搜档网
当前位置:搜档网 › 超级电容器用石墨烯基电极材料的制备及性能研究

超级电容器用石墨烯基电极材料的制备及性能研究

超级电容器用石墨烯基电极材料的制备及性能研究
超级电容器用石墨烯基电极材料的制备及性能研究

___________________________________________________________ 作者简介:

陈 宽(1986-),男,江苏人,宁波南车新能源科技有限公司助理工程师,研究方向:电极材料;本文联系人

阮殿波(1969-),男,黑龙江人,宁波南车新能源科技有限公司高级工程师,研究方向:超级电容器储能技术;

傅冠生(1966-),男,湖南人,宁波南车新能源科技有限公司总经理,研究方向:企业管理; 于智强(1977-),男,浙江人,宁波南车新能源科技有限公司副总经理,研究方向:电容器开发与产超级电容器用石墨烯基电极材料的制备及性能研究

阮殿波,陈 宽,傅冠生,于智强 (宁波南车新能源科技有限公司,浙江 宁波 315112)

摘要:同传统二次电池相比,超级电容器具有功率密度高、充放电速度快、循环寿命长等优点,是一种新型高效的储能装置,提升其能量密度是目前主要的研究方向。石墨烯作为一种新型二维碳材料,具有电导率高、比表面积大、化学稳定性强等优异特点,是超级电容器的理想电极材料。综述了近几年石墨烯基电极材料的制备方法及其性能特点,对于其存在的问题和未来的发展趋势作了简单的阐述。

关键词:石墨烯; 超级电容器; 能量密度; 功率密度; 电极材料 中图分类号:TQ919;TQ127.1

Preparation and Property Research of Graphene-based Electrode Materials for

Supercapacitor

RUAN Dian-bo, CHEN Kuan, FU Guan-sheng, YU Zhi-qiang

(Ningbo CSR New Energy Technology Co., LTD, Ningbo Zhejiang 315112,China)

Abstract : Compared with traditional secondary battery, supercapacitor has the advantage of high power density, rapid charge/discharge property and long cycle life, it ’s a new efficient energy storage device. At present the main research direction of supercapacitor is improving its energy density. Graphene is a new kind of two dimension carbon material, it has the advantage of high conductivity, high specific surface area and strong chemical stability, it ’s an ideal electrode material of supercapacitor. This review summarized the preparation methods of graphene-based electrode materials and its performance characteristics. Problems and development tend of graphene-based electrode materials are also introduced in this article.

Keywords : graphene; supercapacitor; energy density; power density; electrode material

1.引言 石墨烯,一种单原子层厚度的二维sp 2杂化碳材料,是碳的其它维数的同素异形体的基本构造单元。受其特殊结构的影响,石墨烯拥有一系列优异的物化特性:高断裂强度(125GPa);高速载流子迁移率(2×105cm 2V -1s -1)和热导率(5000Wm -1K -1);超大比表面积(2630m 2/g)[1]。这些突出的、吸引人的特征使得这种多功能的碳材料可以适用多种实际应用场合,其中,利用石墨烯作为超级电容器[2-4]电极已成为清洁能源领域的研究焦点。 基于现代社会的需求和能源危机的考虑,寻找新型、廉价、环保、高效的储能系

统的呼声与日俱增。在这种大环境下,超级电容器[5]因为其额定容量高、可作为脉冲功率电源、循环寿命长、工作原理简单、维护费用低而成为一种备选储能装置。超级电容器循环寿命长,可以在高功率密度下实现快速充放电,弥补了蓄电池在这方面的缺陷。 大量的研究表明,为了实现高性能EDLC ,必须解决碳材料的几个关键因素:材料的比表面积、电导率、微孔直径和分布。大多数情况下,介孔碳材料能够拥有大的比表面积,但偏低的电导率限制了其在高功率

密度超级电容器方面的应用[6]。碳纳米管虽

然拥有高的电导率和大的比表面积,但因为电极和集流体之间的接触电阻影响,仍然无法满足性能需求[7-9]。此外,碳纳米管的纯度和价格也是制约因素。幸运的是,石墨烯的出现为超级电容器电极材料提供了新的选择余地。

2.石墨烯基电极材料的制备方法

2.1化学还原氧化石墨烯法

为了获得石墨烯基材料,人们发明了一种简单通用的办法,即向氧化石墨烯悬浮液中添加还原剂(如水合肼)来还原氧化石墨烯。Ruoff[10]等人将这种化学修饰的石墨烯(CMG)作为电极材料应用到了EDLC上,首次开发出了石墨烯基双电层电容器。虽然在还原过程中,单片层石墨烯部分团聚成直径约为15-25μm的球形颗粒,但这种石墨烯基材料相对较高的比表面积(750m2/g)仍然使得CMG电极拥有较高的电化学性能。以CMG作为电极,在水相和有机相电解质中获得的比容量值分别高达135F/g和99F/g,当增大扫描电压速率时,比容量值变动范围并不大,这和CMG的高电导率(200S/m)有关。CMG的比表面积和电导率仍然有较大的优化空间,因此,这种材料应用在EDLC 超级电容上非常有前景。

虽然氧化石墨烯能在水溶液中稳定分散成单片层,但如果直接还原,会导致不可逆的沉降团聚[11],最终的还原产物和颗粒状石墨片晶没有多大区别,比表面积都很低。为了避免石墨烯的不可逆堆叠,Chen[12]等人开发了一种气固还原法来制备石墨烯基材料(GBM),并且用其作为电极组装成超级电容器。虽然这种石墨烯看上去仍然存在团聚现象,但团聚程度要比水溶液中还原得到的石墨烯低的多[10]。这些褶皱片层紧密的互相连接,形成一个连续的导电网络。因此,从形态学结构上来看,电解液离子和电极之间会有更好的接触性。和电容器中使用的传统的碳材料不同的是,在这种结构中,电解液不仅可以渗透到固体的外部空间,同时也可以进入内部空间。这样,石墨烯的宽阔的两面都可以暴露在电解液中,提高了电容值。正因为如此,GBM电极制作的超级电容器才能在水相电解液中获得205F/g的最大比容量,10kW/kg的功率密度以及28.5Wh/kg 的能量密度。除此以外,在1200次循环之后,比容量仍能保持初始值的90%。

除了水合肼之外,氢溴酸也是一种广泛用来还原氧化石墨烯的试剂。Ma[13]等人就报导过这种还原方式,他们向氧化石墨烯溶液中添加氢溴酸,还原氧化石墨烯获得了石墨烯基材料(GBM)。由于氢溴酸是一种弱还原剂,氧化石墨烯表面的一些相对稳定的含氧基团就留在了还原氧化石墨烯的表面。这些基团不仅改善了还原氧化石墨烯的润湿性,有利于水相电解液对电极的浸润,而且改善了赝电容特性。电流密度为0.2A/g时,在1M的硫酸溶液中,这种材料的最大比容量达到了348F/g。令人惊讶的是,还原氧化石墨烯的的电容量在循环次数达到2000次之前不仅没有衰减反而增加。更特殊的是,1800次循环之后,电容量达到初始容量的125%,3000次循环之后仍保持初始值的120%。这些现象的根源来自残留的含氧基团,在不断的循环测试过程中,部分残留的含氧基团得到了还原,改善了材料的电容特性,直到1800次循环结束。

2.2热还原氧化石墨烯法

通过氧化石墨烯的热剥离可以获得还原性石墨烯材料(RGM)。据报导[14],在常压下,当温度高于550°C时,氧化石墨烯可以发生热剥离。Rao[15]等人研究了在1050°C 热剥离氧化石墨烯,开发出EDLC电极材料。这种样品能够提供的最大比表面积高达925m2/g,在硫酸溶液中测试,比容量能接近117F/g。

然而,高温剥离过程能耗大,难于控制。因此,人们发明了低温剥离技术。Yang[16]等人在真空环境中,200°C低温下成功实现了氧化石墨烯的热剥离。一般认为石墨烯在这些低温剥离样品中会趋向于部分覆盖在一起,形成一种带有大孔的聚合架构,电解液离子很容易通过这些大孔与石墨烯表面接触形成双电层。低温热剥离带来石墨烯的开放孔系统和独特的表面化学组成,作为电极时,在水相和有机相电解液中,电流密度为100mA/g时,循环10次以后,仍保留有

264F/g和122F/g的比容量,这些数据要高于那些高温热剥离的样品[15]。Du[17]等人在一篇文章中提出在空气中低温热剥离氧化石墨烯制备RGM,获得的样品在2M的KOH溶液中,电流密度在1A/g时,其比电容达到232F/g。根据BET测试所获得的石墨烯的比表面积值,如此高的比电容被认为是来源于石墨烯片层的双电层电容和表面含氧基团所带来的赝电容。但是,这些含氧基团对双电层电容的稳定性有负面影响。

利用温和的水热还原法可以还原氧化石墨烯以组装RGM超级电容器。这是一种温度相对较低的剥离和还原方法,选择一种合适的溶剂,甚至都不需要还原剂,就可以将GO还原。Ruoff[18]等人发现采用超声处理分散在碳酸丙烯酯(PC)中的GO可以实现剥离。另外,将GO悬浮液加热到150°C,可以除去表面大量的含氧基团,还原后的样品分散在PC中仍然是黑色悬浮液,主要由还原石墨烯片层堆叠而成,一般由2至10层构成。虽然是在相对较低的温度下还原得到的,但这些石墨烯片的电导率仍高达5230S/m。商业超级电容器通常使用四乙基四氟硼酸铵(TEA BF4)和PC的混合液作为电解液[19],因此,TEA BF4可以很容易的添加到PC/RGM悬浮液中,形成浆料用于EDLC电极。测得这种电极在PC系电解液中的比容量达到112F/g。Lin[20]等人同样使用水热还原法,在二甲基甲酰胺(DMF)中150°C加热GO悬浮液,可以有效控制官能团的密度。CV测试发现,当电位区间位于0至0.5V之间时,电容量要比电位区间位于0.6至0.8V之间高。结合CV曲线分析这些结果,在0.6至0.8V之间的是EDLC贡献的电容,而电位较低时,赝电容成为主要的电容来源。放电电流为0.1A/g时,在1M的硫酸电解液中,功能化石墨烯的比容量达到276F/g。比较奇怪的是,虽然因为表面官能团的氧化还原反应产生了赝电容,但石墨烯基材料仍然显示出了较好的还原稳定性,原因是因赝电容主要来源于羰基和羟基,而不是羧基,羧基往往会导致碳材料的腐蚀[21]。羧基较容易除去,但羰基和羟基的热稳定性较强,所以就出现了赝电容较大而循环稳定性不减的现象。

Lai[22]等人通过改性氧化石墨获得含胺石墨烯(NH2-Gr),他们将氧化石墨分散在乙二醇中,加入适量氨水,将混合溶液转移至聚四氟乙烯高压釜,于180°C水热反应10小时,即获得了改性石墨烯。氮原子的掺杂改善了碳材料的赝电容特性,受氨基的影响,NH2-Gr电化学性能也得到了改善,氨基的存在提高了石墨烯芳环结构的电子云密度,增强了其导电性。根据CV测试的结果分析,改性后的石墨烯在扫速分别为5-100mV之间时,得到的比电容值分布在145.0F/g-87.1F/g范围内,不管扫速是多大,这些数值均要高于氧化石墨的测定值。在酸性环境下,比电容的增大可以用下列法拉第反应式解释:

C*=NH+2e-+2H+?C*H-NH2

OC*H-NH2+2e-+2H+?C*NH2+H2O

(C*代表碳网络中可能包含的含氧基团)

当电流密度为0.4A/g和0.8A/g是,根据恒流充放电曲线,获得的比电容分别为217.8F/g和187.6F/g,在相同条件下,氧化石墨的比电容只有28F/g,化学还原氧化石墨烯的为135F/g,活性炭的为63F/g,碳纳米管为50F/g,这些数据表明,通过水热还原法向碳纳米材料中引入氨基,可以实现储能装置的快速充放电。在实际应用过程中,超级电容器的循环稳定性是一项重要的指标。原始碳材料由于不含含氧基团,其作为EDLC的稳定性得到了保证,但性能并不理想。用混酸处理过的碳材料表面含氧基团较为丰富,提高了材料的赝电容,但含氧基团所带来的氧还原反应是准可逆反应,长时间循环后,材料的电容值会下降。实验所用的NH2-Gr显示出优异的循环稳定性,1000次循环后扫速为50mV/s时,比电容仍能稳定在117F/g,证明伯胺基团在酸性电解液中很稳定。

微波辐照热处理法是一个方便快捷的加热方法,而石墨烯基材料具备微波吸收特性,因此可以经由石墨插层化合物实现石墨的剥离[23-25]。依据这个技术原理作基础,Ruoff[23]等人利用商品微波炉处理氧化石墨烯粉末,轻而易举的制备出RGM。这种材

料样品形貌褶皱,外观呈蠕虫状,且只由几层石墨片层组成,导电性良好。比表面积达到463m2/g,适合作为EDLC的电极材料使用,在KOH电解液中测试,得到的比容量为191F/g。这种微波辐照热处理法是一种有前景的大规模低成本制备石墨烯基电极材料的方法。

2.3凝胶法

大多数情况下,化学还原和热膨胀还原法仍不足以是石墨烯基材料产生足够的大孔让电解液通过[26, 27],因此,只有在小电流密度和低的电位扫速下才能获得高的比容量和能量密度,通常电流密度需低于1A/g,电位扫描速度低于50mV/s。目前,对于低团聚程度,自支撑,不加粘合剂的石墨烯基电极的需求量仍然很大。最近,shi[28]的课题组报导了一种利用维生素A在氧化石墨烯水溶液中实施还原的方法,获得了一种新型的三维自组装石墨烯凝胶。从图1中可以看出,石墨烯凝胶内部的三维孔结构轮廓分明,纵横交错,孔径在亚微米级到几微米范围内。电导率约为1S/m,机械强度高,而且表现出良好的电化学特性。疏水基团和π-π电子云重叠引起的协同效应在化学还原后得到增强,形成柔性石墨烯片层的三维集合体,从而产生这种高性能的石墨烯基凝胶。该石墨烯凝胶做成的电极的比电容为240F/g(放电电流密度1.2A/g,1M H2SO4电解液)。

图1 三维自组装石墨烯凝胶内部结构扫描电镜照

片[28]

Figure1 SEM image of graphene hydrogel with 3D

porous structure[28]

该课题组的另一份报告中声称[29],2-氨基蒽醌(AAQ)能和化学修饰石墨烯(CMG)实现共价接枝,形成AAQ功能化CMG,这是一种能够实现自组装的大孔径凝胶。虽然该凝胶的电导率相对较低(0.3S/m),但其比表面积却能达到1050±60m2/g,用其制成的电极比电容达到258F/g(放电电流密度0.3A/g,1M H2SO4电解液)。这被认为是AAQ部分的共价接枝所额外提供的氧化还原电容,不仅如此,该电极的循环稳定性极佳,在2000次循环之后电容值并未减少,相反,却有少许增加,这可能是因为电极的润湿性和电化学活性得到了改善的缘故。

为了进一步改善石墨烯基凝胶的导电性,shi[30]等人使用了两步还原法制备石墨烯凝胶,首先是水热还原氧化石墨烯,接着使用水合肼或者氢碘酸进一步还原反应产物,用这种方法制备出的石墨烯电导率大约在1.3~3.2S/m之间。他们用50wt%的水合肼在100°C高温下反应8个小时,获得了最佳的电极材料,比电容达到了220F/g(电流密度1A/g),当电流密度增大到100A/g时,比容量仍能保持74%,功率密度30kW/kg,能量密度5.7Wh/kg。如果选择适中的电流密度,比如4A/g,2000次循环测试后容量保持率在92%左右,这也是个比较长的循环寿命。之所以会有如此优异的性能,与这种材料的高电导率是分不开的,另外,其独特的三维大孔结构也功不可没。

2.4活化石墨烯法

活化是获得超级电容器电极作用多孔碳材料的普遍做法[31]。常用的活化方法之一是电化学活化[32],据报道,原始的碳前驱体材料经过活化,原来较小的表面积和较低的比容量都得到了重大改善。因此,这项活化技术也被认为能改善石墨烯基超级电容器电极的性能。KotZ[33]等人对局部还原氧化石墨烯进行电化学活化,研究了其作为超级电容器电极的性能。他们所用的局部还原氧化石墨烯是通过热还原方式得到的,其BET 比表面积只有5m2/g,几乎可以忽略不计。然而,经过电化学活化后,活性石墨烯基材料的比表面积陡然增大至2687m2/g,接

近了

石墨烯的理论比表面积,理论比电容达到220F/g(扫速1mV/s,1M的Et4NBF4乙腈电解液)。反应所需的活化电位取决于反应物的晶格间距,这说明电化学活化至少与离子或溶剂插层有关。

除了电化学活化方法外,Pan[34]等人提出了一种新的化学修饰法改善石墨烯,以提高石墨烯基超级电容器电极的容量。他们使用浓KOH溶液处理石墨烯后,该石墨烯基材料的比电容达到136F/g(扫速10mV/s,1M

Na2SO4溶液),要比未处理之前的高35%。KOH处理不仅改善了石墨烯与电解液离子的接触性,而且引入了更多的含氧基团,这些基团带有赝电容特性。他们认为边际缺陷和含氧基团的引入,是电容值增大的主要原因。

值得注意的是,Ruoff[35]的研究团队也报导了KOH处理方式,他们分别针对微波剥离氧化石墨烯(MEGO)和热剥离氧化石墨烯(TEGO),所获得的材料的比表面积达到了3100m2/g,研究过程中发现KOH活化会对MEGO进行刻蚀,产生三维的中孔分布。这些孔的尺寸非常小,范围在1至10nm之间。虽然石墨烯片层高度弯曲,但面内结晶依然完好。活化后的MEGO比表面约为2400m2/g,作为超级电容的电极,其比容量达到166F/g(1-丁基-3-甲基咪唑四氟硼酸盐/乙腈电解液(BMIM BF4/AN),电流密度5.7A/g)。根据放电曲线,结合电压降和电子自旋共振分析,工作电压为3.5V时,能量密度达到70Wh/kg,功率密度高达250kW/kg。并且,活化MEGO表现出非常优异的循环稳定性,在10000次恒流充放电循环后(电流密度2.5A/g,纯BMIM BF4/AN电解液),容量保持在原来的97%。KOH活化法在商品化活性碳上的应用已经得到证明,再加上这些成功的测试结果,有理由相信,这种活化方式可以在短期内对高性能储能装置用活化石墨烯基材料的大规模量产起到促进作用。图2 (a) 微波剥离/还原氧化石墨以及化学活化过程;

(b) 三维MEGO局部区域的低倍扫描电镜照片;(c) 高分辨率扫描电镜下的孔状形貌照片;(d) 与c图

区域相同的环场暗区扫描子显微镜照片;(e) a-MEGO样品薄边的高分辨率的相位对比电子显微

镜图;(f) a-MEGO的高倍透射电镜照片[35]。Figure.2 (a)Graphene-based electrode materials prepared by activation of microwave-exfoliated GO;(b)Low magnification SEM image of 3D MEGO fragment;(c)High resolution SEM image of a different sample region;(d)Annular dark field scanning transmission electron microscopy image of the same area as in (c);(e)High resolution phase contrast electron microscopy image of the thin edge of a-MEGO fragment;(f)High resolution TEM image of a-MEGO fragment[35].

3.结束语

石墨烯基材料有多种微组织结构,应用于超级电容器电极材料的前景非常广阔。近几年来,关于合成石墨烯和氧化石墨的文献数量呈雪崩式增长,这些理论研究为石墨烯在储能领域的应用提供了理论基础和制备方法。当前,如何有效控制生产成本、简化生产工艺、创造环境友好的生产方式、提高石墨烯的品质和生产效率,仍需进一步完善。为了充分发挥石墨烯作为电极材料的优异性能,制备石墨烯的过程当中,需要对其在不同的加工过程中的物理和化学性质深入了解,才能控制纳米粒子在石墨烯表面的分布、结构、形貌及数量,并保持石墨烯良好的本征性质。为了加快化学剥离法生产商品化石墨烯的工业化进程,一些关键性问题,例如石墨的彻底剥离,单层或多

层石墨烯在

不同溶剂中的稳定分散,保留二维石墨烯的本征特性等,仍亟待处理。

通过对石墨烯基电极材料的深入研究,人们会对这种新型二维纳米材料的本征结构和性质有更加深刻的理解和认识,而后必将产生一系列石墨烯基新型电极材料,从而为石墨烯的实际应用提供理论基础和技术支撑。

参考文献

[1] Hee K. Chae, Diana Y. Siberio-Perez, Jaheon

Kim, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature. 2004, 427: 523-527. [2] Mishra A K, Ramaprabhu S. Functionalized

Graphene-Based Nanocomposites for Supercapacitor Application[J]. The Journal of Physical Chemistry C. 2011, 115(29): 14006-14013.

[3] Biswas S, Drzal L T. Multilayered

Nanoarchitecture of Graphene Nanosheets

and Polypyrrole Nanowires for High

Performance Supercapacitor Electrodes[J].

Chemistry of Materials. 2010, 22(20):

5667-5671.

[4] Zhao X, Hayner C M, Kung M C, et al.

Flexible Holey Graphene Paper Electrodes with Enhanced Rate Capability for Energy Storage Applications[J]. ACS Nano. 2011, 5(11): 8739-8749.

[5] ZHU Lei(朱磊),WU Bo-rong(吴伯荣),

CHEN Hui(陈晖),et al.超级电容器研

究及其应用[J]. Chinese Journal of Rare Metals(稀有金属). 2003, 27(3): 385-390. [6] Manikoth M. Shaijumon, Fung Suong Ou,

Lijie Ci, et al. Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes[J]. Chemical Communications. 2008(20): 2373-2375. [7] Chunming Niu, Enid K. Sichel, Robert Hoch,

et al. High power electrochemical capacitors based on carbon nanotube electrodes[J].

Applied Physics Letters. 1997, 70(11): 1480-1482.[8] L. Diederich, E. Barborini, P. Piseri, et al.

Supercapacitors based on nanostructured carbon electrodes grown by cluster-beam deposition[J]. Applied Physics Letters. 1999, 75(17): 2662-2664.

[9] C. G. Liu, M. Liu, F. Li, et al. Frequency

response characteristic of single-walled carbon nanotubes as supercapacitor electrode material[J]. Applied Physics Letters. 2008, 92(14): 143108.

[10] Stoller M D, Park S, Zhu Y, et al.

Graphene-Based Ultracapacitors[J]. Nano Letters. 2008, 8(10): 3498-3502.

[11] Sasha Stankovich, Dmitriy A. Dikin,

Richard D. Piner, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].

Carbon. 2007, 45: 1558-1565.

[12] Wang Y, Shi Z, Huang Y, et al.

Supercapacitor Devices Based on Graphene Materials[J]. The Journal of Physical Chemistry C. 2009, 113(30): 13103-13107. [13] Chen Y, Zhang X, Zhang D, et al. High

performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes[J]. Carbon. 2011, 49(2): 573-580.

[14] Schniepp H C, Li J, Mcallister M J, et al.

Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide[J].

Journal of Physical Chemistry B. 2006, 110(17): 8535-8539.

[15] Vivekchand S R C, Rout C S,

Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors[J]. Journal of Chemical Sciences. 2008, 120(1): 9-13. [16] Lv W, Tang D, He Y, et al.

Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage[J]. ACS Nano. 2009, 3(11): 3730-3736.

[17] Du Q, Zheng M, Zhang L, et al. Preparation

of functionalized graphene sheets by a low-temperature thermal exfoliation

approach and their electrochemical supercapacitive behaviors[J]. Electrochimica Acta. 2010, 55(12): 3897-3903.

[18] Zhu Y, Stoller M D, Cai W, et al.

Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets[J]. ACS Nano. 2010, 4(2): 1227-1233.

[19] Burke A. R&D considerations for the

performance and application of electrochemical capacitors[J].

Electrochimica Acta. 2007, 53(3): 1083-1091.

[20] Lin Z, Liu Y, Yao Y, et al. Superior

Capacitance of Functionalized Graphene[J].

The Journal of Physical Chemistry C. 2011, 115(14): 7120-7125.

[21] Bagri A, Grantab R, Medhekar N V, et al.

Stability and Formation Mechanisms of Carbonyl- and Hydroxyl-Decorated Holes in Graphene Oxide[J]. Journal of Physical Chemistry C. 2010, 114(28): 12053-12061. [22] Lai L, Chen L, Zhan D, et al. One-step

synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties[J]. Carbon. 2011, 49(10): 3250-3257.

[23] Zhu Y, Murali S, Stoller M D, et al.

Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors[J]. Carbon. 2010, 48(7): 2118-2122.

[24] Tryba B, Morawski A W, Inagaki M.

Preparation of exfoliated graphite by microwave irradiation[J]. Carbon. 2005, 43(11): 2417-2419.

[25] Falcao E H L, Blair R G, Mack J J, et al.

Microwave exfoliation of a graphite intercalation compound[J]. Carbon. 2007, 45(6): 1367-1369.

[26] Balandin A A, Ghosh S, Bao W, et al.

Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Letters.

2008, 8(3): 902-907.[27] K?tz R, Carlen M. Principles and

applications of electrochemical capacitors[J].

Electrochimica Acta. 2000, 45(15-16): 2483-2489.

[28] Xu Y, Sheng K, Li C, et al. Self-Assembled

Graphene Hydrogel via a One-Step Hydrothermal Process[J]. ACS Nano. 2010, 4(7): 4324-4330.

[29] Wu Q, Sun Y, Bai H, et al.

High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties [J]. Physical Chemistry Chemical Physics. 2011, 13(23): 11193-11198.

[30] Zhang L, Shi G. Preparation of Highly

Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability[J]. The Journal of Physical Chemistry C. 2011, 115(34): 17206-17212. [31] Barranco V, Lillo-Rodenas M A,

Linares-Solano A, et al. Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor Electrodes[J].

The Journal of Physical Chemistry C. 2010, 114(22): 10302-10307.

[32] Takeuchi M, Maruyama T, Koike K, et al.

Non-porous Carbon for a High Energy Density Electric Double Layer Capacitor[J].

Electrochemistry. 2001, 69(6): 487-492. [33] Hantel M M, Kaspar T, Nesper R, et al.

Partially reduced graphite oxide for supercapacitor electrodes: Effect of graphene layer spacing and huge specific capacitance[J]. Electrochemistry Communications. 2011, 13(1): 90-92. [34] Yueming Li, Marshall Van Zijll, Shirley

Chiang, et al. KOH modified graphene nanosheets for supercapacitor electrodes[J].

Journal of Power Sources. 2011, 196(14): 6003-6006.

[35] Yanwu Zhu, Shanthi Murali, Meryl D.

Stoller, et al. Carbon-Based Supercapacitors Produced by Activation of Graphene[J].

Science. 2011, 332(24): 1537-1541.

超级电容器电极材料的研究进展

2011年第3期 新疆化工 11 超级电容器电极材料的研究进展 摆玉龙 (新疆化工设计研究院,乌鲁木齐830006) 摘要:超级电容器既具有超大容量,又具有很高的功率密度,因此它在后备电源、替代电源、大功率输出等方面都有极为广泛的应用前景。超级电容器的性能主要取决于电极材料,近年来各国学者对于超级电容器的电极材料进行了大量的研究。 关键词:超级电容器;电极材料 1 前言 超级电容器的种类按其工作原理可以分为双电层电容器、法拉第准电容器(也称为赝电容电容器)以及二者兼有的混合电容器。双电层电容器基于双电层理论,利用电极和电解质之间形成的界面双电层电容来储存能量。法拉第准电容器则基于法拉第过程,即在法拉第电荷转移的电化学变化过程中产生,不仅发生在电极表面,而且可以深入电极内部。根据这两种原理,目前作为超级电容器的电极材料的主要分为三类[1]:碳材料、金属氧化物及水合物材料、导电聚合物材料。 2 碳材料类电极材料 在所有的电化学超级电容器电极材料中,研究最早和技术最成熟的是碳材料。其研究是从1957年Beck发表的相关专利开始的。碳电极的研究主要集中在制备具有大的比表面积和较小内阻的多孔电极材料上,可用做超级电容器电极的碳材料主要有:活性炭、纳米碳纤维、玻璃碳、碳气凝胶、纳米碳管等。 活性炭(AC)是超级电容器最早采用的碳电极材料[2]。它是碳为主,与氢、氧、氮等相结合,具有良好的吸附作用。其特点是它的比表面积特别大,比容量比铂黑和钯黑高五倍以上[3]。J.Gamby[4]等对几种不同比表面积的活性炭超级电容器进行测试,其中比表面积最大为2315m2·g的样品得到的比容量最高,达到125F/g,同时发现比表面积和孔结构对活性炭电极的比容量和内阻有很大影响。 活性炭纤维(ACF)是性能优于活性炭的高效活性吸附材料和环保工程材料。ACF的制备一般是将有机前驱体纤维在低温(200℃~400) ℃下进行稳定化处理,随后进行炭化、活化(700℃~1000) ℃。日本松下电器公司早期使用活性炭粉为原料制备双电层电容器的电极,后来发展的型号则是用导电性优良、平均细孔孔径2~5nm、细孔容积0.7~1.5m3/g、比表面积达1500~3000m2/g的酚醛活性炭纤维[5],活性炭纤维的优点是质量比容量高,导电性好,但表观密度低。H. Nakagawa采用热压的方法研制了高密度活性炭纤维(HD-ACF)[6],其密度为0.2~0.8g/m3,且不用任何粘接剂。这种材料的电子导电性远高于活性炭粉末电极,且电容值随活性炭纤维密度的提高而增大,是一种很有前途的电极材料。用这种HD-ACF 制作超级电容器电极[7],结果表明,对于尺寸相同的单元电容器,采用HD-ACF为电极的电容器的电容明显提高。 炭气凝胶是一种新型轻质纳米级多孔性非晶炭素材料,其孔隙率高达80%~98%,典型孔隙尺寸<50nm,网络胶体颗粒尺寸3~20nm,比表面积高达60~1000m2/g,密度为0.05~0.80g/m3,是一种具有许多优异性能(如导电性、光导性和机械性能等)和广阔的应用前景的新型材料[8]。孟庆函,

石墨烯基材料做电极材料的机遇与挑战

石墨烯基材料做电极材料的机遇与挑战近年来,高性能电化学储能装置的需求量大幅上升,于是很多学者都开始投入到对更卓 越电极材料的开发和研究中。在这方面,石墨烯基材料吸引了大量目光。由于能提升现有设备性能,并使下一代设备更实用,石墨烯基材料被看作是前景深远的高性能电极材料。 碳材料广泛应用于不同的储能设备,并发挥着非常重要的作用。然而,由于多孔碳材料和纳米碳材料密度低,高碳含量电极的存储密度也总是很低,因而造成体积能量密度低。 尽管石墨烯也面临同样问题,甚至情况更严重,但经过石墨烯和电极结构设计的可控组合,还是可以得到高密度石墨烯基电极。此外,在许多情况下,组装的集成石墨烯基电极不含任何导电剂和粘结剂,因此能进一步帮助提升体积能量密度。

作为电化学储能装置的潜在电极材料,石墨烯具有许多其他传统碳材料和纳米碳材料所没有的优越性。石墨烯物理结构稳定、比表面积大、导电性良好,对大多数电化学储能装置来说,它几乎是一种完美材料。 此外,石墨烯的输出性能也取得了很多令人瞩目的进步:利用二维层状结构能构建出各种三维结构,还具备可调节的孔隙结构。我们在论文中综述了石墨烯基材料在液态锂离子电池、锂硫电池、锂氧电池、NIB和SC等方面的应用。我们研究发现,将石墨烯应用于这些装置,能大大提高其性能。 石墨烯的几个显著优势如下: 1.石墨烯在实际应用于非碳材料时,是一种有利的碳基材。它应用容易,比表面积大,使得在其表面实现其他活性成分的杂交和均匀散布更加容易,这也极大提高了这些成分的利用率。此外,利用石墨烯在两个活性粒子甚至是整个电极间构建互联的导电网络也是轻而易举。这样的网络有助于提高电极的循环稳定性。 2.通过在装置中使用石墨烯代替传统碳材料,能实现高体积能量密度。石墨烯为高体积能量密度装置的组装提供了潜在解决方案。 3.柔性石墨烯有望制造柔性储能装置。使用石墨烯及其组件可以制备出具有高度柔韧性的集流体,为我们提供了一种取代脆性金属集流体的方法。此外,利用石墨烯还能制备出集成柔性电极,有助于解决在反复弯曲过程中集流体活性材料分离的问题。 除了以上几点,石墨烯相较于传统碳材料还具有多种优越性能,可能有助于促进各种新型电池系统的实际应用。新近研究报告指出,高能室温钠硫电池通过碳/硫复合材料作为电极。我们可以预料,石墨烯可以进一步帮助提升这类电池的性能。还有研究发现,石墨烯基复合材料可作为锌空气电池的高效电催化剂。在种种结果之上,我们不难看出,石墨烯在未来能源储存装置应用中的巨大潜力。

石墨烯聚乳酸复合材料

Preparation of Polylactide/Graphene Composites From Liquid-Phase Exfoliated Graphite Sheets Xianye Li,1Yinghong Xiao,2Anne Bergeret,3Marc Longerey,3Jianfei Che1 1Key Laboratory of Soft Chemistry and Functional Materials,Nanjing University of Science and Technology, Nanjing210094,China 2Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,Jiangsu Key Laboratory of Biomedical Materials,College of Chemistry and Materials Science,Nanjing Normal University, Nanjing210046,China 3Materials Center,Ales School of Mines,30319Ales Cedex,France Polylactide(PLA)/graphene nanocomposites were pre-pared by a facile and low-cost method of solution-blending of PLA with liquid-phase exfoliated graphene using chloroform as a mutual solvent.Transmission electron microscopy(TEM)was used to observe the structure and morphology of the exfoliated graphene. The dispersion of graphene in PLA matrix was exam-ined by scanning electron microscope,X-ray diffrac-tion,and TEM.FTIR spectrum and the relatively low I D/I G ratio in Raman spectroscopy indicate that the structure of graphene sheets(GSs)is intact and can act as good reinforcement fillers in PLA matrix.Ther-mogravimetric analysis and dynamic mechanical analy-sis reveal that the addition of GSs greatly improves the thermal stability of PLA/GSs nanocomposites.More-over,tensile strength of PLA/GSs nanocomposites is much higher than that of PLA homopolymer,increasing from36.64(pure PLA)up to51.14MPa(PLA/GSs-1.0). https://www.sodocs.net/doc/9313936651.html,POS.,35:396–403,2014.V C2013Society of Plastics Engineers INTRODUCTION Polylactide(PLA),a renewable,sustainable,biode-gradable,and eco-friendly thermoplastic polyester,has balanced properties of mechanical strength[1],thermal plasticity[2],and compostibility for short-term commod-ity applications[3,4].It is currently considered as a promising polymer for various end-use applications for disposable and degradable plastic products[5–8].Never-theless,improvement in thermal and mechanical proper-ties of PLA is still needed to pursue commercial success. To achieve high performance of PLA,many studies on PLA-based nanocomposites have been performed by incorporating nanoparticles,such as clays[9,10],carbon nanotubes[11–13],and hydroxyapatite[14].However, research on PLA-based nanocomposites containing gra-phene sheets(GSs)or graphite nanoplatelets has just started[15–17].GSs exhibit unique structural features and physical properties.It has been known that GSs have excellent mechanical strength(Young’s modulus of1,060 GPa)[18],electrical conductivity of104S/cm[19],high specific surface area of2,630m2/g[20],and thermal sta-bility[21].Polymer nanocomposites based on graphene show substantial property enhancement at much lower fil-ler loadings than polymer composites with conventional micron-scale fillers,such as glass[22]or carbon fibers [23],which ultimately results in lower filler ratio and simple processing.Moreover,the multifunctional property enhancement of nanocomposites may create new applica-tions of polymers. However,the incorporation of graphene into PLA matrix is restricted by cost and yield.Although the weak interactions that hold GSs together in graphite allow them to slide readily over each other,the numerous weak bonds make it difficult to separate GSs homogeneously in sol-vents and polymer matrices[24].Many methods have been reported for exfoliation of graphite,such as interca-lation with alkali metals[25]or oxidation in strong acidic conditions[26–29].Recently,exfoliation of graphite in liquid-phase was found to be able to give oxide-free GSs with high quality and yield at relatively low cost[30–35]. Correspondence to:Y.H.Xiao;e-mail:yhxiao@https://www.sodocs.net/doc/9313936651.html, or J.F.Che; e-mail:xiaoche@https://www.sodocs.net/doc/9313936651.html, Contract grant sponsor:Specialized Research Fund for the Doctoral Program of Higher Education of China;contract grant number: 20123219110010;contract grant sponsor:Natural Science Foundation of Jiangsu Province of China;contract grant number:BK2012845;contract grant sponsors:Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),contract grant sponsor:Financial support for short visit from Ales School of Mines,France. DOI10.1002/pc.22673 Published online in Wiley Online Library(https://www.sodocs.net/doc/9313936651.html,). V C2013Society of Plastics Engineers POLYMER COMPOSITES—2014

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用石墨烯(Graphene)是一种仅由碳原子以sp2杂化轨道组成六角型晶格的平面薄膜,亦即只有一个碳原子厚度的二维材料。相比其他炭材料如碳纳米管,石墨烯具有独特的微观结构,这使得石墨烯具有较大的比表面积和蜂窝状空穴结构,具有较高的储锂能力。此外,材料本身具有良好的化学稳定性、高电子迁移率以及优异的力学性能,使其作为电极材料具有突出优势。与碳纳米管类似,纯石墨烯材料由于首次循环库仑效率低、充放电平台较高以及循环稳定性较差等缺陷并不能取代目前商用的炭材料直接用作锂离子电池负极材料。随着制备技术的发展,通过控制石墨烯片层间的间距,防止固体电介质层的形成大量消耗锂离子,并合理平衡缺陷结构与“死锂”的产生也许是石墨烯材料进一步向实用化材料发展的方向之一。 1.硅-石墨烯基复合材料在锂电池负极材料中的应用 石墨烯也是对硅负极进行改性的重要骨架材料。它能够提供自由空间来缓冲充放电过程中的体积效应,保证脱嵌锂过程中材料结构的完整性;同时,石墨烯片层间能形成稳定的导电网络,从而提高电极的储锂性能。Lee等将纳米硅颗粒高度分散在石墨烯薄片上,然后进行热处理还原得到硅-石墨烯复合材料,电化学测试表明,该复合材料经过50个循环后,容量大于2200mA·h/g,200个循环后容量大于1500mA·h/g,每个循环的衰减率小于0.5%。该复合材料优异的电化学性能得益于纳米硅颗粒均匀分散在柔韧的石墨烯层间,不仅改善了硅的电子电导,而且有效缓冲了硅的体积效应。 高鹏飞通过喷雾干燥技术将二维的石墨烯加工成具有三维结构的导电网络,同时将纳米硅粉包裹在其内部空腔内,得到了一种“包裹型”硅碳复合材料。该材料具有高达1525mA·h/g 的比容量和较好的循环稳定性。这得益于硅与石墨烯的协同效应,纳米硅粒可分隔石墨烯层,防止其堆叠失效;而石墨烯层可以缓冲硅的体积效应,其导电网络结构可改善活性硅颗粒的电接触,维持材料结构稳定。Ma等通过喷雾干燥法合成具有浴花形状的硅-石墨烯复合材料(见图1)。电化学测试表明,该复合材料的首次充放电容量分别为2174mA·h/g和1252mA·h/g,经过30个循环后,可逆容量仍保持在1500mA·h/g以上。其优异的电化学性能归因于这种特殊的浴花状结构以及石墨烯与纳米硅颗粒之间的协同作用,石墨烯提供足够的空间来缓冲充放电过程中硅的体积变化,并防止硅颗粒的聚集。此外,高导电性的石墨烯包裹活性纳米硅颗粒,从而保持其循环过程中稳定的电接触。

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

硅石墨烯复合负极材料体积膨胀及SEI膜地原因机理及解决方法

硅/石墨烯复合负极材料 1、硅体积膨胀的原因及反应机理 迄今为止,负极材料中硅的理论容量最高,Li 和Si 形成合金LixSi (0

固相非晶化过程(electrochemically-driven solid-state amorphization)。 晶相的硅锂合金还有其它的化合物包括 LiSi、Li 21Si 5 、Li 15 Si 4 等,常见的几种 硅锂合金的晶格结构如表 1.1。 表1.1 锂硅合金的晶体结构 LiSi Li12Si7Li7Si3Li13Si4Li15Si4Li21Si5Li22Si5四方晶系正交晶系菱方晶系正交晶系体心立方面心立方面心立方对于常温下锂与晶体硅的电化学合金化机理,Obrvac[3]等人对近几年的相关研究成果进行了总结,如图1.2和1.3所述。 图1.2晶体硅颗粒作为负极时的前两次的电化学性能曲线(a)硅电极电压-容量曲线(b) 硅电极C-V曲线[3] 图1.3 硅电极与锂反应过程的示意图[3]

石墨烯基超级电容器电极材料研究进展..

**大学研究生课程考试(查)论文2014——2015学年第二学期 《石墨烯基超级电容器电极材料研究进展》 课程名称:材料化学 任课教师: 学院: 专业: 学号: 姓名: 成绩:

石墨烯基超级电容器电极材料研究进展 摘要:超级电容器是目前研究较多的新型储能元件,其大的比电容、高的循环稳定性以及快速的充放电过程等优良特性,使其在电能储存及转化方面得到广泛应用。超级电容器的电极材料是它的技术核心。石墨烯作为一种新型的纳米材料,具有良好的导电性和较大的比表面积,可作为超级电容器的电极材料。利用其他导电物质对石墨烯进行改性和复合,可以在保持其本身独特优点的同时提高作为电极材料的导电率、循环稳定性等其他性能。本文对近年来石墨烯基电极材料在两种不同类型超级电容器中的应用研究进行了综述。 关键词:超级电容器;石墨烯;导电聚合物;金属氧化物 随着人类社会赖以生存的环境状况的日益恶化,过多的CO2排放造成气候变化不稳定,人们对能源的开发和研究重点已经转移到绿色能源(如太阳能、风能等)上面[1, 2],但是它们是靠大自然的资源来储能和转化能量的,其发电能力极大程度要受到自然环境以及季节变化的影响,如果被广泛应用于日常生活,有很多不稳定性,这也是目前太阳能、风能领域的瓶颈。超级电容器,又称作电化学电容器,是一种既稳定又环保的新型储能元件。它具有充电时间短、使用寿命长、功率密度高、安全系数高、节能环保、低温特性好等优点。超级电容器在现代科技、工业、航天事业方面的应用都十分广泛,它代表了高储能技术的一次突破。目前,国内在相关方面做了许多研究,并实现了商业化生产。但是,它们的广泛应用还存在,例如,能量密低、成本过高等问题。 从原理出发,超级电容器可分为双电层电容器和法拉第赝电容器两类。两者均是由多孔双电极、电解质、集流体、隔离物4部分所构成(超级电容器结构如图1所示)。为了减小接触电阻,要求电解质和电极材料紧密接触;隔离物的电子电导要低,离子电导要高,以保证电解质离子顺利穿透。双电层电容器是利用双电极和电解质组成的双电层结构来实验充放电储能的。当在两电极上施加电压,电解质被电离产生正负离子,由于电荷补偿,正离子移向负电极,负离子移向正电极,这样就在电极与电解质界面处产生双电层。由于这个双电层是由相反电荷层构成,如同普通平板电容器一样,但是此双电层间距很小,是原子尺寸量

石墨烯复合材料

石墨烯复合材料 石墨烯是单层碳原子通过sp2杂化形成的蜂窝点阵结构,属于二维原子晶体,此独特的空间结构,给石墨烯带来了优异的电学、力学、热学和比表面积大等性质。但是二维石墨烯由于片层之间具有较强的π-π作用和范德华力,使得石墨烯容易聚集形成石墨,限制了石墨烯在各个领域中的应用。因此,为了防止石墨烯的聚集和拓展石墨烯的应用,科研工作者将石墨烯与高分子或者无机纳米粒子进行复合,从而得到具有优异性能的复合材料。石墨烯的复合材料具有化学稳定性高、比表面积大,易回收等特点,在环境治理方面受到了科学家的青睐。 一、石墨烯复合材料的分类和制备 1、石墨烯-高分子复合材料 石墨烯-高分子复合材料,石墨烯的独特的结构和性能,对于改善高分子的导电性、热性能和吸附能力等方面有非常大的应用价值。制备石墨烯-高分复合材料最直接的方法是将高分子溶液与石墨烯的溶液混合,其中高分子和填充物在溶剂中的溶解能力是保证最佳分散度的重要因素。因此,在溶液混合时,可以将石墨基质表面功能化来提高它在多种溶剂中的溶解度。例如,异氰酸

苯酯修饰的GO在在聚苯乙烯的DMF溶液中表现出了较好的溶解度。 2、石墨烯-无机纳米粒子复合材料 无机纳米粒子存在着易于团簇的问题,并且选择合适的载体也是其广泛应用需要解决的问题。石墨烯具有多种优异的性能,并且具有较大的比表面积,可以成为无机纳米材料的载体。无机纳米粒子可以将易于团簇的石墨烯片层分开,防止团簇,从而两者形成石墨烯-无机纳米粒子新型的复合材料,这些材料广泛的应用于检测、催化和气体存储等方面。目前已报道的有负载的金属纳米粒子Ag、Au、氧化物纳米粒子ZnO和Fe3O4等。 3、其它石墨烯复合材料 石墨烯不仅仅可以和高分子、无机纳米材料复合,还可以同时结合高分子、纳米粒子和碳基材料中的一种或者两种,形成多元的含有石墨烯的复合材料。这类材料具有多功能性,用于超级电容器或者传感器等。 二、石墨烯复合材料在水治理的应用 1、吸附作用 碳材料中活性碳和碳纳米管被广泛的应用于水净化领域,将石墨烯与其它化合物进行复合,这些复合材料在吸附污染物上有非常高的效率,可以应用于染料、多芳香环烃和汽油的吸附。比如利用磁性-壳聚糖-石墨烯的复合材料可以大大提高去除溶液中的亚甲基蓝的效率,吸附能力达到

北京航空航天大学科技成果——仿贝壳层状高强度石墨烯复合电极材料

北京航空航天大学科技成果——仿贝壳层状高强度 石墨烯复合电极材料 项目简介 近些年来,柔性超级电容器越来越多的被用于不同领域的柔性电子器件当中。作为一种能量储能装置,柔性超级电容器常常表现出高的能量密度、快速的充放电能力、长循环寿命以及极好的安全性,有望将取代传统的电池。然而,去开发一种柔性电极材料兼具强健的机械性能和高的储能能力应用于柔性超级电容仍然是一个巨大挑战。为了更好的解决这个难题,已经有大量的工作去开发相应的柔性超级电容器电极材料如:纤维状、薄膜状以及三维立体块状电极材料。但是,一种合理的方法去设计柔性超级电器同时兼具强的机械性能、优越的导电性、高的比容量以及超长的循环寿命到目前为止仍然是一个挑战。 仿贝壳石墨烯复合材料薄膜通过构建微纳米多级结构和不同的界面作用,呈现极好的机械性能和卓越的导电性。到目前为止,关于通过界面作用制备电极材料在超级电容器方面中的应用研究很少。且电极材料的机械性能和电容性能并没有得到显著性地提高。为克服现有技术的不足,本成果提供一种仿贝壳层状高强度石墨烯复合电极材料的制备技术。 技术描述 本技术的实施方案:通过超声的方法,得到不同比例的埃洛石-聚苯胺-氧化石墨烯分散液,并实现了石墨烯含量在任意比例范围内的调控。基于此方法,利用真空抽滤诱导自组装的方法得到了一系列

不同石墨烯含量的仿贝壳层状高强度石墨烯复合材料电极。再经氢碘酸还原,得到了仿贝壳层状高强度石墨烯复合电极材料。 该技术将无机相——氧化石墨烯与有机相——埃洛石-聚苯胺,通过真空抽滤诱导自组装的方法,仿生构筑了具有高强度、高导电性和高电容层状石墨烯复合材料电极,其拉伸强度范围达到38.0-351.9MPa,最高为351.9MPa,这些范围均优于其他方法制备的电极材料,在航空航天、电容器电极、组织工程等领域具有广泛的应用前景。 知识产权 已获国家发明专利。 意向合作方式 技术转让、技术许可、作价投资。

超级电容器材料综述

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植

物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料 炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将

石墨烯在复合材料中的应用

石墨烯在复合材料中的应用 龚欣 (东南大学机械工程学院南京211189) 摘要:介绍了石墨烯与有机高聚物、无机纳米粒子以及其它碳基材料的复合物,同时展望了这些材料在相关领域中的应用前景. 关键词:石墨烯纳米复合材料 2004年至今, 关于石墨烯的研究成果已在SCI检索期刊上发表了超过2000篇论文, 石墨烯开始超越碳纳米管成为了备受瞩目的国际前沿和热点.基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景.目前研究的石墨烯复合材料主要有石墨烯/聚合物复合材料和石墨烯/无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法.本文将对石墨烯的纳米复合材料及其性能等方面进行简要的综述. 一、基于石墨烯的复合物 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质.如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用. 1.1 石墨烯与高聚物的复合物 功能化后的石墨烯具有很好的溶液稳定性,适用于制备高性能聚合物复合材料.根据实验研究,如用异氰酸酯改性后的氧化石墨烯分散到聚苯乙烯中,还原处理后就可以得到石墨烯-聚苯乙烯高分子复合物.该复合物具有很好的导电性,添加体积分数为1%的石墨烯时,常温下该复合物的导电率可达0.1S/M,可在导电材料方面得到的应用. 添加石墨烯还可显著影响高聚物的其它性能,如玻璃化转变温度(Tg)、力学和电学性能等.例如在聚丙稀腈中添加质量分数约1%的功能化石墨烯,可使其Tg 提高40℃.在聚甲基丙烯酸甲酯(PMMA)中仅添加质量分数0.05%的石墨烯就可以将其Tg提高近30℃.添加石墨烯的PMMA比添加膨胀石墨和碳纳米管的PMMA具有更高的强度、模量以及导电率.在聚乙烯醇(PVA)和PMMA中添加质量分数0.6% 的功能化石墨烯后,其弹性模量和硬度有明显的增加.在聚苯胺中添加适量的氧化石墨烯所获得的聚苯胺-氧化石墨烯复合物的电容量(531F/g)比聚苯胺本身的电容量(约为216F/g)大1倍多,且具有较大的拉伸强度(12.6MPa).这些性能为石墨烯-聚苯胺复合物在超级电容器方面的应用创造了条件. 石墨烯在高聚物中还可形成一定的有序结构.通过还原分散在Nafition膜中

石墨烯复合材料的制备及其性能研究进展

石墨烯复合材料的制备及其性能研究进展

论文 题目: 石墨烯复合材料的制备 及其性能研究进展学生姓名: 学号: 院(系):化工与制药工程系专业班级: 指导教师: 职称: 201 年月

石墨烯复合材料的制备及其性能研究进展 摘要: 石墨烯以其优异的性能和独特的二维结构成为材料领域研究热点。本文综述了石墨烯的制备方法并分析比较了各种方法的优缺点, 简单介绍了石墨烯的力学、光学、电学及热学性能。基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向, 本文详细介绍了石墨烯聚合物复合材料和石墨烯基无机纳米复合材料的制备及应用,以及石墨烯复合材料的展望。 关键词:石墨烯;制备;性能;复合材料

Research Progress on Preparation and properties of graphene composite materials Abstract: Graphene has become a hot research field of material for its excellent performance and unique two-dimensional structure. This paper summarizes the method for preparing graphene and compared the advantages and disadvantages of various methods,introduces the mechanics,graphene optical,electrical and thermal properties. Composite materials based on graphene is an important research direction in the field of application of graphene,this paper introduces the preparation and application of graphene polymer composites and graphene based inorganic nano composite material,and the prospect of graphene composite materials. Key words:graphene;preparation;properties;composite materials

石墨烯透明电极

柔性光电子器件,如有机发光二极管与太阳能电池,已经引起了越来越多研究者的关注。而其中用到的电极材料也需要具备柔性,轻便,低成本等特点,同时可以大批量地生产。 目前主导光电子器件的氧化铟锡(ITO)电极由于机械稳定性差,而且铟资源的日益缺少导致其成本的不断提高。所以急需寻求一些可替代的环保的电极材料。过去几十年研究者们尝试了大量的新型电极材料,比如纳米碳管、金属网格与金属纳米线网等。最近,由于其高导电性、透明性、可弯曲性、空气与高温稳定性,石墨烯作为一种新型的柔性电子学与电极材料得到广泛认同。 迄今为止制备石墨烯透明电极有两种方法:一种是把石墨烯氧化物溶液旋涂在基底上,然后在高温下还原;另一种是利用化学气相沉积法(CVD)的方法在金属镍或者铜表面催化生长石墨烯,然后再转移到不同的基底上。前一种方法很容易制成薄膜,但是需要1000℃高温,所以对很多基底都不合适,像玻璃与聚对苯二甲酸乙二醇酯(PET)分别在500℃与250℃左右就开始融化。后一种方法尽管不需要太高温度,却要使用复杂的CVD设备,同时还需要转移石墨烯膜的额外程序。因此开发一种低成本、高产出,同时不需高温处理、真空设备与膜转移步骤的方法来制备石墨烯透明柔性电极很有必 要。 香港理工大学纺织制衣系郑子剑教授的研究组与陶晓明教授合作,发展了一种简便的制备高质量石墨烯复合电极(graphene composite electrode, GCE)的方法。他们首先制备磺酸化修饰的石墨烯氧化物,再进行原位水合肼还原,得到大量(克级)径向尺寸大于50微米、并具有良好水溶性的石墨烯片。将此石墨烯的溶液进一步用导电聚噻吩(poly(3,4-ethylenedioxythiophene): polystyrenesulfonate,PEDOT: PSS)掺杂所得到的石墨烯复合溶液,能够很好地旋涂在玻璃或者PET 的基底上。然后只需要在150℃下退火,便可以得到高导电率(80 Ω sq ? 1)和高透光率(80%)的石墨烯复合材料透明电极。在1000次弯曲测试中,电极显示了极好的稳定性,导电性没有明显降低。 使用该电极制备的有机发光二极管在发光效果上也比基于ITO电极的器件高出2倍。

Pt-石墨烯复合材料

This article appeared in a journal published by Elsevier.The attached copy is furnished to the author for internal non-commercial research and education use,including for instruction at the authors institution and sharing with colleagues. Other uses,including reproduction and distribution,or selling or licensing copies,or posting to personal,institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article(e.g.in Word or Tex form)to their personal website or institutional repository.Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: https://www.sodocs.net/doc/9313936651.html,/copyright

相关主题