搜档网
当前位置:搜档网 › 呼出气体酒精含量探测器测量结果的不确定度评定

呼出气体酒精含量探测器测量结果的不确定度评定

呼出气体酒精含量探测器测量结果的不确定度评定
呼出气体酒精含量探测器测量结果的不确定度评定

维普资讯 https://www.sodocs.net/doc/904587865.html,

长度不确定度评定示例

用外径千分尺检验某主轴直径φ700 -0.019mm 的 测量不确定度评定报告 1.概述 1.1 测量依据:产品图纸(或生产工艺)编号□□□□# 1.2 环境条件:温度 (20±10)oC ; 相对湿度<70% RH 1.3 测量设备:一级50~75mm 外径千分尺,示值误差为±4μm。 1.4 被测对象:主轴的直径φ700-0.019mm ;材料为球墨铸铁α1= 10.4×10-6/℃ 1.5 测量方法:用外径千分尺直接测量 2.数学模型: 由于主轴直径值可在外径千分尺上直接读得,故: L=L S -L S (δα·Δt +αs ·δt) L — 被测主轴的直径。 L S — 外径千分尺对主轴直径的测量值。 δα—被测主轴线膨胀系数与外径千分尺线膨胀系数之差。 Δt — 被测主轴温度对参考温度20℃的偏差,本例为±10℃。 αs — 外径千分尺线膨胀系数,本例为11.5×10-6/℃。 δt — 被测主轴温度与外径千分尺温度之差,本例为±1℃。 3.灵敏系数 显然该数学模型是透明箱模型,必须逐一计算灵敏系数: 1)1(≈-?-=??=t s t S Ls f C δαδαL ; t S s L s f C δαα-=??==-70×1㎜℃=-7×104μm ℃; δα S t t L f C -=???=?=-70×1×10-6㎜/℃=-0.07μm/℃ δα δα??=/f C =-Ls Δt=-70×10㎜℃=-7×105μm ℃ t f C t δδ??=/ =-Ls αs=-70×11.5×10 -6 ㎜/℃=-0.805μm /℃ 4.计算各分量标准不确定度 4.1外径千分尺示值误差引入的分量u(L S ) 根据外径千分尺检定规程,示值误差e=±4μm , 在半宽为4μm 区间内,以等概率分布(均匀分布),则:u (L S ) =4/3=2.31μm u(L S )=|C LS |·u (L S )=1×2.31=2.31μm , 其相对不确定度 () () =?S S L u L u 0.1=1/10 , 自由度υ(Ls)=50 4.2被测主轴线膨胀系数不准确引入的分量u(αS ) 由于被测主轴线膨胀系数α1= 10.4×10-6/℃是给定的,是一个常数, 故 u(αS )= 0 , 自由度υ(αS )= ∞ 4.3测量环境偏离标准温度20℃引入的分量u(Δt) 测量环境偏离标准温度20℃的偏差为±10℃,在半宽为10℃范围内,以等概

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

酒精气体探测器

酒精测试仪的设计与制作 摘要 本文设计了小型的手持酒精测试仪,交通警察可用其对司机是否酒后驾驶和酗酒进行勘查。 介绍了基于酒精气敏传感器TGS813、LED显示驱动芯片的酒精测试仪的设计, 详述了该仪器的主电路和工作原理, 重点介绍了酒精测试的方法,并通过实验给出了本设计实验数据。本设计的目的是研制一种可以用5v电池供电,体积小,反应灵敏成本较低的可供交通警察使用的手持酒精测试仪。 实验结果证明,由于采用了进口传感器,该仪器效果理想,反应灵敏,精度较高,性能稳定,且能提供一定的科学依据。 关键词:酒精传感器/LED显示驱动/气敏元件

Design and Manufacture of Ethyl Alcohol Instrument Surveys ABSTRACT This article has designed the small hand-hold ethyl alcohol reflect scope reflector, whether traffic police after the driver liquor driving and the excessive drinking carry on the investigation. Introduced based on ethyl alcohol gas sensor TGS813, the LED demonstration actuation chip's ethyl alcohol reflect scope reflector's design, has related in detail this instrument's main circuit and the principle of work, introduced with emphasis the ethyl alcohol test's method, and has given this designed experiment data through the experiment. This design's goal is develops one kind to be possible to use 5v the battery power supply, the volume to be small, responded that the keen cost low may supply the hand-hold ethyl alcohol reflect scope reflector which traffic police uses. The experimental result proved that because used imported the sensor, this instrument effect was ideal, responds keenly, the precision was high, stable property, and could provide certain scientific basis. Key word:ethyl alcohol sensor, LED demonstrates the actuation, gas sensors

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

饮酒、醉酒驾驶酒精检测标准

饮酒、醉酒驾驶酒精检测标准 血液中地酒精含量大于或者等于每地为醉酒驾驶,需承担刑事责任. 血液中地酒精含量小于每且大于或者等于每,为饮酒驾驶. 附: 车辆驾驶人员血液、呼气酒精含量阈值与检验标准 中华人民共和国国家标准——车辆驾驶人员血液、呼气酒精含量阈值与检验标准(由国家公安部提出,国家质量监督检验检疫总局发布地《车辆驾驶人员血液、呼气酒精含量阈值与检验标准》于年月日正式实施.) 范围 本标准规定了车辆驾驶人员饮酒及醉酒驾车时血液\呼气中地酒精含量阈值和检验方法. 本标准适用于驾车中地车辆驾驶人员. 规范性引用文件 下列文件中地条款通过本标准地引用而成为本标准地条款.凡是注日期地引用文件,其随后所有地修改单(不包括勘误地内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议地各方研究是否可使用这些文件地最新版本.凡是不注日期地引用文件,其最新版本适用于本标准. 血、尿中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙酮、正丁醇、异戍醇地定性分析及乙醇、甲醇、正丙醇地定量分析方法 呼出气体酒精含量探测器 术语和定义 下列术语和定义适用于本标准. 车辆驾驶人员 机动车驾驶人员和非机动车驾驶人员. 酒精含量 车辆驾驶人员血液或呼气中地酒精浓度. 饮酒驾车 车辆驾驶人员血液中地酒精含量大于或者等于,小于地驾驶行为. 醉酒驾车 车辆驾驶人员血液中地酒精含量大于或者等于地驾驶行为. 酒精含量值 血液酒精含量临界值 车辆驾驶人员血液中地酒精含量临界值见表. 表车辆驾驶人员血液酒精含量临界值 行为类别对象临界值() 饮酒驾车车辆驾驶人员 醉酒驾车车辆驾驶人员 血液与呼气酒精含量换算 车辆驾驶人员呼气酒精含量检验结果可按标准换算成血液酒精含量值.

乙醇气体浓度探测器

乙醇气体浓度探测器 乙醇气体浓度探测器特点: ★是款内置微型气体泵的安全便携装置 ★整机体积小,重量轻,防水,防爆,防震设计. ★高精度,高分辨率,响应迅速快. ★采用大容量可充电锂电池,可长时间连续工作. ★数字LCD背光显示,声光、振动报警功能. ★上、下限报警值可任意设定,自带零点和目标点校准功能,内置 温度补偿,维护方便. ★宽量程,最大数值可显示到50000ppm、100.00%Vol、100%LEL. ★数据恢复功能,免去误操作引起的后顾之忧. ★显示值放大倍数可以设置,重启恢复正常. ★外壳采用特殊材质及工艺,不易磨损,易清洁,长时间使用光亮如新. 乙醇气体浓度探测器产品特性: ★是款内置微型气体泵的高精度的手式安全便携装备; ★进口电化学传感器具有良好的抗干扰性能,使用寿命长达3年; ★采用先进微处理器技术,响应速度快,测量精度高,稳定性和重复性好; ★检测现场具有现场声光报警功能,气体浓度超标即时报警,是危险现场作业的安全保障; ★现场带背光大屏幕LCD显示,直观显示气体浓度/类型/单位/工作状态等; ★全量程范围温度数字自动跟踪补偿,保证测量准确性; ★半导体纳米工艺超低功耗32位微处量器; ★全软件自动校准,传感器多达6级目标点校准功能,保证测量的准确性和线性,并且具有数据恢复功能;

★全中文/英文操作菜单,简单实用,带温度补偿功能;★防高浓度气体冲击的自动保护功能; 乙醇气体浓度探测器技术参数:

乙醇气体浓度探测器简单介绍: 乙醇气体浓度探测器报警器高精度、高分辨率,响应快速,超大容量锂电充电电池,采样距离远,LCD背光显示,声光报警功能,上、下限报警值可任意设定,可进行零点和任意目标点校准,操作简单,具 有误操作数据恢复功能. 乙醇气体浓度探测器应用场所: 医药科研、学校科研、制药生产车间、烟草公司、环境检测、楼宇建设、消防报警、污水处理、石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、锅炉房、加气站、垃圾处理厂、隧道施工、输油管道、航空航天、工业气体过程控制、室内空气质量检测、地下燃气管道检修、危险场所安全防护、军用设备检测等。

至今见过的最规范的不确定度评定的例子!

至今见过的最规范的不确定度评定的例子! 不确定度是指由于测量误差的存在,对被测量值的不能肯定的程度。反过来,也表明该结果的可信赖程度。在报告结果时,必须给出相应的不确定度,一方面便于使用它的人评定其可靠性,另一方面也增强了测量结果之间的可比性。今天,仪器论坛版友六弦琴为大家找来了不确定度评定的范例,供大家参考。如有疑问,请点击阅读原文版友将为大家详细解答 点击图片查看大图不确定度评定中需要注意的几个问题a) 抓住影响测量不确定度主要分量的评估,避免漏项。通常测量重复性分量、标准物质不确定度分量、工作曲线变动性分量等在合成标准不确定度中所占比重较大,须逐一评估。对某些不可能进行多次的测定,无重复性数据,应尽可能采用方法精密度参数或以前在该条件下的测试数据进行评估。b)忽略次要不确定度分量的影响。有些分量量值较小(属微小不确定度),对合成不确定度的贡献不大。例如,一个分量为1.0,另一个分量0.33,二者的合成不确定度为1.05,相差5%,即分量0.33在合成标准不确定度中的贡献可忽略。通常试料称量、相对原子量、物质的摩尔质量等分量相对于测量重复性、工作曲线变动性分量要小得多,一般可忽略。 c)不确定度评估中避免重复评估。如当已评估了测量重复性

分量,不必再评估诸如样品称量、体积测量、仪器读数的重复性分量。 d)不应将一些非输入量的测量条件当作输入量评估。例如,重量法中高温炉灼烧温度的变动性,测定碳、硫时氧气纯度的变动性,光度分析中波长的精度等,它们不是输入量,其对测量结果的影响反映在测量重复性中,不应将其作为分量进行评估。 e)合成标准不确定度和扩展不确定度通常取一位或两位有效数字。计算过程中为避免修约产生的误差可多保留一位有效数字。修约时可采用末位后面的数都进位而不舍去,也可采用一般修约规则。测量结果和扩展不确定度的数位一致。

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

#饮酒、醉酒驾驶酒精检测标准

饮酒、醉酒驾驶酒精检测标准 血液中的酒精含量大于或者等于80mg每100ml的为醉酒驾驶,需承担刑事责任。 血液中的酒精含量小于80mg每100ml且大于或者等于20mg每100ml,为饮酒驾驶。 附: 车辆驾驶人员血液、呼气酒精含量阈值与检验标准 中华人民共和国国家标准——车辆驾驶人员血液、呼气酒精含量阈值与检验标准(由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阈值与检验标准》于2004年5月31日正式实施。) 1范围 本标准规定了车辆驾驶人员饮酒及醉酒驾车时血液\呼气中的酒精含量阈值和检验方法。 本标准适用于驾车中的车辆驾驶人员。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可

使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GA/T105血、尿中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙酮、正丁醇、异戍醇的定性分析及乙醇、甲醇、正丙醇的定量分析方法GA307呼出气体酒精含量探测器 3术语和定义 下列术语和定义适用于本标准。 3.1 车辆驾驶人员vehicledrivers 机动车驾驶人员和非机动车驾驶人员。 3.2 酒精含量alcoholconcentration 车辆驾驶人员血液或呼气中的酒精浓度。 3.3 饮酒驾车drinkingdrive 车辆驾驶人员血液中的酒精含量大于或者等于20mg/100ml,小于80mg/100ml的驾驶行为。 3.4 醉酒驾车drunkdrive 车辆驾驶人员血液中的酒精含量大于或者等于80mg/100ml的驾驶行为。 4酒精含量值

测量不确定度评定实例(完整资料).doc

此文档下载后即可编辑 测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 2 4 D v π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定度21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。 ①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()m m 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量

高度h 的6次测量平均值的标准差: ()m m 0026.0=h s 高度h 的误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围0.005mm ±,按均匀分布,示值的标准不确定度 0.0029 q u == 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3 由示值误差引起的高度测量的不确定度 q h u h V u ??= 3 由示值误差引起的体积测量的不确定度分量 ()()323233mm 04.1=+=h D u u u 3. 合成不确定度评定 ()()()3232221mm 3.1=++=u u u u c 4. 扩展不确定度评定 当置信因子3=k 时,体积测量的扩展不确定度为 3mm 9.33.13=?==c ku U 5.体积测量结果报告 () m m .93.88063±=±=U V V 考虑到有效数字的概念,体积测量的结果应为 () m m 48073±=V

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

测量不确定度评定程序文件

1目的 为本中心合理评定测量结果的不确定度提供依据,使测量不确定度评定方法符合国际和国相关技术规、标准的规定。 2适用围 适用于与本中心所有检测项目有关参量测量结果的不确定度评定与表示。 3职责 3.1副主任 a)负责批准测量不确定度评定报告; b)批准对外公布实验室能力时的测量不确定度。 3.2技术负责人 a)制定实验室测量不确定度评定总体计划,提出中心测量不确定度评定的总 体要求; b)组织审核、验证项目测量不确定度评定报告。 3.3检测项目负责人 a)负责项目有关参量的测量不确定度评定,编写评定报告初稿。 4程序 4.1技术负责人制定年度培训计划,聘请专家讲授JJF1059-1999《测量不确定度 评定与表示指南》,使检测人员理解测量不确定度评定的基本知识和方法。办公室协助技术负责人具体实施培训计划,负责培训容和考核结果的记录、归档。 4.2测量不确定度评定步骤(详细评定步骤参见本程序附录1) 说明测量系统时要给出如下信息:①所用检测仪器型号、资产编号、技术指 标;②校准/检定证书号、校准/检定日期和校准/检定实验室明名称。 4.2.1根据检测项目依据的技术标准/规/规程,明确被测量,简述被测量定义、测量方法和测量过程。 4.2.2画出测量系统方框图 4.2.3给出测量不确定度评定数学模型。

424根据数学模型和有关信息,列出各不确定度分量的来源,尽可能做到不遗漏不重复,主要来源有(但不限于):所用的参考标准或标准物质(参考物质)、方法和仪器设备、环境条件、被测物品的性能和状态、操作人员等。需要指出,被测物品预计的长期性能所引起的不确定度来源通常不予考虑。 425评定各不确定度分量的标准不确定度:①不确定度A类评定采用统计方法; ②不确定度B类评定采用非统计方法。 合理地评定应依据对方法性能的理解和测量围,并利用以前的经验和资料、文献中确认的数据等。测量不确定度评定所需要的严密程度取决于①检测方法的要求;②客户的要求;③据以作出满足某技术规决定的紧限。 426计算合成标准不确定度。 427确定扩展不确定度和报告测量结果。 4.3测量不确定度报告的审核和批准 4.3.1中心技术负责人对各项目测量不确定度评定报告进行审核。必要时,可委托外单位专家审核。 4.3.2评审后的测量不确定度评定报告和测量不确定度表示意见经中心副主任批准后,作为实验室的受控技术文件打印归档,并作为作业指导书发至有关检测人员执行。 4.3.3检测项目负责人发现有关不确定度分量发生较大变化时,应及时向技术负责人或质量监督员报告并提出修改的具体意见,由技术负责人组织审核批准后实施。 4.4测量不确定度的报告和应用 在下列情况下检测实验室的检测报告(或证书)中应给出有关测量结果不确定度的信息:a)当不确定度与检测结果的有效性或应用有关时; b)客户有要求时; c)当不确定度影响到对技术标准/规限度的符合性时,(即测量结果处于技术标准/规规定的临界值附近时,测量不确定度的区间宽度对判断符合性具有重要影响)。 4.5注意事项

相关主题