水准测量的理论与实践

GPS定位技术运用于跨河水准测量的理论与实践 目录 第一节:GPS定位技术运用于跨河水准测量的理论依据 (1) 第二节GPS定位技术运用于跨河水准测量的适用范围 (4) 第三节GPS定位技术运用于跨河水准测量的布点要求 (5) 第四节GPS技术运用于跨河水准测量中GPS观测及数据处理 (6) 第五节GPS定位技术运用于淮扬镇新建铁路项目跨河水准测量 (9) 第一节:GPS定位技术运用于跨河水准测量的理论依据 ⒈GPS大地高,水准测量的正常高,高程异常 GPS测量是以WGS-84椭球面为基准,在WGS-84地心坐标系中进行的,所提供的高程为相对于WGS-84椭球的大地高,遗憾的是相对于WGS-84椭球的GPS大地高是没有物理意义的,只是一个假定的高程系统,而实际工程应用中采用的是以似大地水准面为基准的正常高系统。所以,在实际应用中一般要将GPS大地高转化为目前我国使用的正常高(我国现有的高程资料基本属于黄海56高程系或85高程系)。进行GPS高程转换要考虑WGS-84椭球和本地参考椭球的差异以及大地水准面和似大地水准面相对本地参考椭球的高差,即大地水准面高和高程异常。大地高、正常高和高程异常之间有如下关系: H G=H N+ξ 其中,HG为大地高;HN为正常高;ξ为高程异常,

高程异常,即同一测站点以WGS-84为基准的GPS大地高与以似 大地水准面为基准的正常高之间的高程异常。其几何关系见下图 ⒉高程异常变化值,高程异常变化率 高程异常变化值:当测区中某一个点A既用GPS定位技术测得其 GPS大地高HGA,又用常规高程测量方法测得其正常高HNA,我们 就可以求出A点的高程异常值; ξA=H G A- H NA 同样,当测区中某一个点B既用GPS定位技术测得其GPS大地高 HGB,又用常规高程测量方法测得其正常高HNB,我们就可以求出B 点的高程异常值。 ξB=H G B- H NB 测区中AB两点的高程异常变化值即为 △ξAB=ξA-ξB=( H G A- H NA)-( H G B- H NB)高程异常变化率:当AB两点的水平距离为LAB时,那么AB两点 高程异常变化率即为:

最全测试方法

★测试方法 一、编写用例的方法 等价类划分、边界值、因果图、判定表、正交排列法、场景法、状态转换图法、测试大纲方法 ☆等价类划分 1.应用场合: 只要有数据输入的地方,就可以应用等价类划分。 从很多的数据中,选取具有代表性的数据进行测试,可以提高测试效率,节约测试成本。 2.核心概念: (1)有效等价类: 对程序有意义、合理的输入数据 程序接收有效等价类数据,应该正确计算、执行 (2)无效等价类: 对程序无意义、不合理的输入数据 程序接收无效等价类数据,应该给出错误提示,或者根本不让输入 3.步骤: (1)根据需求,划分等价类 (2)细化等价类 再次检查,等价类能不能细分,一般依据的不是书面上的需求,而是基于对计算机数据存储、 处理方式的深入理解。——对正数和负数一般需要单独测试 (3)建立等价类表(熟练后,直接做这一步) 个人认为这一步是多余的。 (4)编写测试用例 从每个等价类中至少选取一个数据进行测试即可 4.边界值法 说明:一般不会单独说到用边界值,等价类和边界值是小情侣,结合使用设计一套较为完善的测试用

例。 边界值选取规则:得到需求的边界值时,取大于,等于,小于三个值设计测试用例。 5.等价类法经验 1)在一条用例中,可以尽可能多的测试(覆盖)不同控件的1个有效等价类(包括有效边界值)—— 对于不同控件的有效等价类(有效边界值)可以组合着去测。 2)在一条用例中,只测试一个控件的一个无效等价类(包括无效边界值)——无效等价类先不要组 合(无效等价类先单独测试,避免屏蔽现象,最后可以考虑无效等价类的组合) ☆因果图法 1.应用场合 在一个界面中,有多个控件,要考虑控件之间的组合,不同控件的组合会产生不同的输出结果组合,为了弄清输入组合和输出组合之间的对应关系,可以使用因果图(控件之间的组合) 2.因果图的核心 (1)因——原因,输入动作 (2)果——结果,输出结果 找出原因(输入)和结果(输出),以及它们之间的对应关系 3.图形符号 (1)基本符号 表达输入(因)和输出(果)的对应关系 (2)约束条件 约束的是同一类型(全部是输入或者全部是输出) 4.步骤 1)找出所有的原因(输入)和找出所有的结果(输出) 2)找到各输入的限制关系和组合关系和找出各输出的限制关系和组合关系

色坐标的表示及测试方法

色坐标表示方法 色彩的坐标系即表色系,国际上色彩的定量表述有孟塞尔表色系统、CIE表色系统等,各系统之间在一定条件下可以转换。 1.孟塞尔表色系 孟塞尔表色系描述色彩的三个要素是,色相、彩度、明度。 色相:色彩的相貌,是区别色彩种类的名称;明度:色彩的明暗程度,即色彩的深浅差别,明度差别指同色的深浅变化,也指不同色相之间存在的明度差别;彩度:又称纯度或饱和度,指色彩的纯净程度。孟塞尔色彩体系中色相、明度、彩度间关系如图所示。 孟塞尔表色系认为,互补的色相对比可通过调整明度差别来取得谐调,即高明度基色可配其低明度的补色来做补偿。配色中较强的色要缩小面积,较弱的色要扩大面积。TFT-LCD的像素大小、色层厚度等光学相关物理参数都是固定的,所以在TFT-LCD中使用孟塞尔色彩体系还原五颜六色的物体在光学和材料上很难操作。 2.RGB表色系 三原色可以合成包括单色光在内的所有的颜色。不同的待配色光达到匹配时三原色光亮度不同,用颜色方程C=R(R)+G(G)+B(B)表示,其中(R)、(G)、(B)代表代表产生混合色的红、绿、蓝三原色的单位量,R、G、B分别为匹配待配色所需要的红、绿、蓝三原色的数量,称为三刺激值。把等能量的单色光,用三刺激值分别求出各自在RGB三维空间的坐标,得到CIE1931xy色度图。 3.XYZ表色系 CIE在RGB表色系基础上,改用三个假想的原色XYZ建立了一个新的色度系统,将它匹配等能光谱的三刺激值,定名为CIE1931标准色度观察者光谱三刺激值,简称XYZ表色系。经过变换,色度坐标均为正值,XY坐标进行归一化处理,可得到x-y色度坐标,又称CIExyY色度图,其中Y轴用于表示亮度。 4.CIExyY色度图 CIExyY色度图的建立给定量分析颜色创造了条件, 对CIE XYZ空间进行非线性变换空间处理,消掉XYZ的具体绝对值,把x-y坐标系迎合视觉

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,

用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪

铸件质量检测方法有哪些

铸件质量检测方法有哪些 内容摘要:铸件的检测主要包括尺寸检查、外观和表面的目视检查、化学成分分析和力学性能试验,对于要求比较重要或铸造工艺上容易产生问题的铸件,还需要进行无损检测工作,可用于球墨铸铁件质量检测的无损检测技术包括液体渗透检测、磁粉检测、涡流检测、射线检测、超声检测及振动检测等。 铸造网讯:铸件的检测主要包括尺寸检查、外观和表面的目视检查、化学成分分析和力学性能试验,对于要求比较重要或铸造工艺上容易产生问题的铸件,还需要进行无损检测工作,可用于球墨铸铁件质量检测的无损检测技术包括液体渗透检测、磁粉检测、涡流检测、射线检测、超声检测及振动检测等。 1 铸件表面及近表面缺陷的检测 1.1 液体渗透检测 液体渗透检测用来检查铸件表面上的各种开口缺陷,如表面裂纹、表面针孔等肉眼难以发现的缺陷。常用的渗透检测是着色检测,它是将具有高渗透能力的有色(一般为红色)液体(渗透剂)浸湿或喷洒在铸件表面上,渗透剂渗入到开口缺陷里面,快速擦去表面渗透液层,再将易干的显示剂(也叫显像剂)喷洒到铸件表面上,待将残留在开口缺陷中的渗透剂吸出来后,显示剂就被染色,从而可以反映出缺陷的形状、大小和分布情况。需要指出的是,渗透检测的精确度随被检材料表面粗糙度增加而降低,即表面越光检测效果越好,磨床磨光的表面检测精确度最高,甚至可以检测出晶间裂纹。除着色检测外,荧光渗透检测也是常用的液体渗透检测方法,它需要配置紫外光灯进行照射观察,检测灵敏度比着色检测高。 1.2 涡流检测 涡流检测适用于检查表面以下一般不大于6~7MM深的缺陷。涡流检测分放置式线圈法和穿过式线圈法2种。当试件被放在通有交变电流的线圈附近时,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈涡流状流动的电流(涡流),涡流会产生一与激励磁场方向相反的磁场,使线圈中的原磁场有部分减少,从而引起线圈阻抗的变化。如果铸件表面存在缺陷,则涡流的电特征会发生畸变,从而检测出缺陷的存在,涡流检测的主要缺点是不能直观显示探测出的缺陷大小和形状,一般只能确定出缺陷所在表面位置和深度,另外它对工件表面上小的开口缺陷的检出灵敏度不如渗透检测。

跨河精密水准测量

跨河精密水准测量

§5.6 跨河精密水准测量 水准规范规定,当一、二等水准路线跨越江河、峡谷、湖泊、洼地等障碍物的视线长度在l00m以内时,可用一般观测方法进行施测,但在测站上应变换一次仪器高度,观测两次的高差之差应不超过1.5mm,取用两次观测的中数。若视线长度超过100m时,则应根据视线长度和仪器设备等情况,选用特殊的方法进行观测。 5.6.1 跨河水准测量的特点及跨越场地的布设 由于跨越障碍物的视线较长,使观测时前后视线不能相等,仪器i角误差的影响随着视线长度的增长而增大,致使由短视线后视减长视线前视读数所得高差中包 含有较大的i角误差影响;跨 3 图5-24

3 越障碍的视线大大加长,必然使大气垂直折光的影响增大,这种影响随着地面覆盖物、水面情况和视线离水面的高度等因素的不同而不同,同时还随空气温度的变化而变化,因而也就随着时间而变化;视线长度的增大,水准标尺上的分划,在望远镜中观察就显得非常细小,甚至无法辨认,因而也就难以精确照准水准标尺分划和无法读数。 跨河水准测量场地如按图5-24布设,水准路线由北向南推进,必须跨过一条河流。此时可在河的两岸选定立尺点21b b 、和测站21I I 、。21I I 、同时又是立尺点。选点时使11I b 与2 2I b 相等。 观测时,仪器先在1I 处后视1 b ,在水准标尺上读数为1B ,再前视2I (此时2 I 点上竖立水准标尺),在水准标尺上读数为1 A 。设水准仪具有某一定值的i 角误差,其值为正,由此对读数1B 的误差影响为1?,对于读数1A 的误差影响为2?, 则由1I 站所得观测结果,可按下式计算2 b 相对于1 b 的正确高差 2221)()(2111b I b b h A B h +?--?-='

漆膜颜色标准、表示方法及测量

漆膜颜色标准、表示方法及测量 1 颜色的基本概念 颜色是大脑经过眼和视觉神经所刺激的感觉。这种感觉是入射光照到观察物表面所反射出的光线产生电脉冲的结果,即颜色是物体性质和光源性质共同作用的结果。 物体的表面性质不同,一束入射光照射到表面上会有不同的结果。入射光可能部分或全部被反射、部分或全部透射、部分或全部被吸收。如白色表面能反射所有波长的入射光,黑色表面能吸收所有波长的入射光,绿色表面只能反射入射光的绿色射线部分,而吸收其他部分射线。 同一有色物体受到不同光源照射,会出现不同的颜色。正常的人眼能分辨出100多万种不同的颜色,很容易区分相近的颜色,而色盲患者对某些颜色不太敏感。 影响正常个眼对物体颜色的判断的因素有:物体本身的性质、光源种类和明暗、物体大小及环境背景、眼睛对环境的适应性、观察角度等。 2 有关漆膜颜色的标准 GB/T3181-1995 漆膜颜色标准 GB/T6749-1997 漆膜颜色表示方法 GB/T9761-1988 色漆和清漆色漆的目视比色 GB/T11186.1-1989 漆膜颜色测量方法第一部分原理 GB/T11186.2-1989 漆膜颜色测量方法第二部分颜色测量 GB/T11186.3-1989 漆膜颜色测量方法第三部分色差计算 GSB A2603-1994 中国颜色体系样册 GSB G51001-1994 漆膜颜色标准样卡 3 漆膜颜色表示方法及测量 3.1 色调法 GB/T3181-1995规定了用色调表示漆膜颜色的方法,应结合GSB G51001-1994《漆膜颜色标准样卡》一起使用。漆膜颜色以编号加名称表示。编号由一个或两个英文字母和两位阿拉伯数字组成。英文字母表示色调,阿拉伯数字表示同一色调的不同颜色。颜色名称采用习惯的名称,如大红、中绿、深黄、浅灰等。 色调由5种主色调红(R)、黄(Y)、蓝(B)、紫(P)、绿(G),以及这5种相邻色调黄红(YR)、绿黄(GY)、蓝绿(BG)、紫蓝(PB)、红紫(RP)组成。每种色调范围又包括若干种颜色,如红色色调包括5种颜色:R01铁红、R02朱红、R03大红、R04紫红、R05桔红。 GB/T3181-1995包括了目前常用的主要色漆的83种颜色。GSB G51001-1994规定了该83种颜色的标准样卡。其分布情况见表1。 下,或在比色箱人造日光条件下进行比色。待测试样与标准样卡并排放置。相应的边互相接触或重叠,眼睛距试样500mm观察。为提高比色精度,试样与标准样卡位置应互换。光泽差别大的漆膜应先在自然日光下观察,再在比色箱中进行观察,使照射光0°角入射,人眼以45°角观察。有争议时,应在符合国际照明委员会(CIE)标准光源D65(相关色温为6504K的平均昼光)的人造日光条件下进行比色仲裁。 3.2 CIE三色色标系统数据法 GB/T6749-1997规定的这种方法是以国际照明委员会(CIE)规定的用仪器测得的三色色标系统数据来表示漆膜颜色。颜色坐标由三个相互垂直的矢量值明确表示出来。这种方法不适用于表示清漆和荧光漆膜的颜色。 漆膜颜色可用下列三种CIE三色色标系统数据之一来表示:

跨河高程传递 精密三角高程测量代替一二等水准测量方法

跨河高程传递精密三角高程测量代替一二等水准测量方法 [摘要]跨河高程传递的测量技术有很多,本文主要简述了精密三角高程的方法来代替一二等水准测量方法的过程,国家一、二等水准测量规范》(CB/r12897-2007)规定了精密三角高程法跨河水准测量的作业方法。此方法应用于长距离三角高程多个项目大桥高程控制网。探讨了一下其中几个比较关键的问题,三角高程测量的误差来源及精度,得出了减弱各项误差从而提高精度的一些相关结论。 [关键词]跨河高程传递精密三角高程二等水准测量 目前高程测量方法一般分为几何水准测量、GPS水准测量和三角高程测量三大类。用传统水准的方法测定点与点之间的高差,所得到的地面点高程精度较高,普遍用于建立国家高程控制点。 跨河三角高程测量以它的测量时间、生产效率优于几何水准测量得以广泛应用,尤其在山区、水域作业,几何水准测量困难,精密三角高程测量发挥了很大优势,解决了几何水准测量难以解决的高程传递问题。随着科技的发展,例如莱卡TC2002、TCA2003测距测角的精度大大提高。通过一定的测量方法又可以减弱或者消除三角高程测量中各种误差源的影响,从而达到高等级水准测量的精度。 1具体跨河精密三角高程作业方法 现行《国家一、二等水准测量规范》规定,精密三角高程法跨河水准测量作业应布设成大地四边形,跨海测量既是通过该方法对近海海岛进行高程传递。 如图l所示。该图形由四条跨河边构成三个独立的闭合环。具有检核条件较多的优点。 ①水准仪测定本岸站点间高差hAB和hCD。②用全站仪测量测站点问距离D-AC、D-AD、D-BC、D-BD。③垂直角观测程序:(a)A、C两点设全站仪,B、D两点设标尺,首先观测本岸近标标定仪器高,测定bB,bD然后同步观测对岸远标尺,测定aAD、aCB;(b)A点仪器不动,C点移到D点,同步观测对岸远标尺,测定aAC、aDB;(c)D点仪器不动,同步观测对岸远标尺,测定aBC、aDA;(d)B点仪器不动,观测本岸近标尺,测定bA,再将D点仪器移回到C 点,同步观测对岸远标尺,测定aBD、aCA,最后,c点仪器观测本岸近标尺。至此,第一仪器位置的观测结束,2台仪器共完成4个单测回的观测量。④观测员、仪器、标尺相互调岸,按上述观测程序完成第二时段仪器位置的观测。 每条边均按单向观测进行高差计算,公式为: 式中:D为跨河点问的水平距离;Iv为垂直角;i为仪器高;v为照准高度.k

跨河测量

当水准路线需要跨越较宽的河流或山谷时,因跨河视线较长,超过了规定的长度,使水准仪i角的误差、大气折光和地球曲率误差均增大,且读尺困难。所以必须采用特殊的观测方法,这就是跨河水准测量方法。 图8-3 进行跨河水准测量,首先是要选择好跨河地点,如选在江河最窄处,视线避开草丛沙滩的上方,仪器站应选在开阔通风处,跨河视线离水面2~3m以上。跨河场地仪器站和立尺点的位置见图8-3。当使用两台水准仪作对向观测时,宜布置成图中的(a)或(b)的形式。图中I1、I2为仪器站,b1、b2为立尺点,要求跨河视线尽量相等,岸上视线I1b1、I2b2不少于10m并相等。当用一台水准仪观测时,宜采用图中(c)的形式,此时图中I1、I2既是仪器站又是立尺点。这种布置除了要观测跨河高差和外,还应观测同岸点高差和,以便求出b1b2的高差。 跨河水准测量,当跨河视线在500m以下时,通常用精密水准仪,以光学测微法进行观测。由于跨河视线较长,须要特制一觇板供照准和读数之用。觇板构造如图8-4。觇板上的照准标志用黑色绘成矩形,其宽度为视线长的1/2.5万,长度为宽度的5倍。觇板中央开一小口,并在中央安装一水平指标线,指标线应平分矩形标志的宽度。 用光学测微法的观测方法如下: 1.观测本岸近标尺。直接照准标尺分划线,用光学测微器读数两次。 2. 图8-4 观测对岸标尺。照准标尺后使气泡精密符合,测微器读旋到50。指挥对岸持尺者将觇板沿标尺上下移动,使觇板指标线置于水平视线附近,并精确对准标尺上的基本分划线,记下标尺读数,每次读数差不大于0.1S(mm),S为视线长(m),如此构成一组观测。然后移动觇板重新对准标尺分划级,按同样顺序进行第二组观测。 以上1、2两步操作,称一测回的上半测回。 3.上半测回完成后,立即将仪器迁至对岸,并互换两岸标尺。然后进行下半测回观测。下半测回应先测远尺再测近尺,观测每一标尺的操作与上半测回相同。 由上、下半测回组成一测回。

模拟法测静电场示范实验报告

实验七:模拟法测静电场 示范实验报告 【实验目的】 1. 理解模拟实验法的适用条件。 2. 对于给定的电极,能用模拟法求出其电场分布。 3. 加深对电场强度和电势概念的理解。 【实验仪器】 YJ-MJ-Ⅲ型激光描点模拟静电场描绘仪、白纸、夹子 【实验原理】 直接测量静电场,是非常困难的,因为: ① 静电场是没有电流的,测量静电场中各点的电势需要静电式仪表。而教学实验室只有磁电式仪表。任何磁电式电表都需要有电流通过才能偏转,所以想利用磁电式电压表直接测定静电场中各点的电势,是不可能的。 ② 任何磁电式电表的内阻都远小于空气或真空的电阻,若在静电场中引入电表,势必使电场发生严重畸变;同时,电表或其它探测器置于电场中,要引起静电感应,会使场源电荷的分布发生变化。 人们在实践中发现:两个物理量之间,只要具有相同的物理模型或相同的数学表达式,就可以用一个物理量去定量或定性地去模拟另一个物理量,这种测量方法称为模拟法。本实验用稳恒电流场模拟静电场进行测量。 从电磁学理论知道,稳恒电流场与静电场满足相同的场方程: 0E dl ?=? (静电场的环路定理) , 0E dS ?=?? (闭合面内无电荷时静电场的高斯定理); 0j dl ?=? (由?=?0l d E ,得?=?0l d E σ,又E j σ=,故?=?0l d j ) , 0j ds ?=?? (电流场的稳恒条件); 如果二者有相同的边界条件,则场分布必定相同,故可用稳恒电流场模拟静电场。 1.长直同轴圆柱面电极间的电场分布 在真空中有一个半径为r 0的长圆柱导体A 和一个内半径为R0的长圆筒导体B ,其中心轴重合且均匀带电,设A 、B 各带等量异种电荷,沿轴线每单位长度上内外柱面各带电荷σ+和

颜色检验方法

一铂钴、赛波特。加德纳、1500、酸洗、熔融色 测量各类有机溶液或油品的铂钴指数、赛波特指数、1500指数、加德纳指数、酸洗色 度等等指标。涉及标准主要有两类,人眼观察法(目视法)和仪器法,前者存在误差较大,后者稳定,但仪器碱有很大差异,需要了解差异并筛选自己的仪器。 1.常用标准: 1)铂钴:目视法ASTM D1209,GB3143,仪器法ASTM D5386,GB3143 2)赛波特:目视法:SH/T0168、GB/T6540、GBT3555,仪器法ASTM D156、1500、6045等 3)加德纳:GBT22295、ASTM D1544/6166 4)酸洗:ASTM D848、GB2012 5)ASTM颜色 铂钴,0-500色号 赛波特,-16-30 常用黄色指数表征方法 在视觉上,样品的黄度是同灼烧、沾染,光照降解、化学品的暴露和加工相关联,因此黄色指数(yellowness index , YI))主要用来测定这类现象的黄化程度。 常用的黄色程度表征指数有YI E313、YI D1925、Platinum-Cobalt、APHA、Hazen、Saybolt、Gardner、ASTM色度。适用对象即可为清澈、近无色的液体或固体(透射模式),又可为近白色、不透明固体(反射模式). 黄度指数简介 YI E313 是由ASTM E313推荐的黄度指数,适用于D65和C标准光源(也称标准照 明体)。2006年采用的计算式为: 100(CxX-CzZ)/Y 其中X、Y、Z分别为CIE三刺激值,Cx、Cz为系数(其值随标准光源,标准观察者角度而变,参见table 1). YI E313 适用于主波长在570-580nm的样品,或Munsell色调约在2.5GY-2.5Y范围内。YI E313可用于比较相同材质和外观的样品,比如样品的光泽、纹理、厚度(半透明或透明 样品)、透光性应较接近。 YI D1925是由ASTM D1925(TestMethod for Yellowness Index of Plastics)推荐的黄度指数,1962年采纳的计算公式为: 100(1.28X-1.06Z)/Y 该计算式只用于C/20,并于1995年退出。 Platinum-Cobalt(Pt-Co,铂-钴)色度、APHA色度、Hazen色度是相同颜色标尺的三 个名称,三者均以铂钴标准溶液为参比,但三者的使用范围稍有不同。一般来说,APHA色度用于废水行业进行水质分级;Hazen用于描述说明液态产品的色度(单位:HU)Pt-Co适用于捎带黄色,接近无色、清澈无雾度、光吸收特性近似铂钴标准溶液的液态样品,它表征的是液体样品的黄度。

色度的测定方法

色度的测定方法 1 主题内容与适用范围 本标准规定了两种测定颜色的方法。本标准测定经15min澄清后样品的颜色。pH值对颜色有较大影响,在测定颜色时应同时测定pH值。 ⒈1 铂钴比色法参照采用国际标准ISO 7887—1985《水质颜色的检验和测定》。铂钴比色法适用于清洁水、轻度污染并略带黄色调的水,比较清洁的地面水、地下水和饮用水等。 ⒈2 稀释倍数法适用于污染较严重的地面水和工业废水。 两种方法应独立使用,一般没有可比性。 样品和标准溶液的颜色色调不一致时,本标准不适用。 色度 2 定义 本标准定义取自国际照明委员会第17号出版物(CIE publication No.17),采用下述几条。 ⒉1 水的颜色 改变透射可见光光谱组成的光学性质。 ⒉2 水的表观颜色 由溶解物质及不溶解性悬浮物产生的颜色,用未经过滤或离心分离的原始样品测定。 ⒉3 水的真实颜色 仅由溶解物质产生的颜色。用经0.45μm滤膜过滤器过滤的样品测定。 ⒉4 色度的标准单位,度:在每升溶液中含有2mg六水合氯化钴(Ⅳ)和1mg铂[以六氯铂(Ⅳ)酸的形式]时产生的颜色为1度。 3 铂钴比色法 ⒊1 原理 用氯铂酸钾和氯化钴配制颜色标准溶液,与被测样品进行目视比较,以测定样品的颜色强度,即色度。 样品的色度以与之相当的色度标准溶液(3.2.3)的度值表示。

注:此标准单位导出的标准度有时称为“Hazen际”或“Pt-Co标”[GB 3143《液体化学产品颜色测定法(Hazcn单位——铂-钴色号)》]、或毫克铂/升。 ⒊2 试剂 除另有说明外,测定中仅使用光学纯水(3.2.1)及分析纯试剂。 ⒊2.1 光学纯水:将0.2μm。滤膜(细菌学研究中所采用的)在100mL 蒸馏水或去离子水中浸泡1h,用它过滤250mL蒸馏水或去离子水,弃去最初的250mL,以后用这种水配制全部际准溶液并作为稀释水。 ⒊2.2 色度标准储备液,相当于500度:将1.245±0.001g六氯铂(Ⅳ)酸钾(K2PtC16)及1.000±0.001g六水氯化钴(Ⅳ)(CoCl2·6H2O)溶于约500mL水(4.1)中,加100±1mL盐酸(p=1.18g/mL)并在1000mL的容量瓶内用水稀释下标线。 将溶液放在密封的玻璃瓶中,存放在暗处,温度不能超过30℃。个溶液至少能稳定6个月。 ⒊2.3 色度标准溶液:在一组250mL的容量瓶中,用移液管分别加入 2.50,5.00,7.50,10.00,12.50,15.00,17.50,20.00,30.00及35.00mL储备液( 3.2.2),并用水(3.2.1)稀释至标线。溶液色度分别为: 5,10,15,20,25,30,35,40,50,60和70度。 溶液放在严密益好的玻璃瓶中,存放于暗处。温度不能超过30℃。这些溶液至少可稳定1个月。 ⒊3 仪器 ⒊3.1 常用实验室仪器和以下仪器。 ⒊3.2 具塞比色管,50mL。规格一致,光学透明玻璃底部无阴影。 ⒊3.3 pH计,精度±0.1pH单位。 ⒊3.4 容量瓶,250mL。 ⒊4 采样和样品 所用与样品接触的玻璃器皿都要用盐酸或表面活性剂溶液加以清洗,最后用蒸馏水或去离了水洗净、沥干。 将样品采集在容积至少为1L的玻璃瓶内,在采样后要尽早进行测定。如果必须贮存,则将样品贮于暗处。在有些情况下还要避免样品与空气接触。同时要避免温度的变化。 ⒊5 步骤 ⒊5.1 试料 将样品倒入250mL(或更大)量筒中,静置15min,倾取上层液体作为试料进行测定。 ⒊5.2 测定 将一组具塞比色管(3.3.2)用色度标准溶液(3.2.3)充至标线。将另一组具塞比色管用试料(3.5.1)充至标线。 将具塞比色管放在白色表面上,比色管与该表面应呈合适的角度,使光线被反射自具塞比色管底部向上通过液柱。 垂直向下观察液柱,找出与试料色度最接近的标准溶液。 如色度≥70度,用光学纯水(3.2.1)将试料适当稀释后,使色度落入标准溶液范围之中再行测定。 另取试料测定pH值。

眼镜质量检测方法

情境一学习 眼镜质量检测 任务一、用顶焦度计测量眼镜的顶焦度和轴位任务二、光学中心水平距离和垂直互差的测量 任务三、渐进多焦点眼镜的质量检测 任务四、眼镜片质量检测 任务五、配装眼镜棱镜度和棱镜底向的检测任务六、太阳镜的质量标准及测试方法 任务七、眼镜装配质量的要求和检查 任务八、配装眼镜的外观质量和整形要求 任务九、配装眼镜的检测 任务十、眼镜架检测 任务十一、无框眼镜外观质量检查 任务十二、瞳距尺、瞳距仪的使用 任务十三、镀膜镜片的膜层质量要求

任务一、用顶焦度计测量眼镜的顶焦度和轴位 一、学习目标 了解顶焦度计的工作原理,掌握顶焦度计测量眼镜镜片顶焦度和轴位的操作步骤 二、学习内容 (一)顶焦度计结构和工作原理 目前普遍使用的顶焦度计大致有三种:直视式顶焦度计、投影式顶焦度计及电脑焦度计。下面以直视式顶焦度计JDY-1型为例进行介绍。 图1-1-1为顶焦度计的光学系统图。 1,光源;2,滤色片;3,移动分划板;4,准直物镜;5,置片座;6,被测镜片;7,物镜;8,固定分划板;9,目镜

顶焦度计由准直系统和望远系统组成,如图1-1-1所示。光源1通过滤色镜2照明准直分划板3,准直分划板3可以前后移动,故又称移动分划板。望远系统分划板8是固定的。 在未放置被测眼镜情况下,移动分划板3位于准直系统物镜4的焦平面上,此时,通过望远系统目镜9,可以看到移动分划板清晰成像在固定分划板8上。这一位置即为顶焦度计的零位。 当在准直物镜前放置被测眼镜后,通过目镜9看到移动分划板像变得模糊,转动顶焦度测量手轮,使移动分划板前后移动,直到移动分划板能清晰成像在固定分划板上为止,移动分划板的移动量,即对应被测眼镜的顶焦度。 (二)测量前的准备 1.接通电源,灯泡亮。 2.调整望远系统目镜视度:转动目镜视度圈,能清晰看到望远系统固定分划板为止。 3.核对零位:转动顶焦度测量手轮,通过目镜观察到移动分划板清晰成像在固定分划板上,此时,顶焦度测量手轮的读数应为零。 如图1-1-2所示。

颜色测量方法及其局限性

phi;(λ)全印展,对于光源的测量,实际上 是要测定光源的相对光谱功率分布P(λ);对于物体色的测量,则是测定物体的光谱光度特性,如反射物体的光谱辐亮度因数β(λ)和光谱反射比P(λ)、透射物体的光谱透射比τ(λ)等。在测得了色刺激函数φ(λ)之后,就可以根据色度学的三个基本方程求出被测颜色的CIE三刺激值X、Y、Z区域报道,将所选择的标准照明体的Y值调整到100。 颜色测量包括光源颜色的测量与物体色的测量两大类。物体色测量又分为荧光物体测量和非荧光物体测量。在实际生产和日常生活中,涉及到大量的非荧光物体测色颜色测量的方法分为目视测色和仪器测色两大类。其中,仪器测色又包括密度法、光电积分法和分光光度法。 一、目视法 目视法是一种传统的颜色测量方法。它是一种完全主观评价方法,同时也是最简单的一种方法。它将印刷品与标准样张直接进行人为比对,评价印刷品与标准样张呈色差异印刷商巡礼,同时还借助放大镜来细微地观察各色网点的形状和叠印状况,对网点的调值作定性评估。其实质是一种目视光度测定法,原理是利用加色混合定律,将各个分量的未知色加在一起,以描述所得的未知色。虽然对于色彩评价来说最可靠的方式是借助人眼出版,而且简单灵活,但是由于观测人员的经验和心理、生理因素的影响,使得该方法可变因素太多,并且无法进行定量描述,从而影响到评估的准确性和可靠性。故障分析与排除 二、密度检测法 密度测量实际上并不直接测量密度值承印材料,只是测量反射光量和入射光量的大小,其中假设了反射光和密度计提供的光之间的差别是光的吸收量,也即印刷表面油墨层的吸收光量大小。密度测量考虑的是整个反射光谱的总体光量特性,实质上是评价印刷表面各色的亮度因数,而与色调无关。在彩色印刷中DTP,印刷油墨呈色实际上就是,油墨印在反射率较高的白纸上,从照射其上的光线中选择性地吸收了一部分波长的光,而反射剩余的光,此时密度反映了油墨对光波的吸收特性。习惯上所指的“彩色密度”是指测量时北人集团,通过红、绿、蓝三种滤色片分别来测量黄、品、青油墨的密度。密度只是物理吸收特性的度量,只表示黑或灰的程度。从这个意义上说彩色密度测量也只是黑度的测量,是同一种油墨饱和度的相对值的反映。密度测量法中使用的密度计有透射和反射两种,透射密度计测量透过胶片的光量或透过率,反射密度计测量从测试表面反射的光量或反射率利通,其基本工作原理如图一所示。由于印刷品上油墨膜层由湿到干过程中反射光的强弱是不一样的,故测定密度有一定误差,而加有偏振滤光镜的密度计可以克服墨膜的干湿造成的密度变化。彩色反射密度计已经成为印刷车间不可或缺的工具,它直观地反映了C、M、Y、K四色印刷的密度、网点百分比、油墨叠印率等,被广泛用于颜色和墨层厚度控制当中。当纳利 三、光电积分法 长期以来数字印刷机,密度法在颜色测量中占有很高的地位,但是随着CIE1976L*,a*,b*的应用逐渐普遍,并已遍及从印前到印刷的整个工作流程展会,以及密度测量已不足以满足印刷或其它行业的需要,人们越来越意识到色度的重要性,并且现代色度学的迅速发展也为光电积分仪器客观地评价颜色奠定了基础。 光电积分法是20世纪60年代仪器测色中采用的常见方法。它不是测量某一波长的色刺激值,而是在整个测量波长区间内,通过积分测量测得样品的三刺激值X、Y、Z糊盒,再由此计算出样品的色品坐标等参数。通常用滤光片覆盖在探测器上,把探测器的相对光谱灵敏度S(λ)修正成CIE推荐的光谱三刺激值x(λ)、y(λ)、z(λ)。用这样的三个光探测器接收光刺激时,就能用一次积分测量出样品的三刺激值X、Y、Z。滤光片需满足卢瑟条件,以精确匹配光探测器。卢瑟条件如下:

最新 跨河水准测量方法及其平差处理方法-精品

跨河水准测量方法及其平差处理方法 1 概述 《国家一、二等水准测量规范》(GB/T12897-2006)规定:当一、二等水准路线跨越江河、峡谷、湖泊、洼地等障碍物的视线长度在 l00m以内时,可用一般观测方法进行施测,但在测站上应变换一次仪器高度,观测两次的高差之差应不超过 1.5mm,取用两次观测的中数。若视线长度超过 100m 时,则应根据视线长度和仪器设备等情况,选用特殊的方法进行观测。 某一等水准网跨河段长度约为 530 米为保证该工程顺利实施,选用合适的跨河水准测量方法是的关键工作之一,本工程实例,采用了三角高程测量方法,精度要求达到国家一等水准准测量精度,仪器采用徕卡 TS30(测角精度0.5“,测距精度 0.6mm+1ppm)。 2 观测网形及场地选择 2.1 观测网形布设 为提高跨河水准精度,减小气温、气压、大气折光的影响,测点C1、C2、D1、D2 近似在同一水平面上,且保证四个测点成一近似矩形。跨河水准示意图如图 1. 2.2 布设场地遵循原则 2.2.1 观测墩建在测线处于河段较狭窄处,保证其同意水平面上。跨河视线不得通过草丛,干丘、沙滩的上方,且保证避免正对日照方向。 2.2.3 两岸由仪器至水边的一段河岸,其距离应近于相等,其地貌、土质、植被等也应相似,仪器位置应选在开阔、通风之处,不得靠近墙壁及土、石、砖堆等。 3 施测方法 在 D1 架 TS30,分别照准 C1、C2、D2,得到一测回观测高差:(S为斜距,δ为竖角),两点之间的高差为S×sinδ+i-(li 为仪器高,l 为目标高),C1 点的高程为Hc1=HD1+S×sinδ+i-l,C2、D2 的高程同理可得。利用以上三点的高程求 C1 D2、C2 D2 之间的高差。HD1,i 均一样,相互抵消,若目标高相等则高差等于S×sinδ的差值。为了使目标高也相互抵消,可以先全部采用使用同一型号的棱镜及觇标,这样目标高可看成一致,但世上没有完全相同的两个物体,为消除不同的目标高对观测高差的影响,把棱镜及觇标分成 A、B 两组,A 组总与仪器在一起,B 组总是在仪器的对岸,这样往返测求平均高差则影响抵消。

一二等水准测量规范

城市轨道交通工程~地面高程控制测量一、二等水准测量规范4.1 一般规定 4.1.1 城市轨道交通工程高程测量应采用统一的高程系统,并应与现有城市高程系统相一致。 4.1.2 城市轨道交通工程高程控制网为水准网,应分两个等级布设:一等水准网是与城市二等水准网精度一致的水准网,二等水准网是加密的水准网。现有城市一、二等水准点间距小于4km时,应一次布设城市轨道交通工程二等水准网。 4.1.3 水准网应沿线路附近线路布设成附合线路、闭合线路或节点网。二等水准点间距平均800m,联测城市一、二等水准点的总数不应少于3个,宜均匀分布。 4.1.4 水准网测量的主要技术要求应符合表4.1.4的规定。 表4.1.4 水准网测量的主要技术要求 2 采用数字水准仪测量的技术要求与同等级的光学水准仪测量技术要求相同。 4.1.5 水准点应选在施工影响的变形区域以外稳固、便于寻找、保存和引测的地方,宜每隔3km埋设1个深桩或基岩水准点。车站、竖井及车辆段附近水准点布设数量不应少于2个。 4.1.6 当水准路线跨越江、河、湖、塘且视线长度小于100m时,可采用一般水准测量方法进行观测;视线长度大于100m时,应进行跨河水准测量。跨河水准测量可采用光学测微法、倾斜螺旋法、经纬仪倾角法和光电测距三角高程法等,其技术要求应符合现行国家标准《国家一、二等水准测量规范》GB12897的相关规定。

4.1.7 水准点标石和标志应按本规范附录B中的图B.0.1、图B.0.2、图B.0.3和图B.0.4的形式和规格埋设适宜的水准标石。水准点也可以利用精密导线点标石,墙上水准点应选在稳固的永久性建筑上。 4.1.8 水准点标石埋设结束后,应绘制点之记,并办理水准点委托保管书。 4.1.9 对已建成的水准网应定期进行复测,第一次复测应在开工前进行,之后应一年复测一次,且应根据点位稳定情况适当调整复测频次。复测精度不应低于原测精度,高程较差不应大于√2倍高程中误差。当水准点标石被破坏时,应重新埋设,复测时统一观测。 4.2 水准网测量 4.2.1 作业前,应对所使用的水准测量仪器和标尺进行常规检查与校正。水准仪i角检查与校正。水准仪i角检查,在作业第一周内应每天一次,稳定后可半月一次。一等水准测量仪器i角应小于或等于20“。 4.2.2 一等及二等水准网测量的观测方法应符合下列规定: 1 往测奇数站上:后—前—前—后 偶数站上:前—后—后—前 2反测奇数站上:前—后—后—前 偶数站上:后—前—前—后 3 使用数字水准仪,应将有关参数、限差预先输入并选择自动观测模式,水准路线应避开强电磁场的干扰。 4 一等水准每一测段的往测和返测,宜分别在上午、下午进行,也可以夜间观测。 5 由往测转向返测时,两根水准尺必须互换位置,并应重新整置仪器。 4..2. 3 水准测量观测的视线长度、视距差、视线高度应符合表4.2.3的规定。 表4.2.3 水准测量观测的视线长度、视距差、视线高度的要求(m)

跨河水准测量方法与精度分析

毕业设计 [论文] 题目:跨河水准测量方法与精度分析 学院:测绘工程学院 专业:测绘工程 姓名:黄玉鹏 学号:061411122 指导老师:朱淑丽 完成时间:2015.05.24

摘要 工程建设时水准线路布设过程中难免会遇到江河、宽沟、湖泊、山谷等障碍物,有时候根据测量任务的需要,必须通过这些障碍物进行精密水准测量。这个时候,通常的水准测量方法无法实现,因此需要采用特殊的方法和设备在保证一定测量精度和施测可行性的前提下,来完成障碍物的跨越测量。跨河水准测量的基本方法包括直接法几何水准测量、光学测微法水准测量、倾斜螺旋法水准测量、经纬仪倾角法水准测量、测距三角高程法水准测量、GNSS水准测量等方法。本文对这些方法分别进行了论述和精度分析。文章最后采用重庆朝天门观测数据,以表格的形式对整个测距三角高程法的计算过程进行了分析。 关键词:经纬仪倾角法,倾斜螺旋法,光学测微法,测距三角高程法,GNSS高程测量,精度分析

ABSTRACT When construction standard line layout process will inevitably encounter rivers, wide ditch, lakes, valleys and other obstacles, sometimes necessary measurement tasks must be precise leveling through these obstacles. This time, the usual method of leveling is not possible, and therefore require special methods and equipment at guaranteed measurement accuracy and test the feasibility of applying the prerequisite to complete the obstacle across measurements. River - crossing Leveling basic methods including direct geometric leveling method, optical micrometer method leveling, tilt leveling screw method, dip method theodolite leveling, EDM trigonometric leveling method leveling, GNSS leveling and other methods. In this paper, these methods were discussed and precision analysis. Finally, using the Chao tian men observation data in tabular form for the calculation of the entire EDM trigonometric leveling method were analyzed. Key words: Theodolite dip method, tilt spiral, optical micrometer law, EDM trigonometric leveling method, GNSS height measurement, precision analysis

相关主题