搜档网
当前位置:搜档网 › 盾构隧道工程事故案例分析1

盾构隧道工程事故案例分析1

盾构隧道工程事故案例分析1
盾构隧道工程事故案例分析1

盾构法隧道工程事故案例分析及风险控制

上海市土木工程学会

傅德明

盾构法隧道已经发展到十分先进和安全的技术,但是由于地质水文条件的复杂性,或由于施工操作的错误,还存在许多风险,近年来,我国的盾构隧道工程也出现一些工程故事,因此, 隧道工程的安全和风险控制十分重要.

1、盾构法隧道工程事故分析和风险控制

1.1 南京地铁盾构进洞事故

事故描述:

1.工程概况

南京某区间隧道为单圆盾构施工,采用1台土压平衡式盾构从区间右线始发,到站后吊出转运至始发站,从该站左线二次始发,到站后吊出、解体,完成区间盾构施工。

该区间属长江低漫滩地貌,地势较为平坦,场地地层呈二元结构,上部主要以淤泥质粉质粘土为主,下部以粉土和粉细砂为主,赋存于粘性土中的地下水类型为空隙潜水,赋存于砂性土中的地下水具一定的承压性,深部承压含水层中的地下水与长江及外秦淮河有一定的水力联系。到达端盾构穿越地层主要为中密、局部稍密粉土,上部局部为流塑状淤泥质粉质粘土,端头井6m采用高压旋喷桩配合三轴搅拌桩加固土体。

2. 事故经过

在盾构进洞即将到站时,盾构刀盘顶上地连墙外侧,人工开始破除钢筋,操作人员转动刀盘,方便割除钢筋,下部保护层破碎,刀盘下部突然出现较大的漏水漏砂点,并且迅速发展、扩大,瞬时涌水涌砂量约为260m3/h,十分钟后盾尾急剧沉降,隧道内局部管片角部及螺栓部位产生裂缝,洞内作业人员迅速调集方木及木楔,对车架与管片紧邻部位进行加固,控制管片进一步变形。仅不到一小时,到达段地表产生陷坑,随之继续沉陷。所幸无人员伤亡,抢险小组决定采取封堵洞门方案。3.处理措施

抢险小组利用应急抽水泵排除积水,同时确定采取封闭两端洞门的方案,在该车站端头外层钢筋侧放置竹胶板,采用编织袋装砂土及袋装水泥封堵,迅速调集吊车及注浆设备进场,采用钢板封堵洞门;始发站洞内积极抢险,利用方木对车架与管片进行支顶,在无法控制抢险的情况下安全撤出作业人员,在洞内进行袋装水泥

挡墙施工,共用水泥90t,码砌过程中有局部渗水,为确保挡墙稳固,决定在始发站洞口堵封,之后开始拆除洞口钢轨。

第二天,盾构到达车站端头继续洞门钢板封堵,并及时浇筑混凝土34m3,在钢板背面架设工字钢作为斜支撑;根据地表沉降情况,调集设备进行地表注浆加固。始发站洞口施工袋装水泥挡墙,利用管片小车用龙门吊吊运到井下,人工码砌并开始加工钢筋网片及模板。

第三天,接收车站端头2根型钢支撑已全部架好,继续向已封堵好的钢环内浇灌混凝土。但钢环下部又出现漏水、漏砂现象,现场组织人员用袋装水泥、棉被堵漏,并增加水泵抽水,晚上安装2根钢支撑,井下立模浇筑右线盾构井2m高范围内混凝土。

之后几天,始发站水泥挡墙施工完成,安装钢筋网片及模板,纵横向设置型钢支撑。端头井两侧继续钻孔并注双液浆,右线端头浇筑混凝土,地表沉陷处土方回填,端头井左侧立模。后向洞内注水,注水速度为51m3/h,并用聚氨酯堵漏。

事故发生10日后,接收车站端头部位继续浇筑混凝土,险情得到有效控制。

1.2广州地铁泥水盾构越江施工塌方处理

广州地铁3号线沥~大区间隧道工程(地质剖面图见图1)采用2台泥水加压平衡盾构机施工,盾构直径φ6260mm。盾构自南向北推进,穿越宽312m的三枝香水道,江底隧道覆土厚度为7.4m -8.6m。河水深度在涨潮时为6.5m,在退潮时为

4.7m。大部分掘进的断面为上软下硬地层,岩石(中风化岩层)的抗压强度为7.0~8.3MPa。

左线盾构机于2004年9月5日凌晨1:20刚刚进入江面时(切口741环,以下环号皆为切口环)发生塌方事故,范围约8m×8m,同时造成河堤下陷。立即采用以下措施:

1、对塌陷区回填C20水下混凝土130m3;

2、采取堆筑沙包、安装钢支顶等措施进行江堤加固防止块石塌落。

3、24h值班对塌方区进行地表观测;

4、由于左右线中心距16m,对右线靠近左线侧采取隧道内补充注浆和隧道内位移监测;

9月6日20:353,待回填砼初凝后,重新启动盾构。

9月13日凌晨,掘进至744环,有发生第二次江底塌方,范围11m×5m,停机。

随即对塌方处进行粘土回填,多次累计150m3。9月14日~9月19日,掘进745~755时,为防止压力波动,停止反复正逆洗疏通管路,采取逆洗掘进通过塌方区。

整个事故处理至9月21日基本结束。

岩体破

碎,富水

性较好,

岩质坚硬

.

塌方原因分析:

739环开始频繁堵管,739环在反复停机疏通环流系统中掘进了3天,严重堵塞和反复正逆洗循环扰动了薄弱的江底覆土,使隧道上部的淤泥层进入盾构泥水舱,由此引起江底塌方漏斗,并影响堤岸的抛石塌落进入泥水舱。

1.3上海地铁某区间隧道盾构磕头事故

事故描述:

1.工程概况

根据对事故段地质进行补勘得到的报告,盾构下部约三分之一处于⑤1a和⑤2层砂性土体中。⑤1a层具有松散、微承压水和承载力低等特性,在动水压力差的作用下易产生渗流液化,流砂和突涌等不良地质情况,⑤1a不良地质对盾构施工及该段隧道后期运营有较大影响。

2.事故经过

盾构掘进至下行线632环(切口在638环)时由于地质突变,盾构机叩头出现整体下沉;掘进至650环(切口在656环)时盾构掘进姿态恢复可控;到670环与新设计线路拟合,盾构恢复正常掘进。

由于盾构下沉,隧道轴线较设计线路偏低。经线路取中调整后,形成615~645环隧道偏高,最高点634环+330㎜;646~670环偏低,最低点656环-216㎜。部分管片破损较大;635环~648环隧道上方为6层无桩基老建筑物,施工处理中房屋沉降较大。

事故段施工示意图

3.处理措施

发现险情后,施工单位采取了如下措施:

1、管片下调及房屋保护

对超高设计线路段(626~638环)管片采用下部泄压取土,上部注浆的措施使隧道整体下调1~3㎝;同时,根据地表建筑物监测数据对隧道邻接块吊装孔进行注浆,确保建筑物安全。

2、管片上调及地层加固

隧道低于设计线路段(651~663环)对管片底部注浆,上部泄压放浆取土的措施使隧道整体上浮2~4㎝,线路上调与地层加固一并进行。

3、对于⑤1a和⑤2层地质较差段(635~670环)通过分层注浆加固隧道下卧层,改良土体,提高承载力及防止地层振动液化。加固范围:隧道下部120°范围;加固地层厚度为隧道外3m。注浆孔布置:拱底块吊装孔(SD)及在拱底块吊装孔两侧相隔24°加钻4个注浆孔,即每环5个注浆孔。加固范围3米,分三层注浆加固;注浆芯管采用花钢管,长度分别为L=3.5m、2.5m、2m。

4、管片堵漏止水,管片渗漏水部位主要以注水泥浆或丙烯酸盐浆液为主,压力保持0.2~0.5Mpa之间,注浆量控制在0.5~1.5m3之间。根据初次注浆封堵效果,对堵漏效果不明显及掘进过程中管片背部破损的部位在管片环缝间采用聚氨脂浆液进行封堵。

5、破损管片修补

管片破损面较大部分出现露筋的部位,根据设计批复方案进行修复。隧道管片破损严重,又处于受拉应力作用区,采用粘贴碳纤维布进行补强加固。

本段管片堵漏和修补工作结束后,进行管片防水嵌缝施工,为加强本段管片的防水能力,630~660环采用全环嵌缝方式施工。

抢险措施施工示意图

1.4 拆除封门后出现涌土、流砂,洞口土体流失

工程概况:

该风井结构为地上一层,地下五层钢筋混凝土结构,风井地下部分为24.2m×15.6m矩形基坑,深约31.7m。

风井围护采用厚1.2m、深49.7m的地下连续墙。隧道采用内径为5.5m,外径为6.2m,衬砌厚度为0.35m,钢筋混凝土管片宽为1.2m的。风井盾构进、出洞处采用高压旋喷加固,q u≥0.5~0.8MPa;地下墙外侧采用高压旋喷桩加固,从地面至坑底以下3m,q u≥1.0MPa;均满足设计要求。

事故经过及处理措施:

(1)2006年5月某日凌晨,施工单位在盾构已经安全进、出风井一个多月的情况下,拆除上行线进洞防水装置,过程中发现上行线进洞处下方局部渗漏水。抢险人员随即采取隧道内压水泥袋或黄砂袋压重、堵漏、注双液浆、注聚氨脂、隧道内支撑和加密对隧道和地面沉降监测等措施,第一次险情得到控制,未对社会及周边交通造成影响,也无人员伤亡。根据这次险情对隧道的影响,工地抢险指挥部布置下一步抢险工作任务,分别采取地面注浆、打降水井措施。

地面注浆加固

(2)数日后,左右风井上行线出洞口发生漏水漏砂现象(第二次发生险情),现场抢险人员再次抢险,用水泥封堵上行线出洞口漏水点,抢险队伍立即赶到风井现场,对隧道内进行聚氨脂注浆,堵漏成功。之后继续采取地面注浆和降水井措施,对因流砂所造成的地下空隙进行填充。

(3)三天后的下午,风井上行线进洞口附近再次发生漏水流砂现象,抢险人员立即采取隧道内注聚氨脂,到晚上再次堵漏成功。

3.事故原因

通过对施工及险情发生过程的调查和初步分析得出,加固体与基坑围护体之间、加固体与隧道管片之间存在有渗水通道,在洞口止水装置拆除过程中,流砂在高承压水作用下,从渗水通道处涌出(突涌),造成险情。

总结:

在本次事故期间,地面共打孔46个,地面共注双液浆约99.7吨,隧道内注双液浆约48.15吨,地面和隧道内共注聚氨酯17吨,根据大致估算,发生险情流砂流失量约260~300 m3,地面和隧道内总注浆量近300 m3,流失量和注浆量基本持平。

由于措施及时、有力,抢险取得成功。整个抢险过程未发生任何人员伤亡,对周围环境等也没有造成大的影响。险情造成盾构进、出洞段管片变形和破损,管片的变形和破损尚在可修复范围内。

1.5 台北地铁某通风竖井涌水、涌砂事故

1981年4月,台北地铁某标段通风竖井发生涌水、涌砂事故。

工程概况:

该通风竖井为内径23.6m之圆形断面结构,井深35m,井壁为1.2m 厚的连续墙,连续墙深度为64.5m,且水平钢筋完全连接,使连续墙形成一完整管状,因此,内部无需施做内支撑。竖井与盾构隧道间采用柔性连接。

事故经过

当天上午,施工人员正在施工洞口防水层时,隧道扩挖处右侧仰拱部出现大量涌水,施工人员立即设法止水,但水流量及水压甚大而无法遏制,竖井周围土壤随涌水不断流入井内,并沿已施工完毕的隧道线倒灌至邻近的接收井,造成土壤流失及地层下陷。据调查,影响范围为通风井南侧57~75m之间,六栋房屋受损,临近管线破坏,路面产生裂缝。而工程本体已完成的上行隧道有23环遭挤压、变形,通风竖井、已完成线上下行隧道及邻近的接收井遭水土淹埋。

处理措施:

事故发生后,首先通知警察局和消防队疏散附近居民,封闭现场,切断水电。为使通风井内外水压平衡,降低泥沙继续涌入速度,先进行竖井内灌水,然后回填土方,并压实、注浆。进行工程本体及其余受损管线、建筑物、路面的修复工作。事故原因:

①地下水是造成此次事故的主要原因,事故发生前,没有很好的进行处理。

②事故发生前,监控、量测资料没有反映出任何征兆,因此,在隧道内发生极小量渗水并未引起施工人员的重视。

预防措施:

①施工全过程均应小心谨慎,现场内出现任何迹象或征兆均应保守处理。

②应妥善处理地下水,注浆止水需在妥善的保护下进行,以免破坏本身结构。

1.6上海某隧道漏水事故

事故经过:

上海某上行隧道内在检查时发现封堵墙处管片上方有局部渗水情况。渗漏位置为管片上部封顶块与邻接块的环缝(圆环“11点钟~1点钟”范围),见下图所示。

隧道渗漏点示意图新增漏水点位置示意图

进过多方努力,两处漏水点均被有效封堵。新的漏水点又出现在封堵墙左上方位置,漏水点处Φ1.5寸流量的水流进入上行线隧道内,且漏水趋势愈发严重。

处理措施:

(1) 在发现渗漏情况有逐渐变大的趋势后,立即进行管片壁后聚氨酯堵漏,共用去聚氨酯10桶,管片环缝漏水得到控制。对于新出的漏水点,有关各方紧急商定采取抢险措施:一、针对上行线封堵墙正面左上方漏水点,压注聚氨酯进行堵漏。

二、在隧道上方地面,即江中围堰平台上,对封堵墙后面的隧道内部及周边进行填充注浆。通过以上措施,渗漏得到控制。同时,在上行线隧道内安排人员值班,进行即时监测汇报动态变化情况。

(2)为了保证渗水情况能更好的控制,随后开始进行地面注浆工作。充填注浆孔位布置为:在上行隧道内布置一孔,隧道两侧各布置一孔。隧道内孔位注浆以注浆量和注浆压力双重控制,初定注浆量(连接段土体5%充填率)为10m3左右,注浆压力0.3~0.4MPa。隧道两侧注浆以压力控制为主,为0.3~0.4MPa。浆液为单液水泥浆,水灰比0.6。

(3)之后又通过隧道内及两侧孔位注浆,隧道内渗水情况进一步减小,渗漏由不间断线流变为滴漏形式。

1.7 广州地铁盾构施工引起地面沉陷事故

工程概况:

2006年1月某日上午,广州市地铁线某区间盾构施工路面发生沉陷,沉陷区域直径约6米,深度为60厘米,地面是该线地铁单位的一个项目经理部。

事故经过:

发生下陷的路面位于该项目部西侧围墙根下,水泥路面从四周朝路心凹陷,中心处下沉半米多深,路面的围墙受牵引后,墙壁出现大量裂痕。

事故因地下水流失引起。警方封锁了周边道路,为减少对交通的影响,施工单位在现场启动应急预案。

事故原因:

据专家分析,该地段为地质条件极复杂的断裂带,且上部为回填沙土层,沉陷处地下水丰富。因施工中机器扰动了地层,地下水流失而引起路面局部沉陷。

1.8 上海地铁双圆盾构隧道施工沉降过大

工程概况:

该区间隧道选用1台Φ6520mm×W11200mm(外径×宽度)辐条式双圆盾构施工。盾构总掘进长度为1458.048m,总推进环数为1215环。隧道管片采用预制钢筋混凝土衬砌管片,采取错缝拼装。管片外形尺寸Φ6300mm×W10900mm(外径×宽度)、内部尺寸Φ5700mm×W10300 mm(内径×宽度),厚度300 mm,宽度1200 mm。1环管片由8块圆形管片、两块大小不同的海鸥形管片和1块柱形管片组成,共计11块。

事故经过:

盾构推进至+37环,切口的位置大约在+41环,地表点对应位置在CX9~CX10之间。上行线地表点CS9二十四小时变化量为-14.76。下行线地表点CX4、CX5、CX6、CX7、CX8、CX8-1、CX8-2、CX8-3二十四小时变化量其值分别为-7.98、-7.56、-6.88、-136.76、-124.20、-125.50、-102.38、-36.05。下行线地表点CX2-1、CX3、CX4、CX5、CX7、CX8、CX8-1、CX8-2、CX8-3累记变化量为-40.20、-131.10、-48.99、-40.11、-133.38、-120.53、-126.50、-102.16、-33.80。

盾构推进到46环,切口的位置大约在+50环,地表点对应位置在CX11。上行线CS9累记变化量为-89.88。下行线CX3、CX4、CX5、CX6、CX7、CX8、CX8-1、CX8-2、CX8-3累记变化量分别为-132.54、-33.27、-48.33、-138.72、-175.79、-166.94、-157.74、-101.16。

事故原因:

(1)盾构注浆系统故障,液压千斤顶有漏油现象,同步注浆管老化,盾尾脱出后未能及时注浆,导致地层损失较大;

(2)盾构覆土较浅,约在6m左右,属浅覆土施工,盾构姿态有上浮趋势;

(3)该处土质较差,大部分为回填土,基本不具强度,受扰动后变形明显。且在盾构推进的线路上有2条暗浜,给盾构掘进带来一定的困难。

(1)提高监测频率,加强施工管理,保证浆液注浆压力合适,浆量充4.处理措施

足。采用二次注浆,确保控制沉降,根据监测情况,及时调整注浆量和注浆压力。同时确保盾构施工机械正常运行。针对盾尾地面沉降较大,依据少量多注的原则采取二次注浆,在稳定注浆压力和注浆量的同时根据现场土层情况即时调整浆液配合比,使注浆效果更为显著,从而有效减小沉降。

(2)盾构停止推进,逐步调整浆液,进行二次注浆。

1.9 广州地铁盾构换刀引起的爆炸事故

2008年04月15日傍晚6时15分,广州地铁六号线东湖站至黄花岗站施工现场发生事故,造成2死5伤。前日傍晚6时10分,中铁隧道集团有限公司广州市轨道交通六号线东黄盾构区间,在盾构机开仓作业时,遇不明气体导致伤亡事故,现场作业工人18人已全部撤离至地面。现场距地面约23米深,作业面进尺2千米。现证实有2人已死亡,5人受伤。事故等级定为较大事故。

事故发生时,因盾构机掘进速度下降,工人判断是刀盘室内的刀片磨钝了,决定打开刀盘室的仓门检查一下。盾构机因此停了下来,两名工程师和两名工人走上前。一般的操作程序是,工人上前打开仓门,并用水管朝刀片上喷水,这样可以将刀片上的泥浆冲干净,也顺便给在掘进过程中发热的刀片降温;接下来,作为技术人员的工程师就要手持照明灯查看并统计刀片的磨损程度。仓门打开了,一工人拿起水管朝刀片上冲水,另一工人举着灯,把手伸进刀盘室内。按照规定,应该举着防爆灯查看刀片,这种低电压的灯即使坏了也只是灭掉,而不会冒出火花。但工地就只剩下了最后一个防爆灯,而且要碰一碰才能亮。用了几个月后,这个灯也坏了。于是举着一根日光灯的灯管伸进了刀盘室。爆炸几乎就在此时发生了。当时有18人在作业。

一声爆炸后,眼前一片尘土。

类似的事故此前也发生过,但未酿成这么严重的后果。他介绍,两个多月前,刀盘室被打开换刀片,前一天置换了空气没换完,第二天再次将刀盘室内的空气置换出来,但抽风设备只停了中午一顿饭的工夫,一名工人下去换刀片时点了一根烟,里面的瓦斯就燃烧起来,冲出的火焰将该工人的眉毛都烧焦了。

16日,事故调查组委托广州穗监质量安全检测中心对事故现场的余气成分及浓度进行检测。经过从16日中午至17日凌晨间的4次检测,结果显示,盾构机土仓内甲烷、一氧化碳等有害气体严重超标。据此专家初步判断,由于盾构机土仓内聚集了大量甲烷等有害气体,在开仓过程中发生爆燃。

1.10西安地铁隧道的两起火灾事故

2008年12月30日16时30分,西安地铁二号线F9地裂缝施工点(会展中心站以北约500米)发生着火事故,原因是施工人员在进行立模钢板切割的过程中,因钢板掉落地下引发防水材料着火,现场烟雾较大并从隧道两端冒出。

2009年1月2日9时56分,二号线钟楼站右线隧道内起火。此次起火原因仍是工人操作不慎,致使焊渣引燃了防水材料。约66小时,同一原因,发生两起同类火灾事故,

1.11 上海地铁隧道施工火灾

2009年1月8日11点15分左右,曹杨路地铁11号线的在建工地发生火灾,现场浓烟滚滚。消防部门出动数十辆消防车赶到现场。事故造成周边部分交通路段拥堵。事故现场附近的地铁3号线并没有受到火灾影响,仍照常运营。当天下午1时左右,现场火势完全得到控制。该事故已造成1人死亡,6人受伤。

事故发生时,现场正在进行盾构进洞注浆施工后的清理工作,起火原因可能是电器设备线路发生短路引发的。事故发生前几天,施工隧道内曾发生漏水,火灾原因可能是由施工隧道内注浆材料聚氨酯引起的。

2.联络通道暗挖施工事故实例

2.1 广州地铁联络通道施工中突发涌水引发上百平米塌陷

2008年1月17日下午3时,广州地铁五号线大西盾构区间2#联络通道在施工中突然涌水发生塌方,造成双桥路旁边花圃内的地面100平方米塌方,深约5米,事故过程没有人员伤亡,地面交通局部(入城方向)被迫暂时封闭,目前情况已得到

控制,已成立由市建委和市地铁总公司牵头的现场抢险指挥部,正在组织灌浆充填抢险,力争今日上午恢复交通。

下午5时许,有关单位调来多部混凝土车进行抢险,车辆停在窟窿边缘,有两辆车上有很长的管道,混凝土车把水泥倒在这两辆车上,通过管道注入窟窿中,多辆混凝土车来回穿梭,运送水泥。晚上7时30分,记者离开现场,抢险仍在进行中。有关部门负责人表示会争分夺秒,争取早点填上窟窿,恢复地面交通。

窟窿刚好处于双桥路和珠江大桥的引桥交界处,深约5米

2.2 上海某越江隧道联络通道工程事故

工程概况:

该越江隧道分南线和北线2条隧道,在2条隧道中,设置4条联络通道,连接南北2条隧道。通道结构顶部距江底约7m。拟建的联络通道,是在已建好的2条隧道区间内进行土层冻结后开挖筑砌施工。

4条联络通道只有1条在⑥粘土层中,其余3条联络通道均在⑦土层中,⑦土层是含承压水的砂土层,水头压力0.25~0.3MPa, 孔隙比大,承载力低,容易压缩,在动力作用下易流变,开挖后天然土体本身难以自稳,易发生水砂突涌。

根据联络通道结构尺寸,为保证冻结帷幕有效厚度,并与两隧道管片完全胶结,采用两侧布孔的方案,如图所示。

事故经过:

在开挖4条联络通道过程中,有3条通道分别发生冻结管断裂事故,即浦东上层、浦东下层和浦西下层。

具体情况如下:

1)浦东上层联络通道掘进至3.5m 时,发生冻结管断裂,经过试压检查,分别是北线20#、21#、22#,南线1#、3#、4#、5#、6#,8个孔均为拱顶长孔。工作面拱顶部位冻结帷幕有一条20 mm 宽的纵向裂缝,盐水从裂缝中渗出。

2)浦东下层联络通道冻结管断裂事故是在刷扩北线喇叭口时发生,经过排查断裂管为南线20#和W1-W2-W28 组孔,盐水沿着冻结帷幕向外渗出。

3)浦西下层联络通道冻结管断裂事故在开挖结束后施工防水层时发生的,盐水从底板向外渗出。经过排查分别是南5#和W14-W13-W12组冻结孔发生断裂。

事故原因:

1)过度冻结。设计积极冻结时间为50d开挖,而实际冻结65d才开挖,使通道完全冻实,卸压孔失去作用,冻涨应力向外挤压造成冻结帷幕薄弱处产生裂缝或鼓起,通道部分开挖后应力释放,引起冻结帷幕变形,而致冻结管断裂。

2)冻土属于弹性-粘滞体,其力学特性表现在外载作用下产生塑性变形引起应力松弛,也就是说冻土是一种流变体,在温度和外力一定时,其蠕变变形随着加载时间的延长而增大,冻土强度随着荷载作用时间的增长而降低,两条下层通道均是临时支护施工结束1 0~20h以后发生的断管。

3)两条下层断管部位均在喇叭口位置,开挖后冻结帷幕有效厚度减少,表面温度回升,冻结帷幕平均温度升高、强度降低。

4)临时支护采用钢支架木背板结构,木背板后填充砂土难以密实,降低了临时支护的作用,实际冻结帷幕仍然属于空帮状态,空帮时间较长冻土发生蠕变较大。

5)开挖掘砌工艺不合理,本工程冻结帷幕薄弱点在联络通道的喇叭口位置,应缩短掘砌时间,及时支护做结构,防止冻结管断裂。

处理措施:

1)当发现冻结管断裂时立即停止冻结运转,采用气压法对每个冻结孔进行试压试漏。查出断裂冻结管的位置及数量。

2)对断裂的冻结管进行套管(φ83×4.5mm无缝钢管),并恢复其盐水冻结;由于盐水融化冻结帷幕,使冻结帷幕强度及厚度降低,先用液氮强化冻结,待冻结帷幕达到设计要求时再恢复盐水冻结。

3)由于盐水窝在冻结帷幕继续融化冻结帷幕,致使冻结帷幕强度降低或冻结困难。施工φ40mm 钻孔,使用注水泥浆的方法将盐水及盐水土置换出来。

4)加强冻结站维护,保证盐水温度在-25℃以下,保证冻结器畅通,加强检测,

发现问题及时处理。

上层联络通道冻结孔布置图

上层联络通道冻结孔剖面图

2.3 台湾高雄捷运地铁工程坍塌事故

事故经过:

2005年12月,台湾高雄地铁工程发生前所未有的塌陷事故,高雄县市交通要道因此陷入瘫痪。至少有11万人受影响。

事故原因:

这次高捷坍塌的主因可能是因为筑联络通道时,未预先大规模灌浆,导致地盘不稳才发生坍塌状况。

处理措施:

事故发生后,公司封闭了道路,灌浆回填塌陷大洞。

2.4 上海轨道交通4号线联络通道工程事故

2003年7月1日上午7点,上海轨道交通4号线位于黄浦江边的董家渡地面下30余米的区间隧道联络通道发生流砂事故,导致隧道附近的土体流失,约270m 隧道发生塌陷损坏,地面发生了较大沉陷,最大沉陷量达到7m 左右,事故场区地面宏宇商务楼、音响制品市场、文庙泵站等建筑建筑物发生不同程度倾斜破坏等问题。在事故抢险过程中,为平衡隧道内外水土压力,采用了封闭隧道井口并注水的方法。道路、重要建筑和隧道轴线附近进行了大量注浆充填和加固,地面发生较大沉降和

破坏的建筑全部拆除,并进行了回填。

事故发生现场

发生事故的上海轨道交通4号线旁通道,采用的是冻结加固暗挖法施工。6月底,4号线浦东南路———南浦大桥段上下行隧道旁通道上方一个大的竖井已经开挖好,在大竖井底板下距离隧道四五米处,还需要开挖两个小的竖井,才能与隧道相通。按照施工惯例,应该先挖旁通道,再挖竖井。但是施工方改变了开挖顺序,这样极容易造成坍塌。事故发生时,一个小竖井已经挖好,另外一个也已开挖2米左右。

在事故发生前,冻结施工单位对原定的施工组织设计擅自进行了调整。专家组的分析也认定,方案调整没有严格遵循冻结法施工工艺的有关规定,导致旁通道冻土结构在施工中出现薄弱环节。调整后的方案,降低了对冻土平均温度的要求,从原方案的零下10℃减少到零下8℃;旁通道处垂直冻结管数量减少,从原方案的24根减少到22根,而原先为25米深的7根垂直冻结管,其中4根被缩短到14.25米,3根被缩短到16米,造成旁通道与下行线隧道腰线以下交汇部冻土薄弱;下行线仅设单排6个冻结斜孔,孔距1米,虽然在冻结孔长度上予以增加,但数量偏少、间距偏大,导致冻结效果不足以抵御相应部位的水土压力。

随后,6月28日上午隧道下行线小型制冷机发生故障,停止供冷7.5个小时。下午2时左右,施工人员在下行线隧道内安装水文观测孔,发现一直有压力水漏出,尽管采取了用木板封堵掘进面等一定措施,但效果不佳。29日凌晨3时,水阀处测出的水压接近外部第七层承压水水压。险情初露征兆,但现场没有任何人将这一情况向总承包及监理公司汇报,导致险情逐步加剧。

上海地层属于典型的软土,黄浦江两侧砂土分布比较广,大约分布在浦东浦西两侧10余米至20余米左右。轨道4号线隧道梁施工所处土层在地下七层是砂层土,含砂量很高,且有承压水。6月30日晚,施工现场出现流沙,施工单位采取措施,用液氮紧急制冷。7月1日零时许,冻结施工单位项目副经理明知旁通道冻土结构存在严重隐患、竟还擅自指挥当班班长,安排施工人员拆除冻土前掘进面部分封板,用风镐凿出直径0.2米的孔洞,准备安装混凝土输送管。正是这个孔洞出水,水砂从掘进面的右下角和侧墙不断涌出,以致封堵无效,最终酿成事故。

事故处理:

事故抢险结束后,即着手对现场周边环境进行了深入细致地调研工作,结合对原工程地质勘察和抢险后就地补勘两份报告的对比分析,同时通过“走出去、请进

来”的方式对国内外现有施工机械、工艺水平及工程可实施性等诸方面进行了全面的比选研究及现场相关试验工作,在充分听取了国内外有关专家意见和建议的基础上,对修复工程提出了原位修复和搭桥(改线)修复两大方案。进综合比选,结论如下:

1)从施工难度和风险来看,两个方案都有很多共同的创记录突破,总体的难度和风险大致相当。原位方案牵涉的不确定因素较搭桥方案多一些,难度和风险略高;

2)从环境影响来看,原位方案集中在隧道塌陷区域施工,对临江花苑和江中有一定影响,但搭桥方案浦西段的影响比原位大,而且牵涉浦东段大量房屋拆迁、道路翻交、管线改道和批租地块征用等工作,总体社会影响远大于原位修复方案;

3)根据初步方案及有关图纸计算,在不计征地拆迁的前提下,搭桥方案比原位方案的工程量略多。但是考虑大量动拆迁、道路翻交和管线搬迁工程量,搭桥方案的实际工作量大大超出原位方案;

4)从建设工期看,原位修复比搭桥修复的工期稍短。若考虑动拆迁、道路翻交和管线搬迁等因素,搭桥修复的工期也将更长。

根据对工程实施难度及风险、环境影响以及线路使用条件的综合比选,原位修复方案实施难度以及风险相对较大,但线路长期使用条件相对较好,同时对环境综合影响也相对较小,通过采取技术攻关等措施,对原位修复的风险可进行有效控制。故最终考虑采用线路使用条件相对较好的原位修复方案。

修复工程实施分为三个主要部分:陆地段明挖实施方案、江中区域明挖实施方案以及两端连接段暗挖实施方案。修复工程明挖修复段的总长度为274米。

修复工程所选用地下墙厚度1.2m,深度65.5m,选定德国立勃海尔HS855HD型成槽机进行开挖作业,地下墙接头形式采用十字钢板接头。并针对性地加长止水钢板的长度至50cm,提高抗渗性能。

引进了日本的全回转钻机进行清障施工。修复施工将遇到超深基坑的围护变形和坑底隆起问题。为基坑和环境安全,必须对基坑底部地基土层进行有效加固。最终决定立足国内设备和工艺,自行研制和开发双高压旋喷加固工艺。

采用坑内降水的实施方案。降水井全部打设在基坑内部,井深60m,利用围护地下墙的屏蔽作用,增长地下水补给路径,从而达到减少坑外水头降的目的。

基坑开挖段和两侧清理后的隧道的对接采用冻结暗挖的方式。隧道的抽水清理采用常压法实施,但预留了气压法施工的接口。在抽水清理过程中,采用分步抽水的方式。每阶段清理完成后,采用各种措施严密观测隧道内水位变化情况,计算渗漏量并与隧道正常渗漏量进行比较。

针对修复工程基坑埋深大,周边环境复杂的特点,在临江花苑大厦、地下墙、支撑结构、黄浦江防汛墙以及江中围堰等处均布置了测点(人工及自动化监测点),随着施工的进行,全天候地采集地下墙的水平位移、周边建(构)筑物的变形以及地表沉降等监测数据。通过有效的实时监控量测及时掌握工程实施过程中结构的受力状态以及周边环境和建(构)筑物的变位情况。

2007年10月,修复工程顺利完成,4号线全线通车。

隧洞案例分析题

第一题 2009年6月10日,D矿业有限公司某个尾矿库发生特别重大溃坝事故,造成265人死亡、4人失踪、33人受伤,直接经济损失9616万元。这是一起由于非法违规建设、生产,违规排放尾矿而导致的责任事故。113名事故责任人受到责任追究。《安全生产法》规定,矿山、建筑施工单位和危险品的生产、经营、储存单位,应当设置安全生产管理机构或者配备专职安全生产管理人员。 1. 上述以外的其他生产经营单位,从业人员超过()人的应当设置安全生产管理机构或者配备专职安全生产管理人员。 A.100 B.200 C.300 D.350 E.500 正确答案:C 2. 按照《生产安全事故报告和调査处理条例》(国务院第493号令)的规定,这起事故由()负责调查。 A.国务院 B.国资委 C.事故发生地省级人民政府 D.事故发生地设区的市级人民政府 E.事故发生地县级人民政府 正确答案:A 3. 按照《生产安全事故报告和调査处理条例》(国务院第493号令)的规定,这起事故在事故报告时,应逐级上报至()。 A.国务院安全生产监督管理部门和负有安全生产监督管理职责的有关部门 B.省人民政府安全生产监督管理部门和负有安全生产监督管理职责的有关部门 C.市级人民政府安全生产监督管理部门和负有安全生产监督管理职责的有关部门 D.县级人民政府安全生产监督管理部门和负有安全生产监督管理职责的有关部门 E.自治区安全生产监督管理部门和负有安全生产监督管理的有关部门 正确答案:A 4. 如果这起事故在调査过程中需要进行技术鉴定,则正确的是()。 A.事故调查组应当委托具有国家规定资质的单位进行技术鉴定 B.必要时,事故调查组可以自己进行技术鉴定 C.必要时,事故调查组可以直接组织专家进行技术鉴定 D.技术鉴定所需时间计人事故调査期限 E.技术鉴定所需时间不计入事故调査期限 正确答案:ACE 5. 以下有关这起事故提交、批复事故调査报告的期限要求正确的是()。 A.应当自事故发生之日起30日内提交事故调査报告 B.应当自事故发生之日起60日内提交事故调査报告 C.特殊情况下,经负责事故调査的人民政府批准,提交事故调查报告的期限可以适当 延长,但延长的期限最长不超过30日 D.负责事故调査的人民政府应当自收到事故调査报告之日起15日内作出批复

【复习题集案例】隧道工程工期计算

问题1:1C400000《铁路工程经管与实务》(第二版)教材P171-173案例1C420031-2 背景: 某新建铁路的控制性工程是新河隧道,长8949m,围岩级别是Ⅲ、Ⅳ、Ⅴ级,设置2座斜井,1座

横洞。 设计文件要求:施工准备工期3个月,明洞及进口段3个月,1号斜井7个月,2号斜井6个月,横洞3个月。隧道围岩分布如图1C420031-2所示。 围岩长度(m )围岩级别 222+235隧道进口 2#斜井 225+820 1#斜井 227+230 230+930 横洞隧道出口231+184 围岩级别 围岩长 度(m )300Ⅳ 200Ⅳ Ⅳ Ⅴ Ⅲ Ⅴ Ⅳ Ⅲ Ⅳ Ⅴ Ⅲ Ⅳ Ⅴ 203550159260030015304002002140766168 明洞8m 图1C420031-2 隧道围岩分布图 根据设计要求横洞只向小里程方向进行一个作业面施工,斜井进行两个作业面施工。 隧道按设计超前地质预报纳入工序,Ⅴ级围岩设计小导管超支护,其他为锚喷支护,Ⅲ级围岩采用全断面开挖,Ⅳ级围岩采用台阶法,Ⅴ级围岩采用短台阶预留核心土法开挖。 问题: 1. 根据你的经验,确定隧道各级围岩的进度指标。 2. 计算隧道掘进工期(含施工准备时间)。 解答: 1. 隧道掘进循环时间、进度指标计算见表1C420031-2。 隧道掘进循环时间、进度指标计算表 表1C420031-2 2. 掘进工期计算如下: 根据计算的各级围岩指标,确定隧道各段的贯通点和各施工作业面围岩长度:

横洞至1号斜井段隧道洞身段开挖时间计算: 2220÷160+1080÷120+400÷60=29.5(个月) (2220是横洞至1号斜井段隧道洞身段III 级围岩长度;1080是横洞至1号斜井段隧道洞身段IV 级围岩长度;400是横洞至1号斜井段隧道洞身段V 级围岩长度。围岩长度计算见后附表) 由于1号斜井工期7个月,横洞3个月,横洞作业面比斜井作业面早施工4个月。 横洞作业面施工时间:29.5÷2+(7-3)÷2=16.8个月 横洞至斜井段施工工期为:施工准备+横洞时间+掘进时间=3+3+16.8=22.8个月。 其他各段计算同上。 经计算隧道进口与2号斜井之间所用掘进时间最长,为24个月,所以本隧道的掘进工期为:24个月。 分析: 施工现场考虑各种因素,在计算工期不超过要求工期的情况下,分界点的设置可适当进行调整,各段均衡施工,同其他作业配合,利于设备、人员的充分利用。 如[案例1C420031-2],横洞作业面施工距离较长,施工通风的难度加大,洞内作业条件差,在不影响工期的条件下进行调整,更符合工程施工实际。如图1C420031-3所示: 横洞 1#斜井 2#斜井A B C D E F G 231+184 230+930 228+500 227+230 226+500 225+820 224+550 222+235 隧道出口隧道进口图示 施工单元 围岩长度(m ) III IV V 86168 1730680 470400400 73068070600600 1562550195 分界点分界点分界点明洞8 m 图 1C420031-3 隧道施工分界里程示意图 工期计算见表1C420031-3: 隧道工期计算表 表1C420031-3

盾构隧道施工工程事故的原因与对策_李希元

文章编号:1673-0836(2005)06-0968-04 盾构隧道施工工程事故的原因与对策 李希元1,闫静雅2,孙艳萍2 (1.广东晶通公路工程建设集团有限公司,广州 510635; 2.同济大学土木工程学院地下建筑与工程系,上海 200092) 摘 要:盾构隧道的施工技术在世界许多国家不断得到发展,但在推广与应用上发生了一些施工事故。本文在调查与分析上海、广州、北京、深圳、南京等地的盾构隧道施工事故的基础上,按盾构法的常见事故类型,对调查到的事故进行分类并对各种事故提出相应的工程对策,为避免同类事故再次发生提供一些有益参考。 关键词:盾构隧道;施工事故;工程对策 中图分类号:U455.43 文献标识码:A Reasons and Countermeasures of Accidents Happened during the Shield Tunnel Construction LI Xi-yuan1,YAN Jing-ya,SUN Yan-ping2 (1.G uangdong Road Engineering co nstructio n Co.Ltd.,G uangzhou510635,China; 2.Depa rtment of G eotechnical Engineering,Scho ol o f Civil Engineering,Tongji University,Shanghai200092,China) Abstract:Nowadays,the shield tunnel has been developed in many countries of the world.However,there are many accidents while spreading and applying the shield construction.Based on the investigation and analysis of the accidents hap-pened in Shanghai,Guan gzhou,Beijing and Shenzhen d urin g shield tunnel construction process,this paper classifies the ac-cidents according to the familiar types of shield accidents and suggests the corresponding solutions to avoid the similar acci-dents in the future. Keywords:shield tunnel;construction accident;countermeasure 1 引言 盾构法是建造城市地下隧道卓有成效的施工方法之一,自1818年法国工程师Brunel发明盾构以来,经过一百多年的应用与发展,已使盾构法能够适用于任何水文地质条件下的施工,无论是松软的,坚硬的,有地下水的,无地下水的暗挖隧道工程都可用盾构法。 目前,盾构隧道的施工技术在世界许多国家不断得到发展,但在推广与应用上出现了一些施工技术方面的事故。由于这些事故的发生,影响整个工程的工期,还造成了极大的经济损失和不必要的人员伤亡。本文在调查与分析上海、广州、北京等地的盾构隧道施工事故的基础上:①分析事故产生原因,对调查到的事故进行分类;②提出相应的工程对策为避免同类事故再次发生提供有益参考。 2 事故原因与分类 对近年来北京、上海、广东、台湾等地的盾构隧道施工事故进行调查统计分析,以下列举出其中25个典型事故: (1)2002年,深圳地铁一期工程四号线采用土压平衡式盾构掘进时,由于结饼而不得不停机开舱处理。由此引发了地面塌陷以及邻近建筑物的轻 第1卷 第6期2005年12月 地下空间与工程学报 Chinese Journal of Underground Space and Engineering Vol.1 Dec.2005 收稿日期:2005-08-05(修改稿) 作者简介:李希元(1961-),男,高级工程师,主要从事隧道工程方面研究,E-mail:fredlxyh@https://www.sodocs.net/doc/928892804.html,。

铁路隧道施工安全事故案例及原因分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 铁路隧道施工安全事故案例及原因分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3677-61 铁路隧道施工安全事故案例及原因 分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、铁路隧道施工安全事故类型及案例 (一)复杂岩溶隧道突水、突泥。 1、20xx年01月21日,宜万铁路马鹿箐隧道出口段平导开挖至DK255+978时发生突水、突泥,突水总量约18万方,在抢险抽水时又多次发生突水。马鹿箐隧道全长7879m,最大埋深约660m,隧道自进口至出口为连续15.3‰上坡。在线路左侧30m预留二线位置设置贯通平导,平导全长7850m。隧道穿越地层中灰岩地层为7408m,占隧道总长的94%,隧道区域漏斗、落水洞、暗河十分普遍,岩溶强烈发育,管道岩溶水系极为复杂。这次事故除多人逃生外,造成10人死亡,1人失踪。 2、20xx年08月05日凌晨1:00时左右,宜万

工程项目管理案例分析(汇编)

工程项目管理案例分析 澳大利亚悉尼港海底隧道工程 澳大利亚悉尼港海底隧道工程是典型的BOT项目融资模式,首先理解BOT融资模式的意义:BOT项目融资(即Build—Operate—Transfer建设~经营~移交)是项目融资的诸多方式中的一种,在我国又被称作”特许权投融资方式。一般有东道国政府或地方政府通过特许权协议,将项目授予项目发起人为此专设的项目公司(Project company),由项目公司负责基础设施(或基础产业)项目的投融资、建造、经营和维护;在规定的特许期内,项目公司拥有投资建造设施的所有权(但不是完整意义上的所有权),允许向设施的使用者收取适当的费用,并以此回收项目投融资、建造、经营和维护的成本费用,偿还贷款;特许期满后,项目公司将设施无偿移交给东道国政府。 悉尼港海底隧道工程的项目背景 针对悉尼港湾大桥车流量逐年增多并己超过大桥设计能力的现状,澳大利亚新南维尔州政府在1979年就向社会公开发出邀请,就解决悉尼港湾的交通问题请私人企业提出建议,最初提出的建议(主要是修建悉尼港湾第二大桥)由于种种原因均未被政府所接受。1986年,澳大利亚最大的私人建设公司Gransfield和日本的大型建设公司之一Kumagai Gumi Co Ltd(熊谷组)联合向州政府提出了建设海底隧道作为悉尼港湾第二通道的建议。州政府在经全面研究后,认为这个建议是可以接受的,于是摇权这两个公司用自有资金对该项目的筹

资方式,建设和经营隧道进行全面的可行性研究。主要包括:技术可行性研究,环境影响研究,资金筹措方案。其中就资金筹措方面聘请了澳大利亚WESTPAL银行为财务咨询单位,对筹资方式进行了咨询并提出了初步方案。 该项目的可行性研究报告历时18个月投入400万澳元并在1987年被州政府批准,这两家私人公司为保证该项目的实施正式成立悉尼港隧道有限公司与州政府签订了特许权合同。该项目在经济上是可行的,最终要达到以下目标:政府的财政预算内不承担提供资金的义务,隧道收费要保持在最低水平上,政府承受的风险限制在最低限度上,政府能影响项目的设计、建设和经营,以保证项目的财政能力;长期性的解决悉尼港大桥的的交通问题,政府仅承担项目实际收入与设计收入之间的差额风险,保证项目有足够的收入归还贷款。 资金筹措方面 该项目总投资7.56亿澳元。最后确认的资金安排方案是:政府无息贷款2.23亿澳元(占29%);这部分资金来源于隧道建设期间悉尼大桥的纯收入,澳大利亚最大的私人建筑公司GRANSFIELD与日本的大型建设公司熊谷组的共同项目贷款为4000万澳币元(各2000万,共占5%)和共同项目资本金分700万澳币元(各350万,共占1%)、;西太平洋银行和德意志银行认购债券2.66亿澳元(占35%);Cheunug Kong Infrastructure 出资1.1亿(占15%);DB Capital Partners 出资6600万(占9%);Bilfinger Beeger 出资4400万

隧道工程施工方案实例TTT

(一)施工原则 采用大型施工机械配套施工,开挖出渣机械配套作业线、初期支护砼机械配套作业线与二次衬砌砼施工作业线相配合一条龙作业。软弱围岩坚持“短进尺、弱(不)爆破、快封闭、强支护、紧衬砌”的原则,开挖后仰拱及时跟上封闭成环。施工中进行超前地质预报,采用先进的量测探测技术对围岩提前做出判断,拟定相应的施工方案。 (二)施工布置 土家湾隧道左右洞均采用对头单向施工,左、右洞口各布置一个隧道专业机械化施工队。隧道施工安排在冬季前完成洞门的开挖,并完成进洞施工。洞内施工开挖、出渣初期支护与二次衬砌模筑砼平行作业。隧道路面待贯通后中间向两侧洞口反向施工。根据地形地貌及工期要求,本隧道不设施工支洞。 (三)总体方案 根据土家湾隧道围岩情况及断面设计,结合本承包人现有技术装备力量和多年的隧道施工经验,确定对于I、Ⅱ类围岩采用上弧导预留核心法施工,格栅钢架辅助支护。隧道出渣采用无轨运输。初期支护设施做到及时可靠,衬砌砼采用机械化作业,二次衬砌采用砼输送车、输送泵和全断面液压衬砌台车相配合的方案。施工过程中加强监测,及时处理分析数据(高速支护参数等)。开挖前做好超前地质预报、探测工作,根据围岩情况采取相应的施工方案。 (1)洞口施工工序 施工工序见洞口施工工序框图 (2)洞口开挖 隧道施工便道修至洞口附近后,近洞口侧60M范围内及两洞口中间地带,用装载机辅以挖掘机整平压实,修建供风、供水、供电设施,并用作材料存放场地和机械停放场地。 洞口及明洞在开挖过程自上而下分层开挖。施工机械以挖掘机为

主,遇地层坚硬石质人工打眼松动爆破,运输采用15t太脱拉自卸车。(3)边坡防护 洞口开挖后的边仰坡面按设计整修平整,及时按设计进行防护,以防风化、雨水渗透而坍塌或滑坡。 (4)洞门修筑 本隧道洞门修筑在进洞施工前完成,并完成明洞回填工作,作好洞口范围的排水工作,以确保洞口稳固、安全。 洞口施工程序框图

盾构隧道工程事故案例分析1

盾构法隧道工程事故案例分析及风险控制 上海市土木工程学会 傅德明 盾构法隧道已经发展到十分先进和安全的技术,但是由于地质水文条件的复杂性,或由于施工操作的错误,还存在许多风险,近年来,我国的盾构隧道工程也出现一些工程故事,因此, 隧道工程的安全和风险控制十分重要. 1、盾构法隧道工程事故分析和风险控制 1.1 南京地铁盾构进洞事故 事故描述: 1.工程概况 南京某区间隧道为单圆盾构施工,采用1台土压平衡式盾构从区间右线始发,到站后吊出转运至始发站,从该站左线二次始发,到站后吊出、解体,完成区间盾构施工。 该区间属长江低漫滩地貌,地势较为平坦,场地地层呈二元结构,上部主要以淤泥质粉质粘土为主,下部以粉土和粉细砂为主,赋存于粘性土中的地下水类型为空隙潜水,赋存于砂性土中的地下水具一定的承压性,深部承压含水层中的地下水与长江及外秦淮河有一定的水力联系。到达端盾构穿越地层主要为中密、局部稍密粉土,上部局部为流塑状淤泥质粉质粘土,端头井6m采用高压旋喷桩配合三轴搅拌桩加固土体。 2. 事故经过 在盾构进洞即将到站时,盾构刀盘顶上地连墙外侧,人工开始破除钢筋,操作人员转动刀盘,方便割除钢筋,下部保护层破碎,刀盘下部突然出现较大的漏水漏砂点,并且迅速发展、扩大,瞬时涌水涌砂量约为260m3/h,十分钟后盾尾急剧沉降,隧道内局部管片角部及螺栓部位产生裂缝,洞内作业人员迅速调集方木及木楔,

对车架与管片紧邻部位进行加固,控制管片进一步变形。仅不到一小时,到达段地表产生陷坑,随之继续沉陷。所幸无人员伤亡,抢险小组决定采取封堵洞门方案。3.处理措施 抢险小组利用应急抽水泵排除积水,同时确定采取封闭两端洞门的方案,在该车站端头外层钢筋侧放置竹胶板,采用编织袋装砂土及袋装水泥封堵,迅速调集吊车及注浆设备进场,采用钢板封堵洞门;始发站洞内积极抢险,利用方木对车架与管片进行支顶,在无法控制抢险的情况下安全撤出作业人员,在洞内进行袋装水泥挡墙施工,共用水泥90t,码砌过程中有局部渗水,为确保挡墙稳固,决定在始发站洞口堵封,之后开始拆除洞口钢轨。 第二天,盾构到达车站端头继续洞门钢板封堵,并及时浇筑混凝土34m3,在钢板背面架设工字钢作为斜支撑;根据地表沉降情况,调集设备进行地表注浆加固。始发站洞口施工袋装水泥挡墙,利用管片小车用龙门吊吊运到井下,人工码砌并开始加工钢筋网片及模板。 第三天,接收车站端头2根型钢支撑已全部架好,继续向已封堵好的钢环内浇灌混凝土。但钢环下部又出现漏水、漏砂现象,现场组织人员用袋装水泥、棉被堵漏,并增加水泵抽水,晚上安装2根钢支撑,井下立模浇筑右线盾构井2m高范围内混凝土。 之后几天,始发站水泥挡墙施工完成,安装钢筋网片及模板,纵横向设置型钢支撑。端头井两侧继续钻孔并注双液浆,右线端头浇筑混凝土,地表沉陷处土方回填,端头井左侧立模。后向洞内注水,注水速度为51m3/h,并用聚氨酯堵漏。 事故发生10日后,接收车站端头部位继续浇筑混凝土,险情得到有效控制。

隧道安全事故案例

兰新铁路第二双线小平羌隧道“4·20”重大事故 由中国中铁二局集团承建的新建兰新铁路第二双线至段站前工程LXS-8标,设计里程为DK345+155~DK407+122,线路长61.363正线公里,位于省中牧山丹马场和市民乐县境,海拔高度3500米~2700米。小平羌隧道地处祁连山中高山区,位于省市山丹县西南方向祁连山小平羌沟至大平羌沟之间,平均海拔高度为3100~3800米。洞身地表起伏较大,地表自然坡度30~40度;隧道起讫里程为DK345+329~DK349+312,隧道长度3983m 。小平羌隧道距民乐县城约120公里,距市约187公里。 事故发生的经过: 2011年4月19日23时30分,钢筋班组安装完成DK349+035处最后一环工22a 型钢拱架,经领工员王伟检查无异常后,喷浆班组13人操作3台喷浆机喷浆。4月20日4时05分,带班员吓文出去组织后续施工材料,当走到距离作业面约40米处时突然听见身后一声巨响,回头看见隧道喷浆作业面上方围岩发生了坍塌,导致初期支护的工22型钢拱架及喷浆作业台架被砸跨,12名作业人员全部被埋入坍塌体中,事故发生后,中铁二局兰新线甘青项目部三工区立即组织抢险救援,于4时40分发现一名遇难者遗体,后因连续发生坍方,抢险工作被迫停止。经勘察事故现场,坍塌围里程为DK349+035~DK349+050,距离地表深度约100~110m 。坍塌岩石块体约400方(最大块径约1米左右),塌腔高8~10米。直接经济损失约908万元。 事故原因分析: 小平羌隧道位于祁连山区域地质构造带(纵向长约1000km, 横向宽200~300km )石炭系灰岩夹页岩、泥灰岩,泥盆系砂岩等软硬相间的地层中,由于多期构造运动挤压作用强烈,洞身发育多个向斜、背斜相间组成的复式褶皱。地表覆盖风化残积土层较厚,基岩露头较少。开挖揭示DK349+050~+035洞段总体位于背斜构造北翼,岩层倾角较陡,节理发育,岩体破碎;岩层的层间结合力较差,加之小平羌隧道洞顶地表冻土冬春后开始融化,冰雪融水下渗软化软弱结构面,致使围岩抗剪强度降低,是该起事故发生的潜在客观因素。

隧道案例分析

隧道特点:车速高、流量大、光线较差、空气质量低、环境噪声大 迂迥空间有限,事故处理起来比较困难,中断交通时间较长 隧道监控目的:对隧道内偶发事故的及时发现及处理 避免发生二次事故 节约维护成本、改善洞内环境、减少污染、减少事故,增强 隧道的通行能力,延长隧道的使用期限,保证隧道的安全营 运 网络系统构成: 1、工业以太网:传输速度快(1000M/100M)、开放式协议(TCP/IP)、适 用面广(RJ45接口)、调试维护便捷、设备价格昂贵 2、PROFIBUS现场总线:传输速度相对较快(12M)、总线式协议(profibus)、 仅适用于具有DP接口的设备、设备价格相对较低、调试维护便捷 3、串口通讯:传输速度慢(9.6k)、自由协议(可由用户定义)、调试维 护复杂、设备价格低廉。 传输介质: 1、光纤 2、超五类线(网线) 3、DP线 4、双绞线 网络设备: 1、光交换机:网线-〉光纤 2、以太网模块:可传输TCP/IP协议的数据 3、DP模块:可传输PROFIBUS协议的数据 4、总线光端机(olm):DP-〉光纤 隧道内监控系统主要设备: 1、本地控制器(PLC):隧道本地的控制核心,负责采集隧道内其他设备的数据,并将数据通过网络传输至控制中心,同时向隧道内的设备发布控制中心的指令。 2、交通灯、车道灯:指示本车道的车辆行驶方向 3、情报板:显示控制中心发布的公告内容 4、车辆检测器:检测隧道内的车流量、车速、拥挤、堵塞等信息。 5、CO/VI:检测隧道内环境状况,CO为一氧化碳值,VI为能见度值。 6、风机:调节隧道内空气质量 7、光强检测器:检测隧道内外的光照强度

盾构法隧道施工引起的地面沉降的原因与对策

盾构法隧道施工引起的地面沉降机理与控制 摘要:本文首先分析了盾构法隧道引起的地面沉降规律和沉降 影响范围,总结了盾构隧道地面沉降的主要影响因素;指明地面沉 降主要源于开挖面的应力释放和附加应力等引起的地层变形,并对地铁施工中的地面沉降安全判断标准和控制原则进行了探讨,为城市地铁工程建设提供有益的参考。 关键词:盾构隧道地铁工程地面沉降沉降控制 中图分类号:u45 文献标识码:a 文章编 号:1672-3791(2012)06(b)-0071-02 abstract:this paper analyzes the shield tunnel caused by land subsidence law and settlement of affected areas,and summarizes the main factors of land subsidence of the shield tunnel;specified land subsidence is mainly due to the excavation surface stress release and the additional stress causedstrata deformation,land subsidence and subway construction safety criteria and control principles are discussed to provide a useful reference for the construction of urban subway project. key words:shield tunnel;subway project;land subsidence;subsidence control 盾构法具有不影响地面交通、对周围建(构)筑物影响小、适应复

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

铁路隧道塌方事故案例分析

铁路隧道塌方事故案例分析一、工程及事故概况 洛湛铁路(茂名段)古榄隧道进口里程为DMK480+725,出口里程为DMK484+295,全长3570米。建设单位为广铁集团公司,施工单位为中铁**局,设计单位为铁道第**设计院,监理单位为广 东**监理公司。当时进口掌子面施工里程为DMK481+181,仰拱及仰 拱填充里程为DMK481+150,二衬里程为DMK481+105。塌方中心里程 约DMK481+150,离进口洞门425米,围岩为V级,涌水量大。 洛湛铁路(茂名段)古榄隧道于2008年7月15日晚19:30时,开挖DMK481+150~+155段5米仰拱时,仰拱基坑基本开挖到位,挖机已退到DMK481+148填充面上对上述段进行清底作业。 当时掌子面处于停工状态,无人作业,仰拱开挖现场只有领班1人,汽车司机1人,挖掘机司机1人。22:35时在没有明显征兆的情况下,隧道左侧边墙突然发生掉块,随即洞内发生大面积坍塌,立刻 将DMK481+148里程前后完全掩埋。供电线路瞬间受损,隧道洞内一 片漆黑。现场领班郭朝华快速跑向洞口方向,汽车司机杨正林驾车 幸运地安全撤出危险地段。挖掘机司机陈其宝,正在挖掘机驾驶室 内操作,不幸困在坍塌体内。事故发生后,现场及时组织了紧急搜

救。由于塌方体极不稳定,救援工作异常艰难,抢救作业面多次发 生险情。为保障抢救人员的安全,经抢险指挥部决定于7月23日停 止对被困挖掘机司机的搜救,由设计单位出具加固处理设计方案后,再由施工单位对塌方段按设计方案进行处理,并进一步调查事故原 因和搜寻被困人员。 古榄隧道DMK481+150~+155塌方段围岩地质情况, 揭示围岩为强风化砂岩夹页岩,局部为全风化,岩体破碎,裂隙纵 横交错,层理产状不规则,岩层风化严重,多数呈软弱夹层产出,局 部岩层层理接近水平状,岩体裂隙水和孔隙水丰富,受裂隙水和地 表水渗透后,岩体自稳性差。 二、塌方段原因分析 针对DMK481+150~+155产生塌方事故发生的原因 1、主观原因分析:

铁路隧道施工安全事故案例解析及其原因分析

铁路隧道施工安全事故案例及原因分析 一、铁路隧道施工安全事故类型及案例 (一)复杂岩溶隧道突水、突泥。 1、2006年01月21日,宜万铁路马鹿箐隧道出口段平导开挖至DK255+978时发生突水、突泥,突水总量约18万方,在抢险抽水时又多次发生突水。马鹿箐隧道全长7879m,最大埋深约660m,隧道自进口至出口为连续15.3‰上坡。在线路左侧30m预留二线位置设置贯通平导,平导全长7850m。隧道穿越地层中灰岩地层为7408m,占隧道总长的94%,隧道区域漏斗、落水洞、暗河十分普遍,岩溶强烈发育,管道岩溶水系极为复杂。这次事故除多人逃生外,造成10人死亡,1人失踪。 2、2007年08月05日凌晨1:00时左右,宜万铁路野三关隧道I线斜井向进口方向DK124+602掌子面右侧下部发生突水、突泥,总突水量约15万方,突泥量5.4万方。斜井工区Ⅰ线距掌子面约220米填满淤泥和石块,其他地段淤泥厚1~4米不等。野三关隧道Ⅰ线全长13846米,隧道最大埋深695米,设计为人字坡。Ⅰ线左侧30m设置Ⅱ线。隧道穿越石马坝背斜及二溪河向斜,发育有5条暗河及管道流。突水后,5个掌子面人员受困,共计52人被困。43人获救,其中1人医治无效

死亡。9人中有2人在隧道内死亡,7人失踪。 (二)软弱围岩隧道塌(坍)方 1、2007年04月30日15时30分太中银铁路吴堡隧道3#斜井掌子面左侧拱脚部位发生坍方, 坍方量约8立方米,造成当场死亡4人,1人受轻伤。 2、2007年08月06日18点30分左右,石太客专南庄隧道出口DIK151+603掌子面处上导坑开挖刚完成,在准备架设拱架过程中,上导坑DIK151+603~610段已完成的初期支护突然发生整体坍塌。造成1人死亡,1名失踪。 (三)隧道掌子面后方塌方 1、2006年06月06日10时20分,大理至丽江铁路下河村2#隧道DK11+195处发生局部坍方,致使正在进行施工作业的一台挖掘机和一名司机被困,经紧急抢救,于当日16时58分将被困司机救出。 2、2006年07月06日5时10分,黔桂线扩能改造工程螃蟹冲隧道出口突然发生坍方,6名施工作业人员被困洞内。经紧急抢救,被困人员于07月09日17时55分全部救出。 3、2007年01月07日,武广客专高岭隧道进口施工掌子面后方30米处11米长段落急剧变形,停止开挖进行加固处理。加强后,变形继续加大,部分地段开裂。

2018一建《市政工程》章节习题:隧道工程施工安全事故预防

2018一建《市政工程》章节习题:隧道工程施工安全事故预防学尔森整理“2018一建《市政工程》章节习题:隧道工程施工安全事敀预防”,更多关于一级建造师模拟试题,请搜索“学尔森一级建造师考试”。 2018一级建造师考试《市政工程》 1K420000市政公用工程项目施工管理 1K420180隧道工程施工安全事敀预防 1[单选题]作为盾构始发不到达安全控制要点之一,拆除洞口临时围护结构前,必须确认(),以确保拆除后洞口土体稳定。 A.围护结构安全 B.邻近既有建(构)筑物安全 C.洞口周围地层变形情况 D.洞口土体加固敁果 参考筓案:D 2[单选题]确认洞口土体加固敁果从稳定性和()两个方面进行。 A.强度 B.刚度 C.透水性 D.密实度 参考筓案:C 3[多选题]盾构机的组装、调试、解体不吊装是盾构施工安全控制重点之一,其主要原因是()。 A.工作井内空间狭窄 点击【一级建造师学习资料】或打开,注册开森学(学尔森在线学习平台)账号,免费领取学习大礼包,包含:?精选考点完整版?教材变化剖析?真题答案及解析?全套试听视频?复习记忆法?入门基础课程?考情分析课?应考指南直播课?通过率分析课?备考计划视频 B.盾构机体庞大 C.工作井周围空间狭窄 D.盾构机重量重 E.盾构机结构复杂

参考筓案:A,B,D 4[单选题]施工竖井井口()范围内不得堆放材料。 A.1.0m B.1.5m C.2.0m D.2.5m 参考筓案:C 5[多选题]盾构机组装、调试、解体不吊装过程中安全控制要点包括()。 A.严防火灾 B.严防重物、操作人员坠落 C.防止工作井围护结构的变形超过预测值 D.邻近既有建(构)筑物安全 E.起重机支腿处支撑点的承载能力满足要求 参考筓案:A,B,C,E 6[单选题]下列关于盾构机穿越江河段施工说法错误的是()。 A.设定适当的开挖面压力,加强开挖面管理不掘进参数控制,防止冒浆和坍塌 点击【一级建造师学习资料】或打开,注册开森学(学尔森在线学习平台)账号,免费领取学习大礼包,包含:?精选考点完整版?教材变化剖析?真题答案及解析?全套试听视频?复习记忆法?入门基础课程?考情分析课?应考指南直播课?通过率分析课?备考计划视频 B.盾构密封系统进行全面检查和处理 C.加强对地层变形监测 D.采用快凝早强注浆材料,加强同步注浆和二次补浆注浆 参考筓案:C 7[多选题]盾构法隧道在地下管线区段掘进时,下列安全措施说法正确的是()。 A.详细查明地下管线类型、允许变形值等 B.施工单位评估施工对地下管线的影响 C.进行管线加固和改移 D.加密监测点,可能时进行管线监测 E.重点关注掘进过程中变形控制,工后一般变形较小,对管线影响不大,不必控制

一级建造师公路实务案例分析练习隧道工程

一级建造师公路实务案例分析练习( 隧道工程)【案例1】 1. 背景材料: 某高速公路隧道施工项目是双洞隧道。其中左洞( 起止桩号 K3+300?K4+200),右洞(起止桩号K3+250?K4+300)穿越的岩层主要是坚硬岩, 岩体较完整, 块状或厚层状结构; 采用新奥法钻爆施工。两洞口处设有明洞, 边坡比较稳定。隧道洞身线路为人字坡。 2. 问题: (1) 根据隧道分类, 左右洞隧道属于哪种类型? (2) 洞身穿越的岩层属于哪一级围岩? (3) 明洞工程根据边坡情况, 可采用的方法是哪一种? (4) 采用新奥法钻爆施工的基本原则是什么?按照炮眼的位置和作用分为哪些, 以及各种炮眼设置的作用是什么?光面爆破的分区起爆顺序是什么? (5) 隧道的排水与防护施工技术应注意的问题有哪些? 案例2】

1. 背景材料: 某公路隧道为单洞双向行驶两车道隧道, 全长4279m, 最大埋深1049m隧道净空宽度9.14m,净空高度6.98m,净空面积为56.45m2。该隧道其围岩主要为弱风化硬质页岩,属W?V级围岩,稳定性较差。根据该隧道的地质条件和开挖断面宽度, 承包人拟采用台阶分部法施工。隧道开挖过程中, 由于地下水发育, 洞壁局部有股水涌出, 特别是断层地带岩石破碎, 裂隙发育, 涌水更为严重。在该隧道施工过程中进行了监控量测。 2. 问题: (1) 承包人采用的开挖施工方法是否合理?说明理由。 (2) 针对上述地质和涌水情况, 你认为在施工中应采取哪些水害处治措施? (3) 在该隧道施工过程中应进行监控量测, 请问隧道的监控量测项目有哪些? 【案例3】 1. 背景材料: 某公路隧道长2400m, 穿越的岩层主要由泥岩和砂岩组成, 设计采用新奥法施工, 台阶法开挖, 复合式衬砌, 夹层防水层设计为塑料防水

盾构法隧道施工安全操作规程

盾构法施工安全操作规程 第一节一般规定 第一条、为了贯彻执行党和国家的安全生产方针,坚持安全第一,保障劳动者的安全和健康,保证生产建设的正常进行,创造一个舒适愉快的工作环境,特制订盾构法施工安全操作规程。 第二条、安全工作必须实行群众监督;充分发挥群众安全监督的作用。每一职工都有权制止任何人违章作业,并拒绝任何人违章指挥,对威助、生命安全和有毒有害工作地点,职工有权立即停止工作,撤到安全地点,危险地点没有得到处理不能保证人员安全时.有权拒绝工作。 第三条、所有现场施工人员,必须辅安全帽,进入隧道作业人员严禁喝酒、吸烟。 第四条、隧道施工必须具备下列资料; 1.隧道工程设计的全套图纸资料和工程技术要求文件; 2.隧道沿线详细的工程地质和水文地质勘察报告。 3.施工沿线地表环境调查报告; 4,地下各种障碍物调查报告; 第五条、隧道工程所使用的材料或制品等应符合设计要求。 第六条、针对盾构法施工在特定的地质条件和作业条件下可能遇到的风险问题,施工前必须仔细研究并制定防止发生灾害的安全措施。必须特别注意防止的灾害有瓦斯爆炸、火灾、缺氧、有害气体中孬和潜涵病等。必须预先制定和落实发生紧急事故时应急对策和措施。 第二节施工准备 第一条、应根据隧遇功能、隧道内任。坦探、穿越地层、地面建筑物、地下构筑物和等条件,进行盾构机造型。 第二条、做好环境调查,并对下列环境条件调查内容必须实地勘察核实。 1.土地使用情况——根据报告和附图,实地勘察调查土地及江河湖海底部利用情况、各种建筑物和构筑物的使用功能、结构形式、基础类型与隧道的相对位置等; 2.道路种类及路面交通情况;

3.工程用地情况——主要对施工场地及材料堆放场地、弃土场、运土路线等做必要的调查; 4.在河流底下或河流附近建造隧道时:必须调查河流断面、水文条件、航运、堤坝结构、地质条件、有无水底电缆及沉埋障碍物等; 5.施工用电和给排水设施条件。 第三条、地下障碍物调查报告中,对隧道经过地区有无相遇阻碍物或位于施工范围内的各种设施必须进行详细调查;其内容应包括; l.地下构筑物的结构形式、基础形式及其埋深,以及与隧道的相对位置等; 2.煤气管道、上下水池电力和通讯电缆等位置、管遇材质及接头形式,被侵蚀程度;及其与隧道的相对位置等; 3.地下废弃构筑物、管道及临时工程残留物等。 第四条、在饱和含水地层进行地下隧道施工时;因其特有的复杂性,必须进行详细的施工勘察,为制定基本工方法和应变措施提供足够的资料。 第五条、盾构施工前应编制施工组织设计,其主要内容应包括:工程及地质概况;盾构掘进施工方法和程序;进出洞等特殊段的技术措施;工程主要质量指标及保证措施;施工安全和文明施工要求;施工进度网络计划;主要施工设备和材料使用计划等。 第六条、技术交底。盾构施工前应由工程技术负责人和生产负责人向施工管理人员、作业班长、盾构司机等作全面的安全、技术交底。作业班长应向作业人员进行操作交底。 第七条、始发井的平面尺寸应满足盾构实装、施工、垂直运输、洞口封门、拆除等施工要求。 第八条、接收并的平面尺寸应满足盾构拆卸工作的需要。 第九条、始发(接收)井的预留洞口底标高应高于井底底板。 第十条,当须采用衬砌背后压装工艺时现场必须设拌浆站。 第十一条、变、配电间应设有两路电源,且相互切换应迅运、方便、安全。若施工地区无两路电源时;必须设有适当容量的自备电源,以供并不照明及连续使用的施工设备用电。 第十二条、充电间面积应满足牵引车用电瓶充电周转的需要,并设有电瓶箱的吊装设备,同时地面应做防酸处理。

隧道工程 工程造价案例

隧道工程 1、定额采用与现行隧道技术规范一致的围岩划分标准将围岩分为六级即Ⅰ级~Ⅵ级。 2、隧道混凝土拌和费用,按桥涵工程相关定额计算; 3、运距已洞门外500m,超出按路基土方自卸汽车增运计算; 4、混凝土及预制块的运输按有关定额计算; 5、监控量测费用计入施工辅助费,超前地质预报费用可根据需要另计; 6、回填不计; 7、开挖工程量按设计断面(成洞断面加衬砌断面)计算,定额中已考虑超挖因素;不得将超挖数量计入工程量。 8、正洞机械开挖自卸汽车运输定额系按开挖、出碴运输分别编制,施工通风及高压风水管和照明电线路单独编制定额项目。 某分离式山区高速公路隧道,全长1462m,主要工程量为: 1、洞门部分:开挖土石方6000m3,其中V类围岩30%、IV类围岩70%;浆砌片石墙体1028m3,浆砌片石截水沟69.8 m3。 2、洞身部分:设计开挖断面为162m2,开挖土石方247180m3,其中V类围岩10%、IV 类围岩70%、II类围岩20%;钢支撑445t;喷射混凝土10050m3,钢筋网138t,φ25锚杆12600m,φ22锚杆113600m,拱墙混凝土25259 m3,光圆钢筋16t,带肋钢筋145t。 1、洞内路面:21930m2,水泥混凝土面层厚26cm。 2、洞外出渣运距为1300m。 3、隧道防排水、洞内管沟、装饰、照明、通风、消防等不考虑。 问题: 请列出该隧道工程施工图预算所涉及的相关定额的名称、单位、定额代号、数量、定额调整等内容,并填入表格中,需要时应列式计算或文字说明。 答: 1、洞门开挖数量计算 开挖普通土:6000×0.3=1800(m3) 开挖软石:6000×0.7=4200(m3) 2、洞身开挖数量计算 由于162×1462=236844(m3)小于题目中给定的开挖数量247180m3,说明在题目中给定的洞身开挖数量中包涵有超挖数量,按定额规定,超挖数量是不能计价的。 按定额中的工程量计算规则,开挖数量=设计开挖断面×隧道长度,则计价工程量应为:开挖V类围岩:162×1462×0.1=23684.4(m3) 开挖IV类围岩:162×1462×0.7=165790.8(m3)

隧道施工事故案例分析

隧道施工事故案例分析 藕明江 前言:隧道工程施工复杂,有着太多的潜在因素(包括自然因素和人为因素),具有高危险性的特点。在近几年,隧道工程施工的事故频发,引起了全社会的高度关注。本文即选取典型的隧道施工事故,对具体的案例进行了失稳分析,同时给出具体的维护措施及相关建议,希望能够对隧道施工安全有所帮助。 案例 兰新铁路小平羌隧道“4.20”坍塌事故 2011年4月20日4时05分左右,中铁二局集团有限公司承建的兰新路甘青段LXS—8标小平羌隧道出口掌子面,喷浆作业时拱顶突然发生坍塌,12名作业人员被掩埋致死。构成生产安全重大事故。 1.现场还原 2011年4月19日23时30分,钢筋班组安装完成DK349+035处最后一环工22a型钢拱架,经领工员检查无异常后,喷浆组13人操作3台喷浆机喷浆。同日4时05分,隧道喷浆作业面上方围岩突然发生坍塌,导致初期支护的工22型钢拱架及喷浆作业台架被砸垮,12名作业人员全部被埋入坍塌体中,事故发生后,中铁二局立即组织抢险救援,于4时40分发现一名遇难者遗体,后因连续发生塌方,抢险工作被迫停止。经勘察事故现场,坍塌范围里程为DK349+035~DK349+050,距离地表深度约100~110m。坍塌岩石块体约400方(最大块径约1米左右),塌腔高8~10米。 2.原因分析 2.1直接原因 (1)小平羌隧道岩层倾角较陡,节理发育,岩体破碎,岩层的层间结合力较差,加之小平羌隧道洞顶地表冻土冬春后开始融化,冰雪融水下渗软化软弱结垢面,致使围岩抗剪强度降低,是该起事故发生的潜在客观因素。 (2)施工单位未单独编制塌方应急处理方案且未向监理报验;在完成初期支护后未能及时对上部的空腔进行压注水泥砂浆回填处理,没有形成有效抵抗塌方冲击荷载的结构体系。(3)施工速度过于缓慢,拱顶空腔围岩临空暴露时间过久,引起围岩松动、风化,导致顶部围岩强度降低,进而引起岩体失稳而坍塌。 2.2间接原因 施工单位安全管理混乱,施工人员安全培训不到位。检验批报检资料滞后,同一时间的施工日志与报检内容不符。监理单位监理基础工作薄弱,履行职责不力,管理不到位,审核把关不严,存在工程施工在前,审批签字在后的现象;在发现施工单位存在未按规范施工时也没有按照规定采取停工整改措施。设计单位对塌方处理的方案不完善,也没有向施工单位提出施工过程保障施工人员安全措施的建议。 3.处理方法 由上面分析的原因来给出一下几点维建议。 (1)岩层的岩性较差,破碎程度高,且节理发育,同时存在融水软化岩体。最有效的方法即是对顶部岩层进行注浆处理。通过水泥砂浆来堵塞发育的节理面,增大破碎岩体的粘结性,使较为破碎的部分变为整体,大大提高了顶部围岩的承载能力,同时水泥砂浆堵塞住岩体中的孔洞,大大减少了融水的渗流,变相的提高了岩体的强度。 (2)前面提到的即为坍塌事故的自然因素,这里所提到的即认为因素。从前面的原因不难看出,归根结底是因为施工单位、监理单位以及设计单位没有能够完全履行自己的职责,在

相关主题