搜档网
当前位置:搜档网 › 金属材料的性能

金属材料的性能

金属材料的性能
金属材料的性能

金属材料的性能

一、金属材料的物理性能和化学性能

1. 金属的物理性能金属的物理性能主要包括密度、熔点、热膨胀、导热性、导电性和磁性等。

(1) 密度密度是指金属单位体积的质量,用ρ表示

ρ=m V

m—金属质量(kg) V—金属体积(m3) ρ—金属密度(kg/m3)

在实际应用中,常用金属密度来计算大型零件的质量,某些机械零件选材时必须考虑金属密度。比如航空领域,密度是考虑的一个重要指标。

(2) 熔点金属由固态转变为液态是的温度称之为熔点。纯金属都有固定的熔点。熔点是制定热加工(冶炼、铸造、焊接)工艺规范的重要依据之一。

(3) 热膨胀性金属受热时,体积会增大,冷却时收缩,金属这种性能称之为热膨胀性。热膨胀性能的大小可以用线膨胀系数或体膨胀系数来表示。

α1=l t?l0 l0Δt

l0—线膨胀前的长度(cm)l t—线膨胀后的长度(cm)Δt—温度差(K或℃)

α1—线膨胀系数(1/K)或(1/℃)

从式中可以看出,线膨胀系数是指温度每升高一个单位,金属材料长度增量与原来长度的比值。线膨胀系数不是一个固定不变的数值,它是随温度的升高而增大的。

体膨胀系数是线膨胀系数的3倍。在实际工作中,应当考热膨胀的影响,例如铸造冷却时工件体积收缩,精密量具因温度变化二引起的读数误差等。

(4) 导热性金属传到热量的能力称为导热性。金属导热性能较好。这与其内部的自由电子有关。

金属导热能力的大小,常用导热率(导热系数)λ来表示。热导率说明维持单位温度梯度(温度差)时,在单位时间内,流过物体单位横截面的热量,单位是W/(m·K)。金属材料的导热率越大,说明导热性能越好。一般来说,金属越纯,其导热能力越好。

导热性好的金属散热性能就越好,在制造散热器、热交换器等零件时,就要

注意选用导热性能好的材料。

(5) 导电性金属能够传导电流的性能,称为导电性。金属的导电性与其内部存在的自由电子有关。

金属导电性能的好坏,常用电阻率ρ来表示。单位长度,单位截面积的物体在一定温度下所具有的电阻数叫电阻率,单位是Ω·m。电阻率小,导电性能好。电导率是电阻率的倒数,显然电导率大,导电性能好。

导电性和导热性一样,随金属成分的变化而变化,一般纯金属的导电性总比合金好。为此,工业上常用纯铜纯铝来做导电材料。

(6) 磁性金属材料在磁场中被磁化而呈现磁性的性能称之为磁性。

按磁性划分可把金属材料划分为:

铁磁性材料:在外加磁场中,能够强烈被磁化,如铁等。

顺磁性材料:在弱外加磁场磁化作用的金属,如铜,金、银等。

磁性只存在于一定温度范围内,高于一定温度时,磁性就会消失。如铁在770℃以上就没有磁性,这一温度称为居里点。

2. 金属的化学性能金属的化学性能是指在化学作用下表现出来的性能。包括耐腐蚀性和抗氧化性等。

(1) 耐腐蚀性金属材料在常温下抵抗周围介质(如大气、燃气、油、水、酸、盐等)腐蚀的能力,称为耐腐蚀性。简称耐蚀性。

(2)抗氧化性金属在高温下对氧化的抵抗能力,称为抗氧化性,又称抗高温氧化性。工业上用的锅炉、加热设备、汽轮机、喷气发动机、火箭、导弹等,有许多零件在高温下工作,制造这些零件的材料,就需要具有良好的抗氧化性。

二、金属的工艺性能

工艺性能是指金属材料在经济条件下,完成各种加工的难以程度。工艺性能也就是指金属材料是否易于加工成形的性能。包括铸造性、锻压性、焊接性、切削加工性等。工艺性能直接影响到零件的加工工艺和质量。也是选材时必须考虑的因素之一。

1.铸造性金属熔化成液态后,在铸造成形时具有的一种特性。衡量金属材料铸造性的指标有:流动性、收缩率和偏析倾向。金属材料中,灰铸铁和青铜的铸造性能较好。

2.锻压性金属材料在锻造过程中承受塑性变形的性能。锻压性直接与材料的塑性及塑性变形抗力有关,也与材料的成分和加工条件有关,例如大部分铜、铝的合金在冷态下就具有很好的锻压性;碳素钢在加热状态下,锻压性也很好;而青铜、铸铝、铸铁等几乎不能锻造。

3.焊接性焊接性指材料在限定的施工条件下焊接成按规定设计要求的构件,并满足预定服役要求的能力。焊接性好的金属能获得没有裂纹、气孔等缺陷的焊缝,并且焊接接头具有一定的力学性能。导热性好、收缩小的金属材料焊接性都比较好。例如低碳钢具有良好的焊接件,高碳钢、不锈钢、铸铁的焊接性较差。

4.切削加工性金属材料的切削加工性是指金属材料在切削加工时的难易程度。切削加工性能好的金属对使用的刀具磨损较小,切削用量大,加工表面也比较光洁。切削性能的好坏是与金属材料的硬度、导热性、金属内部结构、加工硬化等因素有关。尤其与硬度关系较大,若材料硬度在170—230HBS强时最易切削加工。从材料的种类而言,铸铁、铜舍金、铝合金及一般碳钢都具有较好的切削加工性,而高合金钢的切削加工性较差。

三、金属的力学性能

金属的力学性能,是指在外加载荷作用下,或载荷与环境因素(温度、介质和加载速率等)联合作用下所表现的行为,这种行为又称为力学行为,通常表现为金属的变形和断裂。因此金属材料的力学性能可以简单地理解为金属抵抗外加载荷引起变形和断裂的能力。

金属材料的力学性能包括强度、硬度、塑性、韧性、耐磨性等。而表征金属力学行为的力学参量的临界值或规定值称为金属力学性能指标。金属材料的力学性能的优劣就用这些指标的具体数值来衡量。

金属材料的力学性能取决于材料的化学成分、组织结构、冶金质量、参与应力及表面和内部缺陷等因素,但外在因素和载荷性质、应力状态、温度、环境介质等对金属力学性能也有很大的影响。

根据载荷作用性质不同,可以分为静载荷、冲击载荷和交变载荷三种。

静载荷:是指载荷的大小和方向不变或者变动极缓慢的载荷。

冲击载荷:是指突然增加的载荷。

交变载荷:是指载荷的方向和大小随时间而发生周期性变化的动载荷,也叫

循环载荷。

根据载荷的作用方式不同,它可以分为拉伸载荷,压缩载荷,弯曲载荷,剪切载荷和扭转载荷等。

金属材料受到载荷作用时,发生几何尺寸和形状的变化称为变形。它是金属受到载荷作用的必然表现。变形一般可以分为弹性变形,塑性变形两种。所谓弹性变形,是在受载荷发生变形,卸载后又能恢复原状的变形。塑性变形是指不可消失的变形。也叫永久变形。

根据载荷方式的不同,变形也可以分为拉伸变形,压缩变形,弯曲变形,剪切和扭转变形。

金属在手外力作用下,在材料内部会产生抵抗变形的力,这种力称为内力。单位面积上的内力称为应力。金属在受到拉伸载荷或压缩载荷作用时,其截面积上的应力(σ)

σ=F S

F—外力(N) S—截面面积(m2) σ—应力(Pa)

1. 强度金属在静载荷作用下,抵抗塑性变形和断裂的能力称为强度。强度的大小用应力来表示。

根据载荷作用方式的不同,强度可分为抗拉强度、抗压强度、抗弯强度、抗剪强度和抗扭强度。在一般情况下,很多机件在使用过程中是受静载荷作用,通过拉伸试验可以确定金属的强度指标和塑性指标,故多以抗拉强度作为判断金属强度高低的指标。

抗拉强度是通过拉伸试验来测定的。拉伸试验的方法是以静拉力对标准试样进行轴向拉伸,同时连续测量力和相应的伸长,直至断裂。根据测试的数据,既可以求出有关的力学性能。

(1) 力—伸长曲线拉伸试验中,记录拉伸力对伸长的曲线叫做力—伸长曲线,也称拉伸图,如图1-1

如图所示表示低碳钢的拉伸图,图中纵坐标为力F,单位N。横坐标表示绝对伸长量Δl,单位mm。图中明显表现出一下几个阶段。

图1-1 低碳钢拉伸曲线

Op阶段—弹性形阶段在这个阶段,变形量较小,并且发生的变形量与载荷呈正比例的关系。该阶段是完全弹性变形,卸载后是可以恢复的。F p称之为材料发生弹性变形的最大拉伸力。

pe阶段—非比例变形的弹性变形阶段在此阶段拉伸了超过了F p而小于F e。此阶段是材料发生比例变形的基础上,继续发生弹性变形,在此阶段卸载后,变形也是可以恢复的。Op加pe的Oe段是弹性变形阶段。F e称为材料恢复原始尺寸和形状的最大拉伸力。

eA阶段—微量塑性变形阶段在此阶段,拉伸力超过了F e,而小于F s。此时材料在发生弹性的基础上,开始发生塑性变形,由于这时的载荷比较小,若在这个阶段卸载,材料发生的弹性变形时可以恢复的,而发生的塑性变形部分是不可以恢复的,即材料发生了永久变形。

Ac阶段—屈服阶段在此阶段突出的特点是曲线呈水平状或锯齿状,也就是说,当载荷达到F c时,载荷虽然没有增加,但材料继续发生变形。我们把这种在载荷没有增加的情况下,材料继续发生变形的现象称为屈服。

值得注意的是,当材料达到屈服是,标志着材料开始发生宏观塑性变形,这时零件的形状和尺寸发生较大变化,已经不能满足使用要求。

cb阶段—强化阶段在屈服之后,欲使材料发生变形,必须不断增加载荷。随着塑性变形的增大,材料的变形抗力也逐渐增大,这种现象称为形变强化(加工硬化)现象。在此阶段中材料发生了宏观塑性变形,使材料的形状和尺寸发生较大的变化。图中F b为式样拉伸试验时的最大载荷。

bk阶段—颈缩阶段前面几个阶段的变形都是均匀变形,材料变形时均匀发生在试样有效长度范围内。当载荷达到F b时,材料直径发生明显的局部颈缩。而此时的变形为局部变形,在这个阶段载荷是下降的,但是材料的变形继续增大直至断裂。

颈缩是材料在拉伸试验时变形集中于局部区域的特殊现象,我们在工程中使用的金属材料,多数没有明显的颈缩现象。而对于低塑性材料,不仅没有紧缩现象,而且也不产生屈服,如球墨铸铁。

(2) 强度指标

强度指标与前面的几个变形阶段是相对应的,分别有比例极限,弹性极限,屈服极限,抗拉极限和断裂极限。

1) 比例极限试样在实验过程中,发生比例变形时能承受的最大应力。用σp 表示。

σp=F p S0

σp—比例极限(MPa) F p—试样发生比例变形的最大载荷(N)

S0试样原始截面积(mm2)

2) 弹性极限试样在实验过程中,发生弹性变形时能承受的最大应力。用σe 表示。

σe=F e S0

σe—弹性极限(MPa) F e—试样发生比例变形的最大载荷(N)

S0—试样原始截面积(mm2)

当材料载荷达到弹性极限是开始发生塑性变形,因此对于服役的构建不允许发生微量塑性变形的,在设计的时候应更加弹性极限来选择材料。

3) 屈服极限在试验过程中,力不增加,试样仍然继续伸长(变形)时的应力称为屈服点,也叫屈服强度,用符号σs表示。

σs=F s 0

σe—屈服极限(MPa) F e—试样发生屈服的载荷(N)

S0—试样原始截面积(mm2)

对于没有明显屈服现象的金属材料,我们认为的规定产生一定量的残余伸长

时的应力作为条件屈服点,称为条件屈服强度。用στ表示,如σ0.2表示为规定残余伸长为0.2%是的应力。

在工程设计中,材料的屈服强度或条件屈服强度是机械设计的主要依据,也是评定金属材料优劣的重要指标。

4) 抗拉强度抗拉强度也叫做强度极限,它是材料在被拉断前所能承受的最大应力。用σb表示。

σb=F b 0

σe—抗拉强度(MPa) F e—试样断裂前最大的载荷(N)

S0—试样原始截面积(mm2)

2. 塑性

塑性是指金属材料发生塑性变形而不被破坏的能力。是用金属材料在断裂时最大相对塑性变形来表示的,塑性指标也是有拉伸试验得到的。如拉伸时的伸长率δ和断面收缩率υ,他们是工程上广泛应用的表征金属塑性好坏的两个重要的性能指标。

1) 伸长率试验拉断后,标距伸长与原始标距的百分比称为伸长率。用符号δ表示。

δ=l1?l0

×100%

δ—伸长率(%) l0—式样的原始标距长度(mm)

l1—式样拉断后标距长度(mm)

2) 断面收缩率试样拉断后,颈缩处截面积的最大收缩量与原始截面积的百分比为断面收缩率,用符号υ表示。

φ=S0?S1

×100%

金属材料性能

金属材料性能 金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金属氧化物(如氧化铝)不属于金属材料) 性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。 种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。 金属材料特质 1.塑性 塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。 金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。 2.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一

金属材料就业前景

金属材料就业前景文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

金属材料就业前景 金属材料就业方向与前景 本人是材料学院的学生,我们学院下设四个专业方向,分别是:金属材料、无机非金属材料、太阳能光伏材料、高分子材料。总体来说,高分子的就业前景最好,其次是金属材料。由于光伏材料是我院第一届招生,所以他们的就业既可能是巨大的机遇,又可能是极大的风险。本人所学专业是金属材料,因此下面我将介绍一些金属材料方面的概况。 金属制品行业包括结构性金属制品制造、金属工具制造、集装箱及金属包装容器制造、不锈钢及类似日用金属制品制造等。随着社会的进步和科技的发展,金属制品在工业、农业以及人们的生活各个领域的运用越来越广泛,也给社会创造越来越大的价值。 2009年金属制品行业的产品将越来越趋向于多元化,业界的技术水平越来越高,产品质量会稳步提高,竞争与市场将进一步合理化。加上国家对行业的进一步规范,以及相关行业优惠政策的实施,2009-2012年,金属制品行业将有巨大的发展空间。 对于金属材料工程专业的毕业生,毕业后主要职业流向有: (1) 材料工程师 (2) 工业工程技术员 (3) 工业工程师 (4) 机械工程技术员 (5) 电子工程师 主要行业流向有: (1) 金属制品业 (2) 初级金属制造业 (3) 交通运输设备制造业 (4) 电子和电器设备及零件制造业 (5) 工商业机械及计算机设备制造业 造船厂技术部做焊接,现在很缺乏焊接的人才,他们招不到焊接方向的人的话就会考虑你的,我有很多同学都去了广州和上海的造船厂去大型制造业做铸造、锻造或者热处理,比如一重、二重、钢厂和汽车制造厂还有就是去一些企业的研发中心做材料测试和研发,这样一般要求是研究生毕业。主要就是技术工作了,部门就是在生产部或者技术部做技术支持、研发部或实验室做产品研发 其实我现在发现最好的是去外资的验证公司,做资格或者质量验证的,真的很好,最主要的是看你的综合个人素质了~

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

金属材料的分类及性能

金属材料的分类及性能 一、金属材料定义:是金属元素或以金属元素为主构成的具有金属特性的材料。 二、金属材料分类: ①黑色金属:纯铁、铸铁、钢铁、铬、锰。 ②有色金属:有色轻金属、有色重金属、半金属、贵金属、稀有金属 三、金属材料性能: ①工艺性能:铸造性能、锻造性能、焊接性能、切削加工性能、热处理性能等 ②使用性能:机械性能、物理性能、化学性能等 1. 工艺性能 金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下五个方面:(1)铸造性能:反映金属材料熔化浇铸成为铸件的难易程度,表现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等。铸造性能通常指流动性,收缩性,铸造应力,偏析,吸气倾向和裂纹敏感性。 (2)锻造性能:反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。可锻性:塑性和变形抗力 (3)焊接性能:反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。 (4)切削加工性能:反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。 (5)热处理性能:热处理是机械制造中的重要过程之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的,所以,它是机械制造中的特殊工艺过程,也是质量管理的重要环节。 2. 机械性能:

全国金属材料工程专业大学排名完整篇.doc

全国金属材料工程专业大学排名全国金属材料工程专业大学排名 本文为你介绍关于金属材料工程专业高校排名的相关知识,包含金属材料工程专业介绍、金属材料工程专业大学排名和金属材料工程专业相关文章推荐三个方面的知识点。 一、金属材料工程专业介绍该专业所开设的主要研究方向:一是高性能金属材料,重点是大幅度提高实际应用量大面广的金属材料的综合性能;二是材料表面工程,以提高材料表面耐磨性、耐蚀性及赋予其某种功能或美观效果为主;三是超硬材料,以金刚石材料及其铁基触媒剂为主;四是先进纤维材料,以碳纤维材料的原丝及制品为主;五是功能材料,以能量转换(如电-热、声-电等)材料为主;六是生物医用材料,以人体缺损硬组织组织修复和替代材料为主。 二、金属材料工程专业大学排名名次学校名称专业星级所在地区地区排名1山东大学7星级山东12四川大学7星级四川13燕山大学6星级河北14上海大学6星级上海14北京航空航天大学6星级北京16哈尔滨工业大学5星级黑龙江16西北工业大学5星级陕西16重庆大学5星级重庆16南京理工大学5星级江苏16华东理工大学5星级上海211武汉科技大学5星级湖北112河南科技大学4星级河南112西安工业大学4星级陕西212南昌航空大学4星级江西112武汉大学4星级湖北212华北理工大学

4星级河北212河北科技大学4星级河北212河北工业大学4星级河北219江苏大学4星级江苏219哈尔滨理工大学4星级黑龙江219长春工业大学4星级吉林122合肥工业大学3星级安徽122吉林大学3星级吉林222大连理工大学3星级辽宁122江西理工大学3星级江西226内蒙古科技大学3星级内蒙古126百色学院3星级广西126内蒙古工业大学3星级内蒙古126首钢工学院3星级北京226西安建筑科技大学3星级陕西326佳木斯大学3星级黑龙江326东北石油大学3星级黑龙江326桂林理工大学3星级广西126湖南工程学院3星级湖南126湖南大学3星级湖南126辽宁工业大学3星级辽宁226上海工程技术大学3星级上海326昆明理工大学3星级云南126贵州大学3星级贵州126安徽工业大学3星级安徽226东南大学3星级江苏326广东工业大学3星级广东126辽宁石油化工大学3星级辽宁226三峡大学3星级湖北326陕西理工学院3星级陕西326沈阳大学3星级辽宁226沈阳工业大学3星级辽宁226沈阳航空航天大学3星级辽宁226沈阳理工大学3星级辽宁226太原理工大学3星级山西126中北大学3星级山西126湘潭大学3星级湖南126河海大学3星级江苏326青岛科技大学3星级山东226湖南科技大学3星级湖南126辽宁工程技术大学3星级辽宁226黑龙江科技大学3星级黑龙江326江苏科技大学3星级江苏326石家庄铁道大学3星级河北5三、金属材料工程专业相关文章推荐

金属材料常见金相组织的名称和特征

金属材料常见金相组织的名称和特征 名称定义特征 奥氏体 碳与合金元素溶解在γ-Fe中 的固溶体,仍保持γ-Fe的面心立 方晶格 晶界比较直,呈规则多边形;淬火钢中残余奥氏 体分布在马氏体针间的空隙处 铁素体碳与合金元素溶解在a-Fe中的固 溶体 亚共析钢中的慢冷铁素体呈块状,晶界比较圆 滑,当碳含量接近共析成分时,铁素体沿晶粒边界析 出 渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体 铁碳合金中共析反应所形成 的铁素体与渗碳体的机械混合 物 珠光体的片间距离取决于奥氏体分解时的过冷 度。过冷度越大,所形成的珠光体片间距离越小在 A1~650℃形成的珠光体片层较厚,在金相显微镜下放 大400倍以上可分辨出平行的宽条铁素体和细条渗碳 体,称为粗珠光体、片状珠光体,简称珠光体在 650~600℃形成的珠光体用金相显微镜放大500倍,从 珠光体的渗碳体上仅看到一条黑线,只有放大1000倍 才能分辨的片层,称为索氏体在600~550℃形成的珠 光体用金相显微镜放大500倍,不能分辨珠光体片层, 仅看到黑色的球团状组织,只有用电子显微镜放大 10000倍才能分辨的片层称为屈氏体 上贝氏体 过饱和针状铁素体和渗碳体 的混合物,渗碳体在铁素体针间 过冷奥氏体在中温(约350~550℃)的相变产物, 其典型形态是一束大致平行位向差为6~8od铁素体板 条,并在各板条间分布着沿板条长轴方向排列的碳化 物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称 轴,由于方位不同,羽毛可对称或不对称,铁素体羽 毛可呈针状、点状、块状。若是高碳高合金钢,看不 清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳 低合金钢,羽毛很清楚,针粗。转变时先在晶界处形 成上贝氏体,往晶内长大,不穿晶 下贝氏体同上,但渗碳体在铁素体针内 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 .生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 部分常用钢的牌号、性能和用途1 《信息来源:无缝钢管》

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ε;屈服点σS;抗拉强度σb;断裂强度σk。 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映

(完整版)高性能金属新材料

高性能金属新材料(特种金属功能材料、高端金属结构材料) 一、金属类新材料 金属新材料按功能和应用领域可划分为高性能金属结构材料和金属功能材料。高性能金属结构材料指与传统结构材料相比具备更高的耐高温性、抗腐蚀性、高延展性等特性的新型金属材料,主要包括钛、镁、锆及其合金、钽铌、硬质材料等,以及高端特殊钢、铝新型材等。金属功能材料指具有辅助实现光、电、磁或其他特殊功能的材料,包括磁性材料、金属能源材料、催化净化材料、信息材料、超导材料、功能陶瓷材料等。 与其他材料相比,稀土具有优异的光、电、磁、催化等物理特性,近年来在新兴领域的应用急速增长,其中永磁材料是稀土应用领域最重要的组成部分,2009年永磁材料占稀土新材料消费总量的57%。在国家新兴产业政策的推动下,新能源汽车、风力发电、节能家电等领域将拉动稀土永磁材料钕铁硼磁体的需求出现爆发式增长。建议重点关注钕铁硼行业龙头中科三环、宁波韵升,以及稀土资源类企业包钢稀土、厦门钨业等。 钢铁材料、稀有金属新材料、高温合金、高性能合金是属于金属类工程结构材料。 ①、钢铁材料和稀有金属新材料 钢铁材料提高钢材的质量、性能,延长使用周期,在钢铁材料生产中,应用信息技术改造传统的生产工艺,提高生产过程的自动化和智能化程度,实现组织细化和精确控制,提高钢材洁净度和高均匀度,出现低温轧制、临界点温度轧制、铁素体轧制等新工艺。 稀有金属新材料指高强、高韧、高损伤容限钛合金,以及热强钛合金、锆合金、难熔金属合金、钽钨合金、高精度铍材等。 ②、高温合金和高性能合金 高温结构材料主要种类包括:高温合金、粉末合金、高温结构金属间化合物,以及高熔点金属间化合物等。 二、高性能结构材料 从世界上新材料的发展趋势看,钢铁材料和有色金属材料的生产一直在向短流程、高效率、节能降耗、洁净化、高性能化、多功能化的方向发展。结构材料其主要功能是承担负载(如火车、汽车、飞机)。汽车用钢近年来已从一般钢铁发展为使用高强合金钢、铝合金或特殊的高强Mg基合金,高强Ti合金在高强钢中有重要位置,不锈钢则有取代碳钢的趋势。用于军用飞机的Al合金及一般钢材则被先进的Ti合金及高分子基复合材料所取代。进一步还需要发展碳纤维增强复合材料或Al基复合材料。 结构材料的主体有: (1)钢铁 钢铁材料,特别是具有多相结构和复杂成分的优质钢具有重要的应用前景和潜在优势,需要开展相应的基础研究。联系微米和纳米技术的纳米层间结构、织构以及晶界和界面都可视为改善钢铁材料的重要途径。 (2)Al合金 Al基材料及相应的沉淀硬化效应导致高强铝合金的出现,相关技术工艺已发展为“沉淀科学”,它涉及“相”间晶体结构的匹配性以及合金的稳定性,特别是时效合金的稳定性直接影响航空或空间应用,因此可视为Al合金基础研究中的重要问题。 (3)Mg合金 镁及镁合金广泛应用于冶金、汽车、摩托车、航空航天、光学仪器、计算机、电子与通讯、电动、风动工具和医疗器械等领域。镁合金是最轻的工程结构材料,以其优良的导热性、减振性、可回收性、抗电磁干扰及优良的屏蔽性能等特点,被誉为新型“绿

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 ???? 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 ???? 材料的工艺性能指材料适应冷、热加工方法的能力。 ???? (一)、机械性能 ???? 机械性能是指金属材料在外力作用下所表现出来的特性。 ??? 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 ??? 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 ?? 5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。??? 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) ??? 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm 2 ) . (二)、工艺性能 ???? 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。 (三)、化学性能 ???? 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回 金属材料的检验

金属材料基础知识汇总

《金属材料基础知识》 第一部分金属材料及热处理基本知识 一,材料性能:通常所指的金属材料性能包括两个方面: 1,使用性能即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等)。使用性能决定了材料的应用范围,使用安全可靠性和寿命。 2,工艺性能即材料被制造成为零件、设备、结构件的过程中适应的各种冷、热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。 工艺性能对制造成本、生产效率、产品质量有重要影响。 二,材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当达到或超过某一限度时,材料就会发生变形以至于断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。 承压类特种设备材料的力学性能指标主要有强度、硬度、塑性、韧性等。这些指标可以通过力学性能试验测定。 1,强度金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。抗拉强度σb和屈服强度σs是评价材料强度性能的两个主要指标。一般金属材料构件都是在弹性状态下工作的。是不允许发生塑性变形,所以机械设计中一般采用屈服强度σs作为强度指标,并加安全系数。2,塑性材料在载荷作用下断裂前发生不可逆永久变形的能力。评定材料塑性的指标通常用伸长率和断面收缩率。 伸长率δ=[(L1—L0)/L0]100% L0---试件原来的长度L1---试件拉断后的长度 断面收缩率φ=[(A1—A0)/A0]100% A0----试件原来的截面积A1---试件拉断后颈缩处的截面积 断面收缩率不受试件标距长度的影响,因此能够更可靠的反映材料的塑性。 对必须承受 强烈变形的材料,塑性优良的材料冷压成型的性能好。 3,硬度金属的硬度是材料抵抗局部塑性变形或表面损伤的能力。硬度与强度有一定的关系,一般情况下,硬度较高的材料其强度也较高,所以可以通过测试硬度来估算材料强度。另外,硬度较高的材料耐磨性也较好。 工程中常用的硬度测试方法有以下四种 (1)布氏硬度HB (2)洛氏硬度HRc(3)维氏硬度HV (4)里氏硬度HL 4,冲击韧性指材料在外加冲击载荷作用下断裂时消耗的能量大小的特性。 材料的冲击韧性通常是在摆锤式冲击试验机是测定的,摆锤冲断试样所作的功称为冲击吸收功。以Ak表示,Sn为断口处的截面积,则冲击韧性ak=Ak/Sn。 在承压类特种设备材料的冲击试验中应用较多。 三金属学与热处理的基本知识 1,金属的晶体结构--物质是由原子构成的。根据原子在物质内部的排列方式不同,可将物质分为晶体和非晶体两大类。凡内部原子呈现规则排列的物质称为晶体,凡内部原子呈现不规则排列的物质称为非晶体,所有固态金属都是晶体。 晶体内部原子的排列方式称为晶体结构。常见的晶体结构有:

金属材料的使用性能

金属材料的使用性能 1. 密度(比重):材料单位体积所具有的质量,即密度=质量/体积,单位为g/cm3。 2. 力学性能: 金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 3. 强度: 金属材料在外力作用下抵抗变形和断裂的能力。屈服点、抗拉强度是极为重要的强度指标,是金属材料选用的重要依据。强度的大小用应力来表示,即用单位面积所能承受的载荷(外力)来表示。 4. 屈服点: 金属在拉力试验过程中,载荷不再增加,而试样仍继续发生变形的现象,称为“屈服”。产生屈服现象时的应力,即开始产生塑性变形时的应力,称为屈服点,用符号σs表示,单位为MPa。 5. 抗拉强度: 金属在拉力试验时,拉断前所能承受的最大应力,用符号σb表示,单位为MPa。 6. 塑性: 金属材料在外力作用下产生永久变形(去掉外力后不能恢复原状的变形),但不会被破坏的能力。 7. 伸长率: 金属在拉力试验时,试样拉断后,其标距部分所增加的长度与原始标距长度的百分比,称为伸长率。用符号δ,%表示。伸长率反映了材料塑性的大小,伸长率越大,材料的塑性越大。 8. 韧性: 金属材料抵抗冲击载荷的能力,称为韧性,通常用冲击吸收功或冲击韧性值来度量。 9. 冲击吸收功: 试样在冲击载荷作用下,折断时所吸收的功。用符号A?k表示,单位为J 。 10. 硬度: 金属材料的硬度,一般是指材料表面局部区域抵抗变形或破裂的能力。根据试验方法和适用范围的不同,可分为布氏硬度和洛氏硬度等多种。布氏硬度用符号HB表示:洛氏硬度用符号HRA、HRB或HRC表示。 部分常用钢的用途 (一)各牌号碳素结构钢的主要用途: 1.牌号Q195,含碳量低,强度不高,塑性、韧性、加工性能和焊接性能好。用于轧制薄板和盘条。冷、热轧薄钢板及以其为原板制成的镀锌、镀锡及塑料复合薄钢板大量用用屋面板、装饰板、通用除尘管道、包装容器、铁桶、仪表壳、开关箱、防护罩、火车车厢等。盘条则多冷拔成低碳钢丝或经镀锌制成镀锌低碳钢丝,用于捆绑、张拉固定或用作钢丝网、铆钉等。 2.牌号Q215,强度稍高于Q195钢,用途与Q195大体相同。此外,还大量用作焊接钢管、镀锌焊管、炉撑、地脚螺钉、螺栓、圆钉、木螺钉、冲制铁铰链等五金零件。

2019年先进金属材料高温合金企业三年发展战略规划

2019年先进金属材料高温合金企业三年发展战略规划 2019年7月

目录 一、公司未来三年发展规划 (4) 1、公司总体发展目标 (4) 2、公司未来三年的发展规划 (4) 二、为实现战略目标所制定的计划 (5) 1、市场营销拓展计划 (5) (1)差异化经营 (5) (2)加强客户服务 (5) (3)提升品牌价值 (5) (4)把握市场机遇 (6) 2、研究开发计划 (6) (1)提升研发实力 (6) (2)强化市场交流和客户沟通 (6) (3)加强知识产权管理 (6) 3、人力资源提升计划 (7) (1)招聘工作规划 (7) (2)培训工作规划 (7) (3)业绩考核工作规划 (7) (4)员工激励机制 (8) 4、加强采购管理计划 (8) (1)完善采购体系 (8) (2)拓展采购渠道 (8) 5、加强生产管理计划 (9) 三、规划和目标所依据的假设条件 (9) 四、实施规划和目标可能面临的主要困难 (9)

1、资金瓶颈问题 (9) 2、人才培养与引进问题 (10) 3、管理能力问题 (10) 五、确保实现目标拟采用的措施 (10) 1、加强风险管理能力 (10) 2、加大研发投入 (11) 3、充分利用募集资金 (11) 4、加强人才引进 (11) 5、融资计划 (11)

一、公司未来三年发展规划 1、公司总体发展目标 公司致力于向飞机、航空发动机、燃气轮机、核电、能源等高端应用领域提供高性能合金材料和制品,始终坚持新技术、新产品的研究与开发,不断拓宽产品链,拓展国内外市场,立志建成国内外高性能合金材料及其制品的研发和生产基地,发展成为拥有自主知识产权和核心竞争力的国内外行业知名企业。 2、公司未来三年的发展规划 根据公司发展规划,未来三年公司的业务规划主要为募投项目的实施和研发项目的合作。随着募投项目的建成达产,公司产能将得到大幅提升,综合实力将进一步提高,公司将会依托现有业务和技术优势,加大与下游客户和科研机构之间的高性能合金材料及其制品加工研发合作,进一步确立企业竞争优势。此外,公司将进一步加强与有关科研机构和高等院校等的合作,持续开展高性能合金材料及其制品材料、设备和工艺方面的技术研发工作。 发行上市后,公司资本结构将会进一步优化,为将来进一步融资创造良好的环境。公司将根据业务发展需要,积极利用资本市场的融资功能,对法律法规允许的各类直接、间接融资方式,从融资效率、融资成本、资本结构、资金的运用周期等方面综合分析,采取多元化的融资方式满足公司的资金需求。在条件成熟时,公司也不排除将会

金属材料化学元素及机械性能

GG25 HT250 C Si Mn P S (參考) % Hardness HB 30 - ≥250 - 180-225 GG20 HT200 C Si Mn P S (參考) ~~~1≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30 - ≥200 - - ASTM A126B C Si Mn P S Cr Ni Mo - - - ≤≤- - - 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30 - ≥214 - - GGG40 EN-GJS-400-15 EN-JS1030 GB/T 1348 QT400-15 C Si Mn P S (參考) ~~3 ≤≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30≥250 ≥400 ≥15 130~180 EN-GJS-400-18 EN-JS1025 GB/T 1348 QT400-18 C Si Mn P S (參考) ~~≤≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30≥250 ≥400 ≥18 130~180 ASTM A536 65-45-12C Si Mn P S (參考) % Hardness HB 30≥310 ≥448 ≥12 -

ASTM A536 60-40-18 C Si Mn P S (參考) ~~≤≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30 ≥275 ≥414 ≥18 - ASTM A395 65-45-15 C Si Mn P S Cr Ni Mo ≥3≤-≤----0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30≥310 ≥450 ≥15 156~201 65Mn GB/T 711 C Si Mn P S Cr Ni Cu ~~~≤≤≤≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30 ≥430 ≥735 ≥9 ≤229 Q235A C Si Mn P S Cr Ni Mo ~≤~≤≤- 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Reduc. Area % ≥235 375~500 26 - 閥門常用材料標準

高性能结构材料

高性能结构材料 ----新型陶瓷的研发与应用一、论述 高性能结构材料是支撑航空航天、交通运输、电子信息、能源动力以及国家重大基础工程建设等领域的重要物质基础,是目前国际上竞争最激烈的高技术新材料领域之一。其中新型陶瓷在该材料领域有着广泛的使用. 二、概念 新型陶瓷是指具有高强度、高硬度、耐高温、耐腐蚀、耐磨损及化学性质稳定的一类新型陶瓷材料,在航天航空、机械、电子、化工、通讯、能源、生物医学、环境工程等领域有广泛的应用市场。 新型陶瓷材料在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有催化、耐腐蚀、吸附等功能; 有它的缺点,如脆性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。 按照应用可将它们分为工程结构陶瓷和功能陶瓷两类。

氮化硅高强度陶瓷以强度高著称,可用于制造燃气轮机的燃烧器、叶片、涡轮等。 精密陶瓷氨化硅代替金属制造发动机的耐热部件,能大幅度提高工件温度,从而提高热效率,降低燃料消耗,节约能源,减少发动机的体积和重量,而且又代替了如镍、铬、钠等重要金属材料,所以,被人们认为是对发动机的一场革命。 氮化硅、碳化硅等新型陶瓷还可用来制造发动机的叶片、切削刀具、机械密封件、轴承、火箭喷嘴、炉子管道等,具有非常广泛的用途。 利用陶瓷对声、光、电、磁、热等物理性能所具有的特殊功能而制造的陶瓷材料称为功能陶瓷。功能陶瓷种类繁多,用途各异。例如,根据陶瓷电学性质的差异可制成导电陶瓷、半导体陶瓷、介电陶瓷、绝缘陶瓷等电子材料,用于制作电容器、电阻器、电子工业中的高温高频器件,变压器等形形色色的电子零件。利用陶瓷的光学性能可制造固体激光材料、光导纤维、光储存材料及各种陶瓷传感器。此外,陶瓷还用作压电材料、磁性材料、基底材料等。总之,新型陶瓷材料几乎遍及现代科技的每一个领域,应用前景十分广阔。 无机非金属材料工程 无机非金属材料工程是材料学中的一个专业。无机非金属材料工程是为了培养具备无机非金属材料及其复合材料科学与工程方面的知识,能在无机非金属材料结构研究与分析、材料的制备、材料成型与加工等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理

专题15常见金属材料

专题15常见金属材料 一、中考复习要求 1、 简述铁、铝、铜等金属单质的物理性质,知道它们的主要用途,正确描述铁、 铝、铜的某些化学性质。 2、 知道生铁和钢等合金的成分和机械性能及主要用途,简单了解钢铁生锈的条件 及防锈方法。 二、基础知识回顾 1、铁的性质: (1 )物理性质 纯铁有 ____ 色金属光泽,质 ____ ,有良好的 ____ 性、 ____ 性和 _____ 性,能够被 吸引,密度为7.86g/cm 3,熔点为1535C 。 (2)化学性质 、常温下,铁在干燥的空气中很难与氧气发生化学反应。 、铁在潮湿的空气中与氧气、水等物质相互作用生成铁锈(铁锈 主要成分是Fe 2O )。这是钢铁制品生锈的原因。 在纯氧气中点燃或高温能燃烧: 3Fe+2O 2= 现象: ______ 燃烧,火星 _ ,生成 色固体。 Fe + HCI = Fe + H 2SQ = 跟某些盐溶液反应: Fe + CuSO 4 = 2 3 (1) 钢铁制品生锈的条件是: ___________________________ (2) _____________________________ 防止生锈的方法:① __ ② __________ ③ ④ 4 a B 跟氧气反应 C 跟某些酸反应 反应现象:金属表面有 ______ 产生,溶液逐渐变为 ______ 色。 反应现象:金属表面有 ______ 色物质出现、溶液蓝色变 ______

三、重点疑点讨论 1、F e3O4中如何确定铁元素的化合价? 2、铁、生铁和钢有什么不同? 3、怎样用化学方法除去钢铁表面上的铁锈? 4、铁、铝、锌等金属与酸反应产生氢气的速度与金属的活动性有何关系? 四、解题方法指导 例题1下列物质混合时,铁能溶解但无气体产生的是() A、铁粉和盐酸 B、铁和硫酸铜溶液 C、铁钉和稀硫酸 D、铁钉浸没在水中 例题2、把适量的稀硫酸倒入盛有过量的铁粉和少量的氧化铜的试管里,稍微加热, 充分反应后,静置片刻过滤,滤纸上有_________ ,滤液里溶质是_______ ,有关化学方程式为:_______________________ , __________________________ , ______________________ °思考:本题考查硫酸的化学性质及金属与盐发生的置换反应的考题。稀硫酸与铁反应,与氧化铜反应,在铁过量情况下,铁又与硫酸铜反应,所以滤纸上有铜和铁,滤液中只有硫酸亚铁。 例题3、在天平两边托盘上各放一个质量相等的烧杯,其中盛有等质量的相同溶质质量分数的稀硫酸,如果分别将下列三组中的两种物质放在左右两个烧杯内,充分反应后天平仍保持平衡的是() A、等质量的锌和铜 B 、等质量的锌和铝(反应后金属均剩余) C、等质量锌和铝(反应后酸均剩余) 思考:此题关于天平的计算推断题,在解天平的题目时,一定要明确的是:加入物质的质量与生成气体的质量之差为剩余物质质量,只有剩余物质的质量相等天平才能平衡。

金属材料就业前景

金属材料就业方向与前景 本人是材料学院的学生,我们学院下设四个专业方向,分别是:金属材料、无机非金属材料、太阳能光伏材料、高分子材料。总体来说,高分子的就业前景最好,其次是金属材料。由于光伏材料是我院第一届招生,所以他们的就业既可能是巨大的机遇,又可能是极大的风险。本人所学专业是金属材料,因此下面我将介绍一些金属材料方面的概况。 金属制品行业包括结构性金属制品制造、金属工具制造、集装箱及金属包装容器制造、不锈钢及类似日用金属制品制造等。随着社会的进步和科技的发展,金属制品在工业、农业以及人们的生活各个领域的运用越来越广泛,也给社会创造越来越大的价值。 2009年金属制品行业的产品将越来越趋向于多元化,业界的技术水平越来越高,产品质量会稳步提高,竞争与市场将进一步合理化。加上国家对行业的进一步规范,以及相关行业优惠政策的实施,2009-2012年,金属制品行业将有巨大的发展空间。 对于金属材料工程专业的毕业生,毕业后主要职业流向有: (1)材料工程师 (2)工业工程技术员 (3)工业工程师 (4)机械工程技术员 (5)电子工程师 主要行业流向有: (1) 金属制品业 (2) 初级金属制造业 (3) 交通运输设备制造业 (4) 电子和电器设备及零件制造业 (5) 工商业机械及计算机设备制造业 造船厂技术部做焊接,现在很缺乏焊接的人才,他们招不到焊接方向的人的话就会考虑你的,我有很多同学都去了广州和上海的造船厂 去大型制造业做铸造、锻造或者热处理,比如一重、二重、钢厂和汽车制造厂 还有就是去一些企业的研发中心做材料测试和研发,这样一般要求是研究生毕业。 主要就是技术工作了,部门就是在生产部或者技术部做技术支持、研发部或实验室做产品研发 其实我现在发现最好的是去外资的验证公司,做资格或者质量验证的,真的很好,最主要的是看你的综合个人素质了! 就业前景什么的要看你是学什么方向的咯,比如有压力加工方向的,还有粉末冶金方向的。粉末冶金方向的话毕业后就可以进学校旁边的株洲601厂自贡的764厂或则一些中小的私营

金属材料的分类及主要特性

金属材料及金属材料工程简介 关键词:材料科学金属材料材料简介 金属材料是什么? 指金属元素或以金属元素为主构成的具有金属特性的材料的统称。 金属材料的特性: 金属材料具有高强度、优良的塑性和韧性,耐热、耐寒,可铸造、锻造、冲压和焊接,还有良好的导电性、导热性和铁磁性。因此是一切工业和现代科学技术中最重要的材料。 金属材料分类 金属材料通常分为黑色金属、有色金属和特种金属材料。 1.黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 2.有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等,有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。 3.特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。 金属材料的历史 我国金属材料的历史可追溯到商朝的青铜器时代,春秋战国时期开始使用铁器及大推动了农耕作业并瓦解了奴隶社会,到近代随着人类文明进步,铝合金、钛合金、镁合金等都进入了我们的衣食住行等生活,国防、建筑、机械、交通运输等都离不开金属材料。 金属材料工程 金属材料工程专业是材料科学与工程领域的基础学科,按教育部最新专业目录,金属材料覆盖了冶金、有色金属、复合材料、粉末冶金、材料热处理、材料腐蚀与防护及表面等方向。

相关主题