搜档网
当前位置:搜档网 › 论文双子表面活性剂

论文双子表面活性剂

论文双子表面活性剂
论文双子表面活性剂

双子表面活性剂综述

张家婧

(山东大学化学与化工学院山东省济南市250100)

摘要双子表面活性剂使其在表面活性剂相关领域脱颖而出。双疏水基双亲水基表面活性剂独特的分子结构使其具有与传统的单疏水基单亲水基表面活性剂不同的特性,如CMC很低,降低水溶液表面张力的效率很高。无论是表面活性,还是溶液中的性质,如界面行为、粘度特性等都体现出独特之处。另外,双子表面活性剂的应用也日趋广泛。

关键字双子表面活性剂结构性质应用

Review of Gemini surfactant

Jiajing Zhang

(College of Chemistry and Chemical Engineering,Shandong University,Jinan,250100) Abstract The particularity of the Gemini surfactants’structure makes it stand out in the related fields of surfactants.Gemini surfactants have two hydrophobic groups and two hydrophilic groups per https://www.sodocs.net/doc/923636997.html,paring to conventional surfactants which have single hydrophobic group and single hydrophilic group per molecule,the distinct molecular structure of Gemini surfactants make them possess some special properties,such as quite lower surface tension and higher efficiency for reducing surface tension.The surface activity,solubility and viscosity characteristics change a lot,which make Gemini surfactants increasingly wide application in practice.On the other hands,the application of surfactants in many fields is also becoming more widely.

Keywords Gemini surfactants,Structure,Character,Application

1引言

表面活性剂按照分子结构的特征可分为三类:传统型、Bola型和Gemini型。

相对于传统的表面活性剂,双子表面活性剂可以说是一个全新的概念,这种有两个亲水端基和两个疏水端基的表面活性剂,相当于通过一个连接基将两个表面活性剂分子连接在一起的结构。越来越多的科研工作者们积极开展相关方面的研究,因为其有着独特的溶液和界面性质,使得效果往往优于传统表面活性剂。

1971年,Bunton[1]等首次合成了一类阳离子型Gemini表面活性剂并对它们的表面活性和临界胶束浓度进行了研究。1988年,日本Osaka大学的Okahara[2]等研究并合成了以柔性基团连接离子头基的若干双烷烃链表面活性剂,但真正系统性地开展这类新型表面活性剂研究工作则是从1991年Menger[3]合成了以刚性基团连接离子头基的双烷烃链表面活性剂开始。他将这类型顺序排列的两亲分子命名为:Gemini表面活性剂,并对Gemini表面活性剂的吸附形式和胶束形式作了探讨。从1991年开始,美国纽约州立大学Brookly学院的Rosen小组采纳了其命名,系统合成和研究了刚性基团连接的双子表面活性剂,撰写了一篇综述文章[4]。同时,

法国Charles Sadron研究所Zana小组[5]也通过亚甲基链为连接基团研究了一系列表面活性剂。结果表明,双子表面活性剂具有较单烷烃链和单离子头基组成的普通表面活性剂高得多的表面活性。

2结构特点与分类

“Gemini”在天文学中是“双子星座”的意思。Gemini表面活性剂是一类分子中含有两个或两个以上亲水亲油基团的表面活性剂。从分子结构上看,Gemini表面活性剂相似于两个单链表面活性剂分子的聚结,故又称为“二聚表面活性剂”或“孪连型表面活性剂”。其分子中含有两个疏水链、两个亲水头和一个柔或刚性连接基,常见的连接基:聚亚甲基、聚氧乙烯基等柔性基及芳基等刚性基团或杂原子等,可以是亲水性的或是疏水性的。

图1双子型表面活性剂结构示意图

Fig.1Structures of Gemini surfactants

根据亲水头基的性质,双子表面活性剂可分为:研究最为广泛,主要研究方向为季铵盐型的阳离子型表面活性剂;包含磷酸盐、羧酸盐、硫酸盐和磺酸盐四种类型的阴离子型表面活性剂;从糖类化合物衍生而来的非离子型表面活性剂;两性离子双子表面活性剂。

根据疏水链的种类不同可分为碳氢型和碳氟型Gemini表面活性剂。

2.1阳离子型Gemini表面活性剂

最重要的是含氮的表面活性剂。目前对阳离子型双子表面活性剂研究较多也是含氮原子的,主要是季胺盐型表面活性剂。因为其生物降解性好,毒性小,性能卓越。

图2季铵盐型Gemini表面活性剂TM结构示意图

Fig.2The structure of TM

2.2阴离子型Gemini表面活性剂

这类Gemini表面活性剂的种类较多,大多数专利文献报道的内容属此类,并已有工业化产品供应。从报道的化合物结构来看,主要分为磷酸盐、羧酸盐和磺酸盐型。

图3二聚体羧酸盐型Gemini表面活性剂结构示意图

Fig.3The structure of dimer of carboxylic acid salt

2.3非离子Gemini表面活性剂

近年来,阳离子Gemini表面活性剂和阴离子Gemini表面活性剂研究较多,而非离Gemini 表面活性剂研究的相对较少。非离子型表面活性剂的具体构型分为两大类:一类是糖的衍生物,另一类是醇醚、酚醚型。

图4十二酸为原料制备的非离子型Gemini表面活性剂结构示意图

Fig.4The structure of nonionic surfactants

3界面吸附与性质

3.1表面活性

双子型表面活性剂更容易吸附在气/液表面,从而更有效地降低水的表面张力。

Raoul Zana[6]分别使用传统表面活性剂十二烷基三甲基溴化铵(DTAB)和由-CH2CH2-为连接基团形成的二聚体(12-2-12)测定阳离子Gemini表面活性剂对原油/水界面表面张力的作用。发现Gemini表面活性剂比相应的传统表面活性剂DTAB能更有效和更高效地降低原油/水的界面张力,在一定的浓度范围内将原油/水的界面张力降到非常低的水平。同时,添加其它盐类能更有效地降低原油与水的界面张力,表明Gemini表面活性剂与盐类具有良好的增效作用。

图5DTAB/DTAB二聚体(12-2-12)浓度与表面张力关系

Fig.5Concentration and surface tension

在考察双子表面活性剂界面吸附时,应用Gibbs公式:-dγ/dlnc=nRTΓ。关键在于系数n的确定需要考虑离子头基对表面张力的影响,在没有电解质干扰时,传统的单价——单价离子型单体表面活性剂的n取为2,而双价——单价离子型双子表面活性剂的n则取为3。大多数双子表面活性剂降低表面张力的效率与效能都比相应的单体高。当传统表面活性剂疏水链碳的原子数增加到一定程度时,该物质在水中的溶解度剧减,表面活性也受到限制。但是Gemini表面活性剂分子含有两条疏水链,疏水性强,而且Gemini表面活性剂分子中的连接基通过化学键将两个亲水基连接起来,削弱了亲水基间的静电斥力及其水化层间的斥力,促进了Gemini表面活性剂分子在水溶液表面的吸附和在水溶液中的自聚,从而导致其具有

很高的表面吸附能力和聚集体形成能力。这就是Gemini表面活性剂具有高表面活性的根本原因。

3.2水溶性

Gemini表面活性剂比单链表面活性剂更易在水溶液中自聚,且倾向于形成更低曲率的聚集体。离子型表面活性剂的溶解度随着温度的升高而增大,当达到一定温度后,其溶解度会突然迅速增加,这个转变温度称为Kraff点。Kraff点可以衡量离子型表面活性剂的亲水亲油性。

大部分阴离子双子表面活性剂的Kraff点(TKP质量分数为1%)都在0℃以下,表明有良好的水溶性。这是由于Gemini表面活性剂分子中含有两个亲水基,具有足够的亲水性,且亲水性随其分子总亲水程度的增大而增大。另外,其分子含有两三条疏水链,疏水性更强,更易在水溶液表面吸附和在水溶液中形成胶团。因此,与相应的单链表面活性剂相比,双子表面活性剂具有更好的水溶性。

3.3胶束与流变性

Gemini表面活性剂的结构特点决定其胶束形式的独特性,也使其在界面上的吸附不同于传统模式。如图所示:

图6双子型表面活性剂在界面的吸附模式

Fig.6In the interface of Gemini surfactants’adsorption model

Gemini表面活性剂吸附方式主要由连接基团的限制作用与整个分子在相界面上的亲和作用决定。亲和作用包括极性基团与水相的作用和非极性基团与油相或空气之间的作用。当限制作用大于亲和作用时,Gemini表面活性剂将以直线型或近似直线型的方式吸附在界面或表面上;而当亲和作用占优势时,它将以弯曲或环状不规则形式吸附在界面或表面上。

Gemini表面活性剂的两个离子头基由连接基团通过化学键而连接,由此造成两个表面活性剂单体分子之间相当紧密的连接,致使疏水碳氢链间具有较强的相互作用,抑制了亲水离子头基之间因静电斥力所引起的分离作用,增强了疏水碳氢链之间的结合,使Gemini表面活性剂更容易聚集成胶束。

双子表面活性剂很容易聚集成胶束且其CMC比单体表面活性剂更低,即双子表面活性剂在水溶液中更易形成胶团。对双二甲基烷基溴化铵,X2((CH3)2N+C m H2m+1Br-)2(记为m2s2m,2Br-)Gemini表面活性剂体系,Zana等[6]发现,当连接基团比较短时,(m=12,s=2;m=16,s=4)时,Gemini表面活性剂总生成比对应的单链单头基表面活性剂更低曲率的分子聚集体。具体地说,12-2-12,2Br-在1%时即生成巨大的线形胶团,而其相应的单链单头基CTAB在浓度为10%时还是球形胶团;又如16-3-16,2Br-形成了囊泡、双层膜和线形胶团,而相应的CTAB在合适的浓度时仅生成长胶团。尽管12-3-12,2Br-的间隔基也很短,但在7%溶液中才出现线形胶团,这种线形胶团的存在使得溶液具有粘弹性。在

12-4-12,2Br-,12-8-12,2Br-和12-12-12,2Br-溶液中的胶团均为紧密排列的球形或椭球形。当间隔基碳数继续增加(s=16或20)时,溶液中出现球状或者筒状的双层囊泡。(见表1)溶质聚集体的形态和溶液的流变性质密切相关。由于单链单头基的普通表面活性剂在较低浓度时通常形成球形胶团,对水溶液的粘度贡献不大而Gemini表面活性剂水溶液的粘度就完全不同,Kern和Zana等[8]曾报道了具有较小s的Gemini表面活性剂水溶液奇特的粘度性质:随着表面活性剂浓度的增加,溶液的粘度迅速增加,粘度值的增加可达6个数量级之多。这种迅速增大的粘度被认为是线形胶团互相缠绕形成了网状结构所致。但再进一步增加Gemini表面活性剂的浓度,溶液的浓度反而减小。这有可能是分子聚集体的转变导致溶液粘度下降。鉴于低浓度时短连接基团链的Gemini表面活性剂溶液已表现醋相当高的粘度值,这为调节溶液流变性质提供了新的途径。

表1表面活性剂对应聚集体形态的变化

Tab.1Surfactants correspond to changes in form

3.4协同效应

双子型表面活性剂与普通表面活性剂(尤其是非离子表面活性剂)间的复配能产生更大的协同效应。两种表面活性剂混合体系协同效应的存在,不仅取决于它们之间的相互作用的强度,而且也取决于混合体系中各组分表面活性剂的相关性质,两者相关性质的差异不能太大。Gemini表面活性剂和单链表面活性剂尤其是非离子表面活性剂混合时,在降低水的表面张力的效能和效率方面,比单体表面活性剂产生更强的协同效应。

通过查阅文献[7][8],我还发现:一些并联结构的双子表面活性剂除了具有较高的降低表面张力的效率(低CMC值)外,还具有很好的降低表面张力的能力,明显优于串联结构的表面活性剂。两种结构双子表面活性剂在降低溶液表面张力能力上的差异,主要是由于它们在表面上吸附的形态不同引起的。我认为,这种吸附形态的不同是由于连接基团位置差异所造成的。并联结构由于连接基团连接在疏水链靠近离子头基的位置处,离子头基可以自由旋转。在界面上进行吸附时,离子头基通过自由旋转从而使它们之间的斥力达到最小使得疏水链段彼此之间可以比较紧密地进行结合,在界面上形成致密的吸附膜,从而有更高的降低表面张力的能力。12-3-12结构的双季铵盐表面活性剂,由于连接基团含有三个亚甲基单元,使其在表面吸附时能够满足N原子SP杂化构型的需要,使得两条疏水链仍能比较直立地伸

入空气,末端与空气接触,因而其表面张力强于上表1中所列其他串联结构的双子表面活性剂。而12-3-12在温度为20℃时,降低表面张力的能力却没有提高。由于亚甲基之间的键角被拉大,12-3-12两条疏水链将倾斜地伸入空气,类似于传统表面活性剂。继续升温,溶剂化作用减弱,离子头之间的排斥作用减弱,亚甲基间的键角被拉大的程度下降,12-3-12的两条疏水链可以笔直地伸入空气,因而降低表面张力的能力较强。下图为串联结构和并联结构的双子表面活性剂表面的吸附示意图[6]。

图7串联和并联双子表面活性剂表面吸附示意图

Fig.7Gemini surfactants’surface adsorption

4产品性能[9]-[12]

4.1等电点

两性表面活性剂和天然两性化合物如氨基酸、蛋白质一样,在分子中同时含有不可分离的正、负电荷中心,因而在溶液中显示出独特的等电点性质。由图8可见其等电点的范围是pH8.5~10.5,此范围内整个分子电荷平衡导致电导率低,pH低于8.5和高于10.5时产物具有较高的电导率,说明整个分子表现较强的离子性质。pH低于8.5时,产物主要表现为阳离子性质,而在pH大于10.5时的碱性溶液中主要表面为阴离子性质,在pH=8.5~10.5间表面活性剂以内盐形式存在。

图8双子表面活性剂等电点示意图

Fig.7Isoelectric point of Gemini surfactant

4.2

表面张力和临界胶束浓度

图8双子表面活性剂与传统表面活性剂表面张力比较

Fig.8Surface tension of Gemini surfactant and conventional surfactants

如图8所示,在每一个相同浓度下,合成的Gemini 表面活性剂比传统的阴离子表面活性剂直链十二烷基苯磺酸钠(Las)溶液的表面张力都低;而且实际应用时产物的最低表面张力可以降至31.9mN/m ,仍比传统表面活性剂十二烷基苯磺酸钠的最低表面张力34.5mN/m 低,说明产物双子型表面活性剂降低水的表面张力的能力更强。

4.3双子型表面活性剂的泡沫性能

传统表面活性剂十二烷基硫酸钠和实验室合成的12-2-12双子型表面活性剂产物相比较,发现前者具有一定的发泡力和很好的稳泡性。其较好的稳定性可能是因为Gemini 表面活性剂离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中离子头基分离力,减少了具有相同电性的离子头基间的静电力以及头基水化层的障碍,有效阻碍气泡外液膜的排液减薄,因而增加了泡沫的稳定性,性质比较见下表2。

表2表面活性剂溶液的发泡高度和稳泡性

Tab.2Bubble foam height and stability of the surfactant solution

4.4乳化力采用上述两种表面活性剂,进行乳化生成的乳液放置24h 后,乳液没有分层现象。从图9的乳液显微照片可以看出,分散相的粒径没有明显变大,胶粒没有聚集发生,乳液稳定,表明合成的Gemini 型两性表面活性剂有很好的乳化能力。

测定项目

双子型表面活性剂传统表面活性剂初始高度/mm

25265minmm

2320泡沫稳定性

0.920.77

图9新鲜乳液的图像(左)和放置24h后的乳液图像(右)

Fig.9The image of fresh latex(left)and after24h of emulsion(right)

4.5优越性能

与传统表面活性剂相比,双子表面活性剂具有以下特性。

第一,极易吸附在气液界面上,而且有多种形态,其表面活性比传统表面活性剂大得多。

第二,更容易聚集成胶束,其临界胶束浓度比普通表面活性剂低二到三个数量级,应用时浓度可以大大降低。

第三,具有优良的曾溶性,双子表面活性剂对烷烃的增溶量是传统表面活性剂的数倍,对有机物质的增容能力随烷基疏水链的增大而增大;碳链长度相同时,不同类型的表面活性剂的增溶能力由大到小的顺序为非离子、阳离子、阴离子。

第四,因分子中同时有两个亲水基团,所以其Kraft点低,有良好的低温溶解性。

第五,可与普通表面活性剂进行复配,产生更大的协同效应。

第六,在溶液中,双子表面活性剂具有特殊的聚集结构形态,在很低的浓度下,即可使溶液产生表观粘弹行为,因而具有特殊用途。

5应用前景

Gemini表面活性剂由于其特殊的结构,使其区别于普通表面活性剂具有高表面活性等诸多优良性质。Gemini表面活性剂的研究从七十年代初开始研究以来,特别是近年合成出一批性能优越的Gemini表面活性剂,其应用研究越来越为人们所重视,在许多领域中进行着广泛而有前景的应用。

综合双子型表面活性剂的各项性质,它的应用领域可以概括为以下六种:生产高效洗涤剂、乳化剂;刺激少,制备温和型产品;高效增溶剂;乳液稳定剂和泡沫稳定剂;增粘剂;特殊的反应催化剂。

5.1杀菌作用

八十年代后期有科学家研究发现一些Gemini表面活性剂具有较强的杀菌活性,且一些双季铵盐型Gemini表面活性剂的杀菌效果与其联结基和烷基链关系密切,联结基团短的抗菌效果好,有较低的MICS值。烷基链短的化合物无抗菌能力,当碳原子数增至10~12时抗菌效果最好。双季铵盐杀菌剂表现出较强的杀菌效果,主要是由于其分子中具有两个长链的疏水基团,同时,由于分子中正电荷密度增强,有利于杀菌剂在细菌表面的吸附,促进菌体的破裂,使得其具有较强的杀菌能力。

此外,由于双子型表面活性剂易形成胶束,胶团形状可控,因此可以获得最大的酶活性,因此Gemini表面活性剂在基因转染、痕量分析、助染、化合物分离等方面都有其独特的应用。

5.2治理污水和土壤

双子型表面活性剂由于其具有较高的表面活性,具有多重亲水亲油功能,以及吸附和自聚特性,使其成为优良的浮选助剂。在治理污水中可将双子型表面活性剂吸附在粘土等载体上,然后用其吸附水中的污染物。有科学家应用Gemini表面活性剂对2-萘酚的吸附量和吸附效率却比普通表面活性剂高。对双季铵盐用于污水浮选研究表明,联结基团和疏水链长度的增加都能有效增强其污水浮选效果。

用双子表面活性剂改性的材料作废物填埋的防渗添加剂,用双子表面活性剂水溶液增溶和增流性,将其注入地下驱除地下水中非水液体和吸附深层土壤中的污染物,也是一种具有发展前景的治污手段。

5.3制备新型材料

新近研究发现一些Gemini表面活性剂有新奇的荧光作用,例如,结构为[C m H2n+1N+ C5H6Br]2(CH2)2C6H4的阳离子Gemini表面活性剂在水中低浓度即缔合,具有可测定的溶剂化显色效应。

Gemini表面活性剂还可作为制备纳米材料的模板剂和抗粘接剂,如有些科学家用双季铵盐型双子表面活性剂制备出高质量立方相的MCM-48,而传统的表面活性剂DTAB却不能实现上述制备。此外,双子型表面活性剂具有极低的CMC值,易形成胶束,誉为“智能反应器”。

5.4缓蚀和驱油作用

在双季铵盐Gemini表面活性剂中由于存在静电吸附和化学吸附,使其不但具有较强的剥离作用,可以清除细菌生长在金属表面的培养基,而且通过吸附成膜,阻断了细菌与金属表面的通道,因此具有较好的缓蚀性能。研究表明某些Gemini表面活性剂能有效地抑制铁在盐酸中的腐蚀,能起到较好的保护作用,而且随着其浓度增大抑制腐蚀效果增强。双季铵盐由于具备低表面张力、润湿作用和表面电性,在驱油过程中由于其表面活性高,临界胶束浓度低,在较小的浓度下可达到较低的表面张力,可以更好地降低油水界面的张力,表现出较高的驱油效果。

在石油开采过程中,复合驱油对于表面活性剂提出了较高的要求,在复合驱油用新型表面活性剂开发必然性的驱使下,研制一类新型的、既具有良好表面活性和抗盐性且制备方法简单、原料价廉易得、反应条件温和、易于控制、对生产设备无特殊要求的阳离子型双子表面活性剂,克服现有表面活性剂的不足,改善表面活性剂的应用性能,具有非常现实的意义。双季铵盐基单苯基表面活性剂制备过程简单,副反应少,产率较高,是一种值得探索的具有良好表面活性和抗盐性的双子表面活性剂。对其表面活性和其他应用性能进行评价,将其与新型抗盐的疏水缔合聚合物复配成驱油体系,并对此复合体系与原油及岩石的界面性能及驱

油机理进行研究,为该双子表面活性剂的矿场应用奠定了基础。

5.4其他作用

双子型表面活性剂具有效降低水/油表面的界面张力,使用中可以提高混合物的流变性能。Gemini表面活性剂以其独特结构和高表面活性以及广阔的应用空间,为其进一步研究奠定了基础,也为多学科交叉创造了条件,随着Gemini表面活性剂在合成工艺和复配使用方面的改进,将在生物化学、合成化学、纳米科技等领域得到广泛的应用。

传统表面活性剂已广泛用于化工各个领域,人们称为工业味精,双子表面活性剂则将无愧是工业味精的新一代精品。由于双子表面活性剂的特殊结构,它不仅具有高表面活性,而且产生新形态聚集体和奇异性质,为多学科交叉创造条件,将在化学生物学、纳米科技、超分子与合成化学的发展中受到重视。预期在抗HIV、抗肿瘤、基因转染方面,在环境保护、三次采油和新型功能材料制备等工业中有较好的应用前景。

6结语

虽然双子表面活性剂发现至今才40余载,但是它的发展速度却超过了以往任何一种表面活性剂。它结构的特殊性使得它具有与众不同的性能,超高的表面活性,超低的CMC值,超强的增溶作用等等都使它在表面活性剂领域脱颖而出。随着科学的发展,其潜在的应用价值会逐步被开发出来,这些都需要我们的努力。

参考文献

[1]Bunton C A,Robinson L,Schaak J.Catalysis of nucleophilic substitutions by micelles of dicationic detergents[J]https://www.sodocs.net/doc/923636997.html,.Chem., 1971,36(16):2346-2350.

[2]Okahara M,Masuyama A,Sumida Y.J.Jpn.Oil Chem.Soc.(Yukagaku),1988,37,716-718.

[3]Menger F M,Littau C A.J.Am.Chem.Soc.,1991,112,1451-1452.

[4]Rosen M J.Chem tech.,1993,30-33.

[5]Zana R,Benrraou M,Rueff https://www.sodocs.net/doc/923636997.html,ngmuir,1991,113,143-145.

[6]Raoul Zana.Dimeric and oligomeric surfactants behaviour at interface and in aqueous solution.,Advance in Colloid and Interface Science.1997,2002:205-253.

[7]牛金平,王军.新型表面活性剂的结构特点与物化性能[J].山西:日用化学品科学,2000,23(2):1-4.

[8]Kern F,Lequeux F,Zana R,Candau S https://www.sodocs.net/doc/923636997.html,ngmuir,1994,10,1714-1723.

[9]池田功,崔正刚.新型Gemini阳离子表面活性剂的合成和性能[J].日用化学工业,2001,31(3):27-30.

[10]唐世华,黄建滨.Gemini表面活性剂研究的新进展[J].2001,11(12):1240-1254.

[11]张青山,郭炳南,张辉淼.双子表面活性剂研究进展和应用[J].化学进展,2004,16(3):343-348.

[12]水玲玲,郑立强,刘少杰.双子表面活性剂的研究进展[J].日用化学工业,2001,31(2):28-31.

表面活性剂期末论文

表面活性剂在石油工业中的应用 班别:10化本3班学号:2010364330 姓名:王梅珍 表面活性剂特定的分子结构—具有亲水和憎水基团—赋予这类分子许多特性。表面活性 剂能够富集在液/液、液/气和液/固界面,降低界面能,显著改变界面的状态和性质。 依用途而分,表面活性剂市场可以分为居室中应用和居室外应用两大类。前者是表面活 性剂的传统市场,主要用于制造各种洗涤用品;后者是正在不断开拓的十分活跃的市场。二 表面活性剂在能源和选矿工业中的应用属于居室外的应用,因此前景十分广阔。下面将粗略 介绍表面活性剂在能源和选矿工业中的应用。 一、表面活性剂在石油工业中的应用 1、在钻井泥浆中的应用 高分子表面活性剂是钻将泥浆——钻井液中的重要组成成分,对钻井液的性能控制起着 至关重要的作用。 (1)钻井液滤失性的调整剂 据文献报道,能显著降低钻井泥浆滤失量(滤失性:钻井液滤失量大小,与井壁所形成 滤饼质量有关。)的多为高分子表面活性剂化合物,这类化合物都有吸附基和水化基,座位 吸附基的主要有-OH、-COOH、-CONH 等,依靠氢键吸附在粘土粒子上;作为水化基的主要有- 2 -等,能形成水化膜。 COO-、-SO 3 (2)钻井液流变性的调整剂 表征钻井液流变性的主要指标有粘度、切应力、动塑比、流性指数和稠度系数。在钻井 过程中通常出现粘度、切应力过大或过小问题,需要在钻井过程中不断调整。表面活性剂对 钻井液流变性的作用主要表现在:表面活性剂通过形成降粘剂(分散型降粘剂和聚合物型降 粘剂)以降低钻井液中网架结构引起的粘度和切应力。当钻井液的粘度过低时,就有必要提 高钻井液的粘度,此时不能依靠增加粘土含量,而是依靠加入增粘剂;下面以Na-CMC为代表说明:25℃时Na-CMC的水溶液粘度不同,可划分为低粘(2%水溶液粘度 <50mPa·s),中粘(2%水溶液粘度为 50—270mPa·s),高粘(1%水溶液粘度为 400-500mPa·s)等三种。前 两种作降失水剂用,后者作增粘剂用。他们引起增粘的作用归纳为三点:①通过羟基使Na-CMC分子吸附在粘土离子表面,加上分子的水化基团的水化膜增加粘土粒子的流体力学体积,提高粘度;②一个Na-CMC分子可吸附多个粘土粒子形成网状结构;③使钻井液液相粘度增大。 在钻井过程中,钻柱与钻井液之间,钻柱与井壁接触点之间以及钻井液与井壁之间处于 不断运动状态而产生摩擦,衡量指标是摩擦因数。对于打定向井和水平井,钻井润滑性尤为 重要。钻井润滑剂通常为表面活性剂。表面活性剂的作用主要在摩擦界面上形成一层吸附膜,降低固体表面自由能。另外还可加入表面活性剂使泥浆中矿物油形成O/W型乳状液,并以细 小油珠分散在泥浆中作为润滑剂用。 除了以上几种作用,表面活性剂对钻井液流变性的影响作用还有乳化剂、起泡剂和泡沫 钻井液、消泡剂、缓蚀剂等等。

季铵盐型双子表面活性剂与十八醇的混合单分子膜_周栋梁

Vo.l 28 高等学校化学学报No .52007年5月 CHEM I CAL J OURNAL OF CH I NESE UN I VERSI T I E S 932~935季铵盐型双子表面活性剂与十八醇的混合单分子膜 周栋梁1,杨红伟1,朱谱新1,孙玉海2,冯玉军2,吴大诚1 (1.四川大学纺织研究所,成都610065;2.中国科学院成都有机化学研究所,成都610041)摘要 研究了双子表面活性剂12-2-16和12-2-12分别与十八醇(C 18H 37OH )在空气-水界面上混合单分子膜的P -A 等温线.在相分离表面压以下,比较了不同表面压下和不同混合比单分子膜的混合表面过剩自由能$G ex o M ,分析了双子表面活性剂与脂肪醇在空气-水界面上混合膜中的相容性.结果表明,12-2-16与C 18H 37OH 在所有混合摩尔比下随着表面压增高,自由能增大.12-2-12与C 18H 37OH 混合膜体系的相容性取决于两者的 混合比,$G exo M 随所加入C 18H 37OH 摩尔分数的增加逐渐增大,从异种分子间净的吸引作用转变到相互排斥 作用体系,转变点为C 18H 37OH 加入量的摩尔分数0165.当混合为热力学自发过程时,增大表面压将有利于混合;而对相互排斥体系,增加表面压将使体系内异种分子之间的相互排斥作用更大. 关键词 季铵盐型双子表面活性剂;十八醇;混合单分子膜;混合表面过剩自由能 中图分类号 O 647 文献标识码 A 文章编号 0251-0790(2007)05-0932-04 收稿日期:2006-07-05. 基金项目:国家自然科学基金(批准号:50673062)资助. 联系人简介:朱谱新(1956年出生),男,博士,教授,主要从事高分子材料结构与性能、表面与界面等方面的研究. E-m ai:l z hupxscu @163.co m 双子表面活性剂的结构特殊,表面活性更高,能有效地降低表面张力,易形成胶束、易溶解、润湿 性良好[1],因而成为研究的热点[2~11].季铵盐型双子表面活性剂是一种目前研究较多的阳离子型双子表面活性剂,对它的合成以及物理化学性能已有深入的研究[8~11].为了使双子表面活性剂能大规模的应用,人们探索了其与普通阴离子、阳离子、非离子和两性离子表面活性剂进行复配使用,并研究了 其混合体系溶液的表面性质[9~11].以Lang mu ir 膜天平为手段研究双子表面活性剂在空气-水界面的单 分子膜,可以了解其在溶液中的胶束行为.通常,两亲性分子铺展的单分子膜在压缩过程中处于亚稳态,当表面压较低时在缓慢压缩的时间尺度下,可以将压缩单分子膜看成是稳定的,因为铺展分子从 膜中向亚相溶解需要克服脱附能垒,达到平衡的过程很漫长[12].以往对于具有一定水溶性的两亲性分 子表面单分子膜的研究较少,而对此方面的研究可以得到表面单分子膜稳定性的很多信息.本文采用Lang m uir 膜天平分别测定了双子表面活性剂12-2-16和12-2-12与C 18H 37OH 混合膜在空气-水界面上混合膜的P -A 等温线,并计算混合表面过剩自由能,从而说明与极性有机分子C 18H 37OH 复配时,双子表面活性剂12-2-16和12-2-12形成的复合单分子膜的界面行为以及混合膜分子之间的相互作用.1 实验部分 1.1 试剂与仪器 双子表面活性剂12-2-16和12-2-12为自制[13],在丙酮和乙醇的混合溶剂中重结晶3次.在25e 时,12-2-16和12-2-12水溶液的临界胶束浓度分别为0116和0180mm o l/L [13].正十八醇(C 18H 37OH,分析纯,上海光铧科技有限公司);三氯甲烷(分析纯,成都长联化工试剂有限公司);无水乙醇(分析纯,沈阳化学试剂厂);实验用水为二次去离子水;LB 膜分析仪(KSV 2000-Ⅲ型,芬兰). 1.2 实验过程 分别配制12-2-16,12-2-12和C 18H 37OH 的三氯甲烷溶液,浓度约为1g /L ,再按一定摩尔比配成混合溶液.先用无水乙醇将Lang mu ir 槽(材质为聚四氟乙烯,内径尺寸700mm @120mm @10mm )清洗干净,再用二次去离子水冲洗,然后注满二次去离子水,用障条刮水面3次,以去除水面上的杂质.

新型双子表面活性剂的制备及性能研究_顾义师

新型双子表面活性剂的制备及性能研究 顾义师黄丹 * (江南大学生态纺织科学与技术教育部重点实验室 无锡 214122) 南通苏州大学纺织研究院开放课题(NS1211)资助2013-01-15收稿,2013-03-11接受 摘要制备了一系列羧基支化改性双子表面活性剂,其利用马来酸酐将2个疏水性基团和2个亲水性 基团通过弱酯键连接基团连接在一起,以反丁烯二酸为羧化试剂在过氧化自由基的引发下进行羧化接枝反应接入了阴离子亲水基团。用红外光谱和核磁共振表征了合成物的分子结构。测定了合成产物的表面张力、胶团形貌、疏水性能、泡沫性能、润湿性能、乳化性能和分散性能。结果显示所合成的双子表面活性具有优异的表面性能。 关键词 双子表面活性剂 表面性能 表面张力 分散性能 Preparation and Properties of Novel Gemini Surfactant Gu Yishi ,Huang Dan * (Education Ministry Key Laboratory of Science &Technology for Eco-textiles ,Jiangnan University ,Wuxi 214122) Abstract A series of carboxyl branch modified Gemini surfactants were prepared.These cleavable surfactants possess two identical hydrophobic alkyl group moieties ,two hydrophilic polyethylene glycol group moieties and a succinic acid spacer as weak ester linkage.Nonionic hydrophilic moieties had been added by reacting fumaric acid in the presence of a peroxy-type free radical initiator to form a carboxylic acid groups.The structures of these compounds were confirmed through IR and NMR.The physical and chemical properties of synthetic products ,including surface tension ,micelles morphology ,hydrophilicity ,foam property ,wetting property ,emulsifying property and dispersion property were determined.The results showed that the as-prepared Gemini surfactants have excellent surface properties. Keywords Gemini surfactant ,Surface properties ,Surface tension ,Dispersion properties 双子表面活性剂(Gemini surfactant )在结构上是由2个亲水基团和2个疏水基团在连接基团的作用下形成的。其有着比传统表面活性剂不止2倍的性能提升且表面张力更低、临界胶束浓度(CMC )更低的特点。由于其结构的“非常规”性,使得其在生物医学、纺织染整、三次采油上有着独特的应用 [1 5] 。 聚醚马来酸双酯是一种双子表面活性剂[6,7] ,其利用顺丁烯二酸为连接基团将2个聚醚单体在其 亲水基部位或靠近其亲水基部位通过化学键连在一起,形成1个具有2个亲水基团和2个亲油基团的结构, 由于桥基的作用,使得聚醚单体连接得相当紧密,从而使其碳链之间的作用力增强,而且亲水基(—CH 2CH 2O —)部分的斥力由于桥基的存在而大大减弱,这就使得其活性远大于一般的表面活性剂。在过氧化自由基的作用下,以反丁烯二酸为羧化试剂在聚氧乙烯链上进行羧化接枝,使分子链上带有大量的水溶性羧酸基团。这样的亲水基团和疏水基团的交错排列使得其性能相比传统表面活性剂更为优异。之前有研究者以月桂醇聚醚来合成这类表面活性剂,包括对称[8] 和不对称 [9] 双酯,但由于结构中 含有芳香基团,生物降解性能不好。本研究以硬脂醇聚醚为原料合成羧化硬脂醇聚醚马来酸双酯 Gemini 表面活性剂,性能更优异,更易生物降解。 · 735·http ://www.hxtb.org 化学通报2013年第76卷第6期DOI:10.14159/https://www.sodocs.net/doc/923636997.html,ki.0441-3776.2013.06.016

表面活性剂论文

摘要:随着世界能源需求的增长,人们认识到提高石油开采率的重要性,三 次采油提高采收率主要是靠化学驱油技术,其中,表面活性剂是提高采收率幅 度较大、适用较广、具有发展潜力的一种化学驱油剂。采用表面活性剂驱油 为进一步开发利用现有原油储量展示了广阔的前景。文综述了表面活性剂的 种类、要求、驱油机理,并总结了国内表面活性剂驱在三次采油中的应用, 其发展前景。 关键词:三次采油表面活性剂应用驱油耐温抗盐 一、前言 石油资源是一种重要的战略资源, 对国家的经济发展和人民生活水平的提高具有重要作用。然而它并不是取之不尽, 用之不竭的, 随着勘探开发程度的加深, 开采难度会逐步加大, 因此提高石油采收率不仅是石油工业界, 而且是整个工业界普遍关心的问题。三次采油技术是中国近十年来发展起来的一项高新技术, 它的推广应用对提高原油采收率、稳定老油田原油产量起到了重要的作用。 二、三次采油简介 通常把利用油层能量开采石油称为一次采油;向油层注入水、气,给油层补充能量开采石油称为二次采油;采取物理—化学方法,改变流体的性质、相态和改变气—液,液—液,液—固相间界面作用,扩大注人水的波及范围以提高驱油效率,从而再一次大幅度提高采收率。称为三次采油。又称提高采收率(EOR)方法。常规的一、二次采油(POR和SOR) 总采油率不很高, 一般仅能达到 20 %~40% , 最高达到50 % ,还有50 %~80 %的原油未能采出。在能源日趋紧张的情况下, 提高采油率已成为石油开采研究的重大课题, 三次采油则是一种特别有效的提高采油率的方法。 三、三次采油分类 三次采油的方法很多, 主要有 4 大类: ①热力驱, 包括蒸气驱和火烧油层等; ②混相驱, 包括CO2 混相、烃混相及其他惰性气体混相驱,这些混相剂未达到混相压力之前为非混相气驱; ③化学驱, 包括聚合物驱、表面活性剂驱、碱驱和注浓硫酸驱等; ④微生物采油, 包括生物聚合物、微生物表面活性驱,年来又开发出了气一水交替驱(WAG驱)。目前,三次采油研究尤其以表面活性剂和微生物采油得到人们的普遍重视, 而表面活性剂驱则显示出明显的优越性。四、表面活性剂的结构、分类 表面活性剂单体是由一个非极性的亲油基和一个极性的亲水基构成。亲油基一般由长烃链组成。表面活性化合物的表面性质受制于其亲油和亲水特性的平衡。如果表面活性剂中的烃链少于12 个碳原子,则该表面活性剂为水溶性的,因为极性端基团把全部分子拉入水中。然而,当烃链长度大于14个碳原子时,则这种化合物称为水不溶性(油溶性) 的表面活性剂。图 1 为表面活性剂分子结构 图。表面活性剂的分子 结构不仅造成表面活 性剂在表面的集中并 降低溶剂的表面张力, 而且也影响分子在表 面的排列方向,其亲油 基在溶剂中,而亲水基 部分的取向则要离开

双子表面活性剂表面活性的研究

双子表面活性剂表面活性的研究 马素俊,孙玉海,冯茜,马天态,杨景辉 (中国石化胜利油田分公司采油工艺研究院,东营257000) [摘 要]利用胜利油田临盘采油厂的注入水配制了不同含量的双子表面活性剂,考察了双 子表面活性剂的表面活性,并将其与对应的传统表面活性剂进行了对比。结果表明,双子表面活性剂具有较强的耐温抗盐性能,且在较低含量下降低表面张力的能力明显优于对应的传统表面活性剂,可用于高矿化度和温度为70 90?的油藏。 [关键词]阳离子双子表面活性剂 杂双子表面活性剂 表面活性 收稿日期:2011-08-01。 作者简介:马素俊,硕士,主要从事油层保护技术研究工作。 双子表面活性剂是近年来研究较多的新一代表面活性剂,因其特殊结构而使其具有一些特殊的性质,如低临界胶束浓度、高表/界面活性、良好的水溶性和润湿性等。20世纪90年代初,双子表面活性剂在世界范围内引起极大关注,成为胶体与界面化学领域的研究热点。目前,国外一些研究学者 〔1-2〕 已合成出一系列阴离子、阳离子、 非离子及两性型双子表面活性剂。2001年我国开始进行双子表面活性剂的研究,唐善法等〔3-6〕 合成了不同类型的双子表面活性剂,并对其性能及应用做了大量研究。在石油开采应用中,双子表面活性剂在提高驱油效率方面已有报道〔4〕 ,在 油田开发方面具有广阔的应用前景 〔7〕 。 我们利用胜利油田临盘采油厂的注入水配制了不同含量的双子表面活性剂,考察双子表面活性剂联结基长度对表面张力的影响及阳离子、杂双子表面活性剂的耐温抗盐性能,为双子表面活性剂在实际油藏中应用提供了理论和实践指导。1实验部分 1.1 主要仪器与试剂 SVT 20型旋转滴张力仪,Data physics 公司;天平;恒温水浴TC -202D ,美国Brookfield 。 双子表面活性剂12-2-12、 14-3-14、14-4-14、14-6-14、8(-)-2-16(+),纯度80%,自制;十二烷基三甲基溴化铵(DTAB )、十四烷基三甲基溴化铵(TTAB ),分析纯。 临盘采油厂1316站注入水为NaHCO 3水型,离子组成见表1。 表1 临盘采油厂1316站注入水离子组成 mg /L 1.2 实验方法 盐水配制:按照m (NaCl )?m (CaCl 2)?m (MgCl 2·6H 2O )=7?0.6?0.4质量比配制3种不同含量的盐水。 表面活性剂溶液的配制:用临盘采油厂1316站注入水及不同含量的盐水配制不同含量的表面活性剂溶液。 表面张力测定方法:采用SVT 20旋转滴张力仪测定表面活性剂溶液表面张力。 2结果与讨论 2.1 双子表面活性剂与对应的传统表面活性剂 的性能比较 用1316站注入水配制了不同含量的两种双子表面活性剂溶液及其对应的传统表面活性剂溶液,在70?下,采用旋转滴法测定其表面张力,结果见表2。当表面活性剂溶液含量(质量分数,下 同)>100?10-6 时, 双子表面活性剂在降低表面张力的能力上没有明显优势;当12-2-12含量 为0.1?10-6 时,表面张力为25.54mN /m ;而DTAB 含量为10?10-6时,表面张力为26.36mN /m 。这表明双子表面活性剂在较低含量下可达传统表面活性剂DTAB 高含量下的表面效果, 5 2011年12月马素俊等.双子表面活性剂表面活性的研究

表面活性剂的合成、纯化、及应用论文

摘要 表面活性剂是一类易于富集于界面、并对界面性质及相关工艺过程产生明显影响的物质。从发展历史看,表面活性剂源于洗涤剂,但随着技术发展而脱离了洗涤剂,形成了独立的工业。随着表面活性剂的发展和整体工业水平的提高,表面活性剂已从日常生活中的家用洗涤与个人保护用品,进入了国民经济各个领域和国家支柱产业本文将简单介绍一下表面活性剂的合成、纯化、表征及在精细化学品中的应用。 关键词:表面活性剂纯化鉴定合成

Abstract Surfactant is a kind of easily enriched in the interface, and have a significant effect on the interfacial properties and related process material. From the development history, surfactants in detergent, but with the development of technology and from the detergent, formed an independent industrial. With the development of surfactant and the overall industrial level, surface active agent has been from the household cleaning and personal care products in daily life, in all fields of national economy and the national pillar industry, this article will introduce the surfactant synthesis, purification, characterization and application of fine chemicals. Key words : Surfactant, Purification, Identification

双子表面活性剂

双子表面活性剂的合成进展 摘要:双子表面活性剂是一类新型的双亲水基、双疏水基两亲表面活性剂,按照其结构特点,双子表面活性剂可分为阳离子、阴离子、非离子以及两性离子表面活性剂。本文介绍了双子表面活性剂的研究进展和合成现状。 关键词:双子表面活性剂,研究进展,合成现状 双子表面活性剂是一族性能优异的表面活性剂,其分子是由两个普通单链单头基表面活性剂分子在头基处通过联接基团以化学键连接而成。双子表面活性剂特殊的结构决定它比传统表面活性剂具有更优良的性能。它具有两个亲水基和疏水基,通过联接基团将两部分连接,联接基团有化学键作用,降低了两极性间的静电排斥力及其水化层间的作用力,使得双子表面活性剂具有低CMC特性。与单烷烃链和单离子头基组成的普通表面活性剂相比,双子表面活性剂具有如下特征性质:(1)易吸附在气/液表面,有效地降低水的表面张力;(2)易聚集生成胶团,有更低的临界胶束浓度;(3)具有很低的Kraff点;(4)与普通表面活性剂间的复配能产生更大的协同效应;(5)具有良好的钙皂分散性能;(6)优良的润湿性能。目前,双子表面活性剂已经受到世界各国科学家的青睐,并掀起了一股新的研究热潮。本文综述了当前各类双子表面活性剂的研究进展和合成现状。 1阳离子型双子表面活性剂的合成 阳离子型双子表面活性剂由于其特殊结构而呈现出独特的性能, 如抗静电性、杀菌性、柔软性、防腐性等,是其它类型的表面活性剂所无法替代的。国内外对阳离子型双子表面活性剂的合成研究一直比较活跃。大部分阳离子型双子表面活性剂的结构中含有2个亲水基和2个疏水链,且极性基团和疏水链都是相同的,但也看到一些含有特殊官能团表面活性剂的文献 报道。 1.1多烷基多季铵盐表面活性剂的合成

表面活性剂小论文

表面活性剂 摘要:随着社会进步科技发展,高新技术突出,化工产业为满足生产的高效率和能源最大效率的利用,减少能源损失和开发新产品,表面活性剂这一起着活性的物质日显重要。表面活性剂由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用及相应的实际应用,成为一类灵活多样、用途广泛的精细化工产品。表面活性剂除了在日常生活中作为洗涤剂,其他应用几乎可以覆盖所有的精细化工领域。为了更好利用它,我们要对其有一个充分了解。本文从分类和作用、机理来分析。 关键词:表面活性剂、阴离子表面活性剂、阳离子表面活性剂、两性离子表面活性剂、非离子表面活性剂、基本性质、结构和应用 引言:要充分利用和把握表面活性剂我们首先就要了解其的基本性质和分类。我们从阴离子表面活性剂、阳离子表面活性剂、两性离子表面活性剂、非离子表面活性剂、基本性质来分析。 一、表面活性剂概述: 1.概念:表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 2.组成:分子结构具有两亲性,非极性烃链: 8个碳原子以上烃链,极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。 3.吸附性:溶液中的正吸附:增加润湿性、乳化性、起泡性,固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附。 二、表面活性剂的分类 根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。 按极性基团的解离性质分类:1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠;2、阳离子表面活性剂:季铵化物; 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型;4、非离子表面活性剂:脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 三、阴离子表面活性剂 1、肥皂类 系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析。 碱金属皂:O/W;碱土金属皂:W/O;有机胺皂:三乙醇胺皂 2、硫酸化物 RO-SO3-M

棉纺织工业中表面活性剂的应用【论文】

棉纺织工业中表面活性剂的应用 1上浆助剂 1.1乳化剂 浆料中乳化剂的作用主要是使油脂在浆液中稳定乳化,以提高浆液质量。其次,减轻化学合成浆料粘着剂因表面具有凝聚性而发生的结皮以利于上浆。再次,可提高浆液对粘胶纤维和合成纤维的润湿能力。常用的浆料乳化剂为:脂肪醇聚氧乙烯醚、EL-40、OP类等。 1.2渗透剂和润湿剂 由于经纱一般因其本身张力大、捻度高、回潮小,尤其是疏水性的合成纤维含油又较多,浆液浸透力显得不够,再加上浆液本身呈胶体状态,表面张力大,所以上浆时要使浆料在经纱上吸附并向内扩散、渗透,使纱内空气逸出,变得非常困难。因此,必须加入渗透性和分散乳化性好的表面活性剂,以降低浆液表面张力,增高浆液与经纱界面活性,提高和促进浆液向经纱的渗透、扩散。浆料中常用的渗透剂和润湿剂主要以阴离子和非离子表面活性剂为主。常用的渗透

剂有:脂肪醇聚氧乙烯醚、月桂醇聚氧乙烯醚、渗透剂M、琥珀酸二辛酯磺酸钠等。 1.3抗静电剂 疏水性强的合成纤维经纱在织造过程中易产生静电,使织机开口区毛茸耸立,形成扭结,影响织造顺利进行。为消除或防止在纺织过程中各工序产生的静电和织物整理过程中的静电,在浆料中添加少量的抗静电表面活性剂就可以消除上述弊端。常用的抗静电剂有:脂肪醇磷酸酯、N,N-二甲基羟乙基十八酰氨基季铵盐硝酸盐、壬基酚聚氧乙烯(7~10)醚等。 1.4消泡剂 含粘着剂的浆液在上浆过程中易产生泡沫,妨碍浆液渗透。消除泡沫的方法有两种:一是改进操作方法,这可基本解决以淀粉为主的浆液起泡现象,但对于化学合成的高分子浆料却不起作用。二是加入消泡剂以抑制泡沫产生,这对于某些合成浆料粘着剂极为必要。应用最多的还是有机硅油类的消泡剂,主要有:302乳化硅油、304乳化硅油、消泡剂FZ-880等。

高效表面活性剂研究

Yol.37 No.5 May. 2018 石油化工应用 PETROCHEMICAL INDUSTRY APPLICATION 第37卷第5期 2018年5月高效表面活性剂研究 崔丹丹,李辉 &中国石油大港油田采油工艺研究院,天津300280) 摘要:对比评价了 3种石油磺酸盐,分析了表活剂的CMC值、HLB值、润湿性,优化出一种高效表面活性剂,在降低界 面张力能力以及乳化、改变润湿性方面都表现出较优的性能。 关键词:CMC值;HLB值;润湿性 中图分类号:TE357.46 文献标识码:A文章编号:1673-5285( 2018 )05-0143-04 D01:10.3969/j.issn.l673-5285.2018.05.032 室内研究发现单纯的石油磺酸盐在降低界面张力 及乳化方面效果稍差>1]>而非离子表面活性剂,降低界 面张力能力较强,但与原油的配伍性稍差,洗油效率较 低r将二者复配使用可确保性能指标满足现场应用需求。因此室内优选石油磺酸盐表活剂BHS-01及非离子表 活剂DBS-03,按照不同比例进行复配,得到命名为 DPS的系列表面活性剂,并将该系列表面活性剂特性 与单纯石油磺酸盐对比研究,分析其与原油的匹配性。 1实验部分 1.1实验药品及仪器 DPS面活性剂,有效 为40 D),240-340 面活性剂,有效 为40 %),340-520 面活 性剂,效 为40 %),油 水,油 新6-8-2井脱水原油。 仪器:TX500C界面张力仪;接触角测定仪。 53 %。 1.2实验方法 1.2.1CMC测定CMC值为表面活性剂的临界胶束 ,面活性剂 ,的 性 界面张力 率 及 将发 。研究 CMC可确 面活性剂降低界面 张力能力。 原 在 面活性剂 较低 ,的,的 面/界面张力 降,到 界 ,面/界面张力的下降 。表面/界面张力对 ,的 CMC。 果表面活性剂不纯,表面活性的 酸 ,的表面/界面张力-的 可能 得不 ,但 现 低。面活性剂 的方 [2]。 水配 不同 活剂 ,按照标 SY/T 6424-2000 4 的 方 。 用 现场 水配不同表面活性剂 ,用界面张力仪在53 %与原油新6-8-2井)的界面张力。 1.2.2 HLB 值测定HLB 值(Hydrophile-Lipophile Balance Number)称亲水疏水 。性能的表面活性剂求的HLB,在水 油 的溶解都小,主存在于相界面上,充分发挥表面活性剂 降低界面张力的用。 HLB的 用乳化,乳化的原理是用表面活性剂来乳化油介,面活性剂的HLB与 油相介所需的HLB同,的乳稳性最。对于一般的水性面活性剂,可使用松节油(所 需HLB值16)和棉籽油(所需HLB值为6)配 系列需不同HLB的油,每15份油 5份待测表面活性剂,后 80份水,搅拌乳化,其中稳性 的样油所需的HLB面活性剂的HLB值。对于油性表面活性剂,可固油相为棉籽油[3]。 收稿日期:2018-05-15

论文双子表面活性剂

双子表面活性剂综述 张家婧 (山东大学化学与化工学院山东省济南市250100) 摘要双子表面活性剂使其在表面活性剂相关领域脱颖而出。双疏水基双亲水基表面活性剂独特的分子结构使其具有与传统的单疏水基单亲水基表面活性剂不同的特性,如CMC很低,降低水溶液表面张力的效率很高。无论是表面活性,还是溶液中的性质,如界面行为、粘度特性等都体现出独特之处。另外,双子表面活性剂的应用也日趋广泛。 关键字双子表面活性剂结构性质应用 Review of Gemini surfactant Jiajing Zhang (College of Chemistry and Chemical Engineering,Shandong University,Jinan,250100) Abstract The particularity of the Gemini surfactants’structure makes it stand out in the related fields of surfactants.Gemini surfactants have two hydrophobic groups and two hydrophilic groups per https://www.sodocs.net/doc/923636997.html,paring to conventional surfactants which have single hydrophobic group and single hydrophilic group per molecule,the distinct molecular structure of Gemini surfactants make them possess some special properties,such as quite lower surface tension and higher efficiency for reducing surface tension.The surface activity,solubility and viscosity characteristics change a lot,which make Gemini surfactants increasingly wide application in practice.On the other hands,the application of surfactants in many fields is also becoming more widely. Keywords Gemini surfactants,Structure,Character,Application 1引言 表面活性剂按照分子结构的特征可分为三类:传统型、Bola型和Gemini型。 相对于传统的表面活性剂,双子表面活性剂可以说是一个全新的概念,这种有两个亲水端基和两个疏水端基的表面活性剂,相当于通过一个连接基将两个表面活性剂分子连接在一起的结构。越来越多的科研工作者们积极开展相关方面的研究,因为其有着独特的溶液和界面性质,使得效果往往优于传统表面活性剂。 1971年,Bunton[1]等首次合成了一类阳离子型Gemini表面活性剂并对它们的表面活性和临界胶束浓度进行了研究。1988年,日本Osaka大学的Okahara[2]等研究并合成了以柔性基团连接离子头基的若干双烷烃链表面活性剂,但真正系统性地开展这类新型表面活性剂研究工作则是从1991年Menger[3]合成了以刚性基团连接离子头基的双烷烃链表面活性剂开始。他将这类型顺序排列的两亲分子命名为:Gemini表面活性剂,并对Gemini表面活性剂的吸附形式和胶束形式作了探讨。从1991年开始,美国纽约州立大学Brookly学院的Rosen小组采纳了其命名,系统合成和研究了刚性基团连接的双子表面活性剂,撰写了一篇综述文章[4]。同时,

氨基酸类表面活性剂-论文

氨基酸类表面活性剂 摘要 氨基酸是具有氨基和羧基的化合物的总称,作为蛋白质和酶的构成成分是生物体必需的化合物之一。此外,从工业观点来看,最近由于氨基酸制造技术的进步,可以得到比较廉价的氨基酸,利用其多官能基性、光学活性或氨基酸支链的多种功能,可以制成各种功能材料。对氨基酸系表面活性剂的研究开发,首先是在化妆品领域,接着在各种领域,新功能材料的种类、用途也正在扩展。本文对氨基酸系表面活性剂的物性和应用,以氨基酸衍生物为中心,包括最近开发的材料进行介绍。 关键词:简介,结构,物理化学性质,作用,国外研究现状(常用的合成工艺路线、流程和设备、产品检验),结论(对全文的评述做出简明扼要的总结,重点说明对毕业论文重要论述依据的相关文献已有成果的学术意义、应用价值和不足,提出今后研究的目标) 一、简介 表面活性剂(surfactant),是指加入少量能使其溶液体系的界面状态发生明显变化的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为疏水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。 氨基酸型两性表面活性剂是一种以氨基酸为基础的环保表面活性剂,其良好的无毒、生物可降解和配伍性能,越来越多地被应用到众多工业中 氨基酸与疏水物质发生反应,生成的表面活性物质称为氨基酸型表面活性剂。近年来氨基酸型表面活性剂广泛用于化妆品和卫生用品生产中,其年产量快速增长着。 二、结构

表面活性剂最新设计研究进展

word整理版 表面活性剂最新研究进展 人类的日常生活,各类生产活动,多种科学和技术的进步对表面活性剂品种和性能提出越来越高的要求,促使表面活性剂科学不断发展,迄今方兴未艾,表面活性剂已经深入到生命起源以及膜材料、纳米材料、对映体选择性的反应等各个领域中,设计新的有特殊用途和应用价值的表面活性分子仍不断受到人们的关注。新的功能型表面活型剂与附加的官能基团的性质和位置有密切关系, 对传统的表面活性剂分子结构的修饰会导致其结构形态有很大的变化,近几年国内外的相关研究单位在表面活性剂领域的最新研究进展主要有以下方面。 一、高分子表面活性剂 高分子表面活性剂的合成成为近年来表面活性剂合成研究的热点课题之一。高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物。它像低分子表面活性剂一样,由亲水部分和疏水部分组成。高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,广泛应用作胶凝剂、减阻剂、增黏剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等。因此,高分子表面活性剂近年来发展迅速,目前已成为表面活性剂的重要发展方向之一。 高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。如阴离子型的高分子表面活性剂有聚(甲基)丙烯酸(钠)、羧甲基纤维素(钠)、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸酯等。两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸-阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。非离子型的高分子表面活性剂有羟乙基纤维素、聚丙烯酰胺、聚乙烯吡咯烷酮、聚氧乙烯类共聚物等。阳离子型的高分子表面活性剂有聚烯烃基氯化铵阳离子表面活性剂、亚乙基多胺与表氯醇共聚季铵盐、淀粉或纤维素高取代度季铵盐、多聚季铵盐、聚多羧基季铵盐等。 开发低廉、无毒、无污染和一剂多效的高分子表面活性剂将是今后高分子表面

阳离子型双子表面活性剂的合成及表面活性

2006年第64卷化学学报V ol. 64, 2006第18期, 1925~1928 ACTA CHIMICA SINICA No. 18, 1925~1928 * E-mail: yjfeng@https://www.sodocs.net/doc/923636997.html,; Tel. & Fax: +86 (0)28 85236874. Received March 10, 2006; revised May 19, 2006; accepted June 30, 2006. 中国科学院“百人计划”及中石油风险创新基金(No. 050511-2-3)资助项目.

1926化学学报V ol. 64, 2006 表面活性剂的研究却少有报道. Oda等[7]于1997年率先合成了m-s-m'(m-m'=4)型不对称型双子表面活性剂, 考察了疏水基长度和不对称性对相行为[8]及胶束聚集体[9]的影响, 利用1H和19F NMR谱研究了其胶束化行为[10,11], 并以其合成了有序的介孔材料[11]. Sikiri?等先后研究了不对称型双子表面活性剂12-2-14在水溶液中的吸附和缔合行为[12]、连接基的长度(s=2, 6, 10)对不对称型双子表面活性剂12-s-14固体相转变[13]和在水溶液中的吸附和缔合行为[14]的影响. Wang小组研究了不对称型双子表面活性剂m-6-m'(m+m'=24)的热力学性质和胶束化行为[15,16], 并利用微量热计[17]研究了其与DNA的复合物的性质. 但固定一端疏水碳链及连接基的长度、考察另一端疏水碳链长度对溶液性质的影响尚未见报道. 本文通过固定连接基的长度(s=2)和一端的疏水碳链长度(m=12), 变化另一端的碳链长度, 合成了一系列阳离子双子表面活性剂二溴化-N,N'-二(二甲基烷基)乙二铵(12-2-m', m'=4, 8, 12, 16), 并考察了它们在水溶液中的表面张力和电导行为. 1 实验部分 1.1 试剂 主要化学试剂: 1-溴代丁烷、1-溴代辛烷、1-溴代十二烷、1-溴代十六烷和四甲基乙二胺均为化学纯, 购自中国医药集团化学试剂公司; 实验用水为二次蒸馏水. 1.2 对称双子表面活性剂的制备和纯化 参考文献[3]的方法合成对称型双子表面活性剂12-2-12, 但在本工作中对反应条件作了一定的改进. 利用溴代十二烷对四甲基乙二胺在异丙醇中进行季铵化, 反应48 h后蒸发除去溶剂, 在丙酮和乙醇的混合溶剂中三次重结晶, 结晶物经真空干燥24 h后得白色固体粉末状产物, 产率为80%. 1.3 不对称双子表面活性剂的制备和纯化 根据文献[7]的思路合成不对称双子表面活性剂, 但对反应条件做了改进. 先通过四甲基乙二胺与溴代烷在丙酮中进行季铵化反应合成中间体m'-2 (m'=4, 8, 12), 蒸发除去溶剂, 在乙醚中多次重结晶, 结晶产物经真空干燥24 h, 产率为60%~70%. 然后, 中间体4-2和8-2与1-溴代十二烷、12-2与1-溴代十六烷在乙腈中反应2~3 d, 蒸发除去溶剂得到粗产物. 粗产品在丙酮中重结晶数次, 真空干燥24 h后得白色固体产物. 1.4 中间体及双子表面活性剂的结构表征 中间体m'-2 (m'=4, 8, 12)和双子表面活性剂12- 2-m'(m'=4, 8, 12, 16)分别以D2O和CDCl3为溶剂, 在Bruker Avance 300核磁共振仪上进行1H NMR表征. 利用CARLO ERBAO1106型元素分析仪(意大利) 分别对中间体和表面活性剂进行元素分析. 1.5 水溶液表面张力和电导率的测定 表面活性剂试样溶解在二次蒸馏水中配制成一定 浓度的溶液, 通过连续稀释法分别利用全自动表面张力 仪BZY-1(上海衡平仪器厂)和DDS-11A电导率仪(成都 方舟科技开发公司)在(25.0±0.1) ℃测定不同浓度下水 溶液的表面张力和电导率. 2 结果与讨论 2.1 双子表面活性剂的合成和纯化 溴代烃与二胺之间发生的是季铵化反应, 属于SN2 取代反应, 因此反应溶剂的极性、沸点和对产物的溶解 性对反应速率影响很大. 在对称型双子表面活性剂 12-2-12的制备过程中, 采用高沸点的异丙醇作为反应 溶剂回流48 h. 在不对称双子表面活性剂中间体的制备 过程中采用丙酮作为反应溶剂以减少二胺的副反应, 从 而提高中间体的收率. 第二步反应采用乙腈作为反应溶 剂来加快反应的速率. 其中, 12-2-4与12-2-8的第二步 制备反应需要在40 ℃左右反应3 d, 而12-2-16需要在 回流温度下反应2 d. 根据产物的溶解性, 12-2-12采用丙酮与乙醇混合溶 剂进行重结晶, 12-2-4, 12-2-8及12-2-16在丙酮中重结晶. 但发现, 12-2-16在丙酮与乙醇的混合溶剂中重结晶 的效果更好. 产物12-2-4与12-2-8在室温下为蜡状固体, 12-2-12和12-2-16为白色固体粉末. 中间体及最终 产物的收率见表1. 表1 双子表面活性剂及中间体的收率 Table 1 The yield of intermediates and geminis Yield/% Sample This work Literature data 4-2 70 — 8-2 65 — Intermediate 12-2 67 78[12] 12-2-4 60 — 12-2-8 58 — 12-2-12 80 — Gemini surfactant 12-2-16 70 — 2.2 中间体及双子表面活性剂的结构表征 表2和3分别是中间体和双子表面活性剂的1H NMR数据. 从表中可以看出, 不同官能团中氢原子的 位移与理论值相吻合; 各种类型氢所占的比例与化合物

纺织业表面活性剂运用【论文】

纺织业表面活性剂运用 1.表面活性剂 自20世纪40年代进入工业生产以来,表面活性剂获得了广泛的应用,被誉为“工业味精”。表面活性剂分子具有两亲性,在水溶液中极易富集于表面,从而显著改变溶液性质,且随着分子中亲水和亲油比例的不同、结构的不同,表现出的性质亦有差异。它们具有分散、润湿或抗黏、乳化或破乳、起泡或消泡以及增溶、洗涤、防腐和抗静电等一系列物理化学性能,这些基本性能对纺织、印染加工十分重要。据统计,纺织行业中用到的表面活性剂品种达到3000多种[1],纺织工艺生产过程,从散纤维的精制、纺丝、纺纱、织布、染色、印花和后整理等各工序,都离不开表面活性剂的应用。其作用是提高纺织品的质量,改善纱线的织造性能,缩短加工工期,因此表面活性剂对纺织行业的贡献很大。 2.表面活性剂在纺织工业中的应用 2.1洗净剂 洗净剂也称洗涤剂,在纤维纺织过程中应用广泛,如棉布

的退浆和煮练、羊毛的脱脂和洗涤、生丝的脱胶、合成纤维的脱油、织物染色和印花后清除未固色的染料等工序,都使用洗净剂。其在水中具有乳化、润湿、起泡、胶溶和悬浮等性能,从而表现出显著的去污能力,且耐硬水,遇到钙、镁离子不会产生沉淀,在水中不产生游离碱,不会损伤丝、毛织物的强度,不仅能在碱性或中性溶液中使用,还可在酸性溶液中使用,洗涤过程快,用量少,低温也可洗涤[2,3]。由于阳离子表面活性剂会产生静电吸附,导致表面活性剂的疏水基向着水溶液,分散后的污垢容易再沾污到织物表面,这样对于织物净洗极为不利。因而,作为洗涤用的表面活性剂多用非离子、阴离子和两性离子[4]。其中十二烷基苯磺酸钠(LAS)用得较多,但是由于其泡沫多,刺激性大,有一定致畸性,且耐强碱性差,生物降解性能相对较差,而逐步被脂肪醇聚氧乙烯醚硫酸盐(AES)、仲烷基磺酸盐(SAS)、α-烯烃磺酸钠(AOS)、α-磺基脂肪酸甲酯钠盐(MES)、脂肪醇聚氧乙烯醚羧酸盐(AEC),以及新型产品茶皂素、多肽基表面活性剂代替[5]。 2.2匀染剂和分散剂 避免染色不均匀或染斑,是印染工艺的主要任务之一。匀染剂是指染色中能延缓染料上染纤维速度(缓染),并能使染料在纤维上从高浓度的部位转移到低浓度的部位(移染),从而避

相关主题