搜档网
当前位置:搜档网 › 参数方程与普通方程互化教案

参数方程与普通方程互化教案

参数方程与普通方程互化教案
参数方程与普通方程互化教案

参数方程与普通方程互化

教学目标:

1、知识与技能:掌握参数方程化为普通方程几种基本方法

2、过程与方法:选取适当的参数化普通方程为参数方程

3、情感态度与价值观:通过观察、探索、发现的创造性过程,培养创新意

识。

重点难点:

教学重点:参数方程与普通方程的互化

教学难点:参数方程与普通方程的等价性

教学模式:启发、诱导发现教学.

教学过程:

一、前置作业

1、你能直接说出由参数方程

表示的动点M的轨迹吗?

2、将下列曲线的参数方程化为普通方程,并说明它们各表示什么曲线

3、从上题转化过程中,你能归纳出其一般步骤吗?采用了什么处理手法?

二、教学过程

1、展示前置作业,学生小组合作、探究前置作业中的问题。

2、学生分组展示探究成果。

1)在解方程组中通常用的消元方法有哪些?

2)写出圆222

x y r

+=的参数方程

学生展示前置作业问题1

解:由11

x=≥有1

x-,代入1

y=-得23(1)

y x x

=-+≥,这是以(1,1)为端点的一条射线。

注意:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。否则,互化就是不等价的.

12

(1)()

2

x t

t

y t

=+

?

?

=-

?

为参数)

(

sin

4

cos

5

为参数

θ

θ

θ

?

?

?

=

=

y

x

1

.

1

x

t

y

?=

?

?

=-

??

是参数)

小结:1.曲线的参数方程和普通方程是曲线方程的不同形式.

2.曲线的参数方程与普通方程一般可以互化.

探究新知(预习教材P 24~P 26,找出疑惑之处)

[读教材·填要点]参数方程和普通方程的互化

(1)将曲线的参数方程化为普通方程,有利于识别曲线类型,曲线的参数方

程和普通方程是 的不同形式,一般地,可以通过 而从参数方程得到普通方程.

(2)在参数方程与普通方程的互化中,必须使 保持一致.

学生展示前置作业问题2

强调注意三角函数法:利用一些三角函数恒等式来消去参数,注意等价变形

小结: 参数方程化为普通方程的过程就是消参过程常见方法有三种:

1.代入法:利用解方程的技巧求出参数t,然后代入消去参数。

2.三角法:利用三角恒等式消去参数。

3.整体消元法:根据参数方程本身的结构特征,选用灵活的方法从整体上消

去参数或加减消参法、平方消参法。

化参数方程为普通方程为F(x,y)=0:在消参过程中注意变量x 、y 取值范围的一

致性,必须根据参数的取值范围,确定f(t)和g(t)值域得x 、y 的取值范围。

注意:不是所有的参数方程都能化成普通方程。

3、巩固练习、将下列参数方程化为普通方程:

23cos (1)3sin x y θθ=+??=?sin (2)cos 2x y θθ=??=

?(3)(4x t y ?=??=??为参数) 收获:消参的方法一: 代入法

消参过程中要注意的问题: 参数方程与普通方程互化前后,x,y 的取值范围要

保持不变 消参的方法二: 利用恒等式22sin cos 1θθ+= 消参过程中要注意的问题: 先平方再相加

消参的方法三: 整体相消法

消参过程中要注意的问题: 可以先平方,寻找机会

4、课堂小结,你的收获是

消去参数的常用方法有:(1) 代入法 (2) 利用恒等式22sin cos 1θθ+=

(3) 整体相消法

消参过程要注意的问题:参数方程与普通方程互化前后,x,y 的取值范围要保持不变

5、当堂检测

1)若 ,则方程 表示的曲线是( )

A .圆

B .四分之一圆

C .上半圆

D .下半圆

2)椭圆 的长轴上两个顶点的坐标是________ 3)参数方程 所表示的曲线是( )

(A ) 一支双曲线 (B) 线段 (C) 圆弧 (D) 射线 6、作业 :1)P26页第4题预习,2)前置作业

02πθ≤≤3cos (sin x y θθθ=-??=-?是参数)4cos 3sin x y θθ

=??=?2234(03)2

x t t y t ?=+?≤≤?=-??

椭圆的参数方程(教案)

学习好资料欢迎下载 8.2椭圆的几何性质(5) ——椭圆的参数方程(教案) 齐鲁石化五中翟慎佳2002.10.25 一.目的要求: 1?了解椭圆参数方程,了解系数a b、「含义。 2. 进一点完善对椭圆的认识,并使学生熟悉的掌握坐标法。 3. 培养理解能力、知识应用能力。 二.教学目标: 1. 知识目标:学习椭圆的参数方程。了解它的建立过程,理解它与普通方 程的相互联系;对椭圆有一个较全面的了解。 2. 能力目标:巩固坐标法,能对简单方程进行两种形式的互化;能运用参 数方程解决相关问题。 3. 德育目标:通过对椭圆多角度、多层次的认识,经历从感性认识到理性 认识的上升过程,培养学生辩证唯物主义观点。 三.重点难点: 1. 重点:由方程研究曲线的方法;椭圆参数方程及其应用。 2. 难点:椭圆参数方程的推导及应用。 四.教学方法: 引导启发,计算机辅助,讲练结合。 五.教学过程: (一)引言(意义) 人们对事物的认识是不断加深、层层推进的,对椭圆的认识也遵循这一规律。 本节课学习椭圆的参数方程及其简单应用,进一步完善对椭圆认识。(二)预备知识(复习相关) 1. 求曲线方程常用哪几种方法? 答:直接法,待定系数法,转换法〈代入法〉,参数法。 2. 举例:含参数的方程与参数方程

2 “ x = 2t 例如:y =kx+1 (k 参数)含参方程'而I 十1 (t 参数) 3 ?直线及圆的参数方程?各系数意义? (三)推导椭圆参数方程 1. 提出问题(教科书例5) 例题.如图,以原点为圆心,分别以 a b (a>b>0)为半径作两个圆。 点B 是大圆半径OA 与小圆的交点,过点 A 作AN _0x ,垂足为N ,过 点B 作BM _AN ,垂足为M 。求当半径0A 绕点0旋转时点M 的轨迹 的参数方程。 2. 分析问题 本题是由给定条件求轨迹的问 题,但动点较多,不易把握。故采用 间接法 --- 参数法。 引导学生阅读题目,回答问题: (1) 动点M 是怎样产生的? M 与A 、B 的坐标有何联系? (2) 如何设出恰当参数? 设/ AOX=:为参数较恰当。 3. 解决问题(板演) 解:设点M 的坐标(x,y ),是以Ox 为始边,OA 为终边的正角, 取为参数,那么 x=ON=|OA|cos 「, y=NM=|OB|sin 「即 4. 更进一步(板演:化普通方程) -=cos? 分别将方程组①的两个方程变形,得t a 两式平方后相加, '=si n? 是参数方程。 J 5 *實 x = a cos? y =bsin ①引为点M 的轨迹参数方程,「为参数。

高考数学参数方程和普通方程的互化练习

【参数方程和普通方程的互化】 例1求曲线(为参数)与曲线(为参数)的交点. 解:把代入 得:两式平方相加可得 ∴(舍去) 于是即所求二曲线的交点是(,-). 说明:在求由参数方程所确定的两曲线的交点时,最好由参数方程组求解,如果化为普通方 程求交点时要注意等价性.如该例若化为普通方程求解时要注意点(-,)是增解. 例2化直线的普通方程为参数方程(其中倾斜角满足且 ) 解法一:因,,故 ∴ 设。取为参数,则得所求参数方程 解法二:如图,()为直线上的定点,为直线上的动点.因动点M与 的数量一一对应(当M在的向上方向或正右方时,;当M在的下 方或正左方时,;当M与重合时,),故取为参数.

过点M作y轴的平行线,过点作轴的平行线,两直线相交于点Q(如图).则有 ∴ 即为所求的参数方程。 说明:①在解法二中,不必限定,,即不必限定,.由 此可知,无论中任意值时,所得方程都是经过(),倾斜角为的直线的参数方程.可称它是直线参数方程的“点角式”或“标准式”. ②要充分理解解法二所示的参数的几何意义,这对解决某些问题较为方便. ③如果取为参数,则得直线参数方程 一般地,直线的参数方程的一般形式是 (,为参数) 但只有当且仅当,且时,这个一般式才是标准式,参数才具有上述的几何意义. 例3求椭圆的参数方程. 分析一:把与对比,不难发现,可设,也可设

解法一:设(为参数),则 ∴ 故 因此,所得参数方程是 (Ⅰ)或(Ⅱ) 由于曲线(Ⅱ)上的点(,),就是曲线(Ⅰ)上的点(, ),所以曲线(Ⅱ)上的点都是曲线(Ⅰ)上的点. 显然.椭圆的参数方程是 分析二:借助于椭圆的辅助圆,可明确椭圆参数方程中的几何意义. 解法二:以原点O为圆心,为半径作圆,如图.设以轴正半轴为始边,以动半径OA为 终边的变角为,过点A作轴于N,交椭圆于M,取为参数,则点M()的横坐标(以下同解法一). 由解法二知,参数是点M所对应的圆半径OA的转角,而不是OM的转角,因而称为椭圆 的离角.(如果以O为圆心,为半径作圆,过M作,交圆于B,由可知 也是半径OB的转角). 例4用圆上任一点的半径与x轴正方向的夹角为参数,把圆化为参数方程。 分析:由圆的性质及三角函数的定义可把圆上任意一点化为的参数形式。 解:如图所示,圆方程化为,设圆与x轴正半轴交于A,为圆上 任一点,过P作轴于B,OP与x轴正半轴所成角为,,则:

椭圆参数方程教学设计2

椭圆的参数方程教学设计 一、基本说明 1、教学内容所属模块:选修4-4 2、年级:高三 3、所用教材出版单位:人民教育出版社(A版) 4、所属的章节:第二讲第二节第1课时 5、学时数:45 分钟 二、教学设计 (一)、内容分析 1、内容来源 普通高中课程标准试验教科书人民教育出版社A版数学选修4-4第二讲第三课时:椭圆的参数方程 2、地位与作用 参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式。本节知识以学生学习和了解了椭圆的普通方程和圆的参数方程为载体,从另一个角度认识椭圆。在建立椭圆方程过程中,展示引进参数的意义和作用。以及根据椭圆的特点,选取适当的方程表示形式,体现解决有关椭圆问题中数学方法的灵活性,拓展学生的思路,开阔学生的视野。 (二)、教学目标 1、知识与技能: (1)理解椭圆的参数方程及其参数的几何意义。 (2)引导学生体验构造参数法的应用思想,探讨如何运用参数方程在解决与椭圆有关问题。 (3)会根据条件构造参数方程实现问题的转化,达到解题的目的。 2、过程和方法: (1)通过以熟悉的椭圆为载体,进一步学习建立参数方程的基本步骤,加深对参数方程的理解,同时引导学生从不同角度认识椭圆的几何性质,体会参数对研究曲线问题的作用。 (2)通过利用信息技术从参数连续变化而形成椭圆的过程中认识参数的几何意义。 3、情感、态度和价值: 通过师生共同探究进一步学习建立参数方程的基本步骤,加深对参数方程的理解,体会参数法的应用。同时引导学生从不同角度认识椭圆的几何性质。以及用参数方程解决某些曲线问题的过程中分享体会类比思想、数形结合的思想、构造转化思想。培养学生用“联系”的观点看问题,进一步增强“代数”与“几何”的联系,培养学生学好数学的信心。 (三)、教学重点、难点 重点:椭圆的参数方程及其参数的几何意义 难点:巧用椭圆的参数方程解题 (四)、学情分析: “坐标法”是现代数学最重要的基本思想之一。坐标系是联系几何与代数的桥梁,是数形结合的有力工具。虽然我们的学生已经学习和了解了椭圆的普通方程和圆的参数方程有关知识,但我们的学生对其了解甚少,再说椭圆参数方程的探求与应用,与代数变换、三角函数有密切联系,以及由学生独立获取椭圆参数方程中的参数的几何意义是极其困难的。因此我们必须从实际问题入手,由浅入深的帮助学生学习理解知识,通过“思考”、“探究”、“信息技术应用”等来启发和引导学生的数学思维,养成主动探索、积极思考的好习惯。

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

参数方程化普通方程

参数方程化普通方程 [重点难点]掌握参数方程化普通方程的方法,理解参数方程和消去参数后所得的普通方程的等价性;应明确新旧知识之间的联系,提高综合运用所学知识解决数学问题能力。 [例题分析] 1.把参数方程化为普通方程(1)(θ∈R,θ为参数) 解:∵y=2+1-2sin2θ, 把sinθ=x代入,∴y=3-2x2, 又∵|sinθ|≤1, |cos2θ|≤1, ∴|x|≤1, 1≤y≤3∴所求方程为y=-2x2+3 (-1≤x≤1, 1≤y≤3) (2)(θ∈R,θ为参数) 解:∵x2=(sinθ+cosθ)2=1+2sinθcosθ,把y=sinθcosθ代入,∴x2=1+2y。 又∵x=sinθ+cosθ=sin(θ+)y=sinθcosθ=sin2θ ∴|x|≤,|y|≤。∴所求方程为x2=1+2y (|x|≤, |y|≤) 小结:上述两个例子可以发现,都是利用三角恒等式进行消参。消参过程中都应注意等价性,即应考虑变量的取值范围,一般来说应分别给出x, y的范围。在这过程中实际上是求函数值域的过程,因而可以综合运用求值域的各种方法。 (3)(t≠1, t为参数) 法一:注意到两式中分子分母的结构特点,因而可以采取加减消参的办法。 x+y==1,又x=-1≠-1,y=≠2, ∴所求方程为x+y=1 (x≠-1, y≠2)。 法二:其实只要把t用x或y表示,再代入另一表达式即可。由x=, ∴x+xt=1-t, ∴(x+1)t=1-x,即t=代入y==1-x,∴x+y=1,(其余略)这种方法称为代入消参,这是非常重要的消参方法,其它不少方法都可以看到代入消参的思想。

2019-2020学年高中数学 2.2圆的参数方程及应用教案 北师大版选修4-4.doc

2019-2020学年高中数学 2.2圆的参数方程及应用教案 北师大版选 修4-4 一、教学目标: 知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。利用圆的几何性质求最值(数形结合) 过程与方法:能选取适当的参数,求圆的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:能选取适当的参数,求圆的参数方程 教学难点:选择圆的参数方程求最值问题. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、圆的参数方程探求 1、学生阅读课本P32,根据图形求出圆的参数方程,教师准对问题讲评。 )(sin cos 为参数θθ θ?? ?==r y r x 这就是圆心在原点、半径为r 的圆的参数方程。 说明:(1)参数θ的几何意义是OM 与x 轴正方向的夹角。(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。 思考交流:你能回答课本第33页的思考交流题吗? 3、若如图取

???==θθ sin 5cos 5:1y x C (θ为参数)和???+=+=0 0245 sin 345cos 4:t y t x C (t 为参数) (1)、判断这两条曲线的形状;(2)、求这两条曲线的交点坐标。学生练习,教师准对问题讲评。 (二)、最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合) 例2、1、已知点P (x ,y )是圆x2+y2- 6x- 4y+12=0上动点,求(1) x2+y2 的最值, (2)x+y 的最值, (3)P 到直线x+y- 1=0的距离d 的最值。 解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1,用参数方程表示为 由于点P 在圆上,所以可设P (3+cos θ,2+sin θ), (1) x2+y2 = (3+cos θ)2+(2+sin θ)2 =14+4 sin θ +6cos θ sin(θ +ψ). (其中tan ψ =3/2) ∴ x2+y2 的最大值为 。 (2) x+y= 3+cos θ+ 2+sin θ ( θ + 4 π )∴ x+y 的最大值为 ,最 小值为 。 (3)2 | )4 sin(24|2 | 1sin 2cos 3|π θθθ++= -+++= d 显然当1)4 sin(±=+ π θ时,d 取最大值,最小值,分别为1+ 1-2、 过点(2,1)的直线中,被圆x 2 +y 2 -2x+4y=0截得的弦:为最长的直线方程是_________;为 最短的直线方程是__________; 3、若实数x ,y 满足x 2 +y 2 -2x +4y =0,则x -2y 的最大值为 。 (三)、课堂练习:学生练习:1、2 (四)、小结:1、本课我们分析圆的几何性质,选择适当的参数求出圆的参数方程。2、参数取的不同,可以得到圆的不同形式的参数方程。从中体会参数的意义。3、利用参数方程求最值。要求大家掌握方法和步骤。 (五)、作业:课本P39页A 组6、7、8 B 组5 1、方程04524222=-+--+t ty tx y x (t 为参数)所表示的一族圆的圆心轨迹是(D ) 3cos 2sin x y θ θ =+?? =+?

坐标变换与参数方程教案全

§16.1坐标轴的平移(一) 【教学目标】 知识目标: (1)理解坐标轴平移的坐标变换公式; (2)掌握点在新坐标系中的坐标和在原坐标系中的坐标的计算; 能力目标: 通过对坐标轴平移的坐标变换公式的学习,使学生的计算技能与计算工具使用技能得到锻炼和提高. 【教学重点】 坐标轴平移中,点的新坐标系坐标和原坐标系坐标的计算. 【教学难点】 坐标轴平移的坐标变换公式的运用. 【教学设计】 学生曾经学习过平移图形.平移坐标轴和平移图形是两种相关的变化方式,从平移的运动过程上看,平移坐标轴和平移图形是两种相反的过程.向左平移图形的效果相当于将坐标轴向右平移相同的单位;向上平移图形的效果相当于将坐标轴向下平移相同单位.要强调坐标轴平移只改变坐标原点的位置,而不改变坐标轴的方向和单位长度.坐标轴平移的坐标变换公式,教材中是利用向量来进行推证的,教学时要首先复习向量的相关知识.例1是利用坐标轴平移的坐标变换公式求点的新坐标系坐标的知识巩固性题目,教学中要强调公式中各量的位置,可以根据学生情况,适当补充求点在原坐标系中坐标的题目.例2是利用坐标轴平移的坐标变换公式化简曲线方程的知识巩固性题目.教学中要强调新坐标系原点设置的原因,让学生理解为什么要配方. 【课时安排】 1课时. 【教学过程】 揭示课题 2.1坐标轴的平移与旋转 创设情境 兴趣导入 在数控编程和机械加工中,经常出现工件只作旋转运动(主运动),而刀具发生与工件相对的进给运动.为了保证切削加工的顺利进行,经常需要变换坐标系. 例如,圆心在O 1(2,1),半径为1的圆的方程为 1)1()2(22=-+-y x .

对应图形如图2-1所示.如果不改变坐标轴的方向和单位长度,将坐标原点移至点1O 处,那么,对于新坐标系111x O y ,该圆的方程就是 12121=+y x . 图2-1 动脑思考 探索新知 只改变坐标原点的位置,而不改变坐标轴的方向和单位长度的坐标系的变换,叫做坐标轴的平移. 下面研究坐标轴平移前后,同一个点在两个坐标系中的坐标之间的关系,反映这种关系的式子叫做坐标变换公式. 图2-2 如图2-2所示,把原坐标系xOy 平移至新坐标系111x O y ,1O 在原坐标系中的坐标为 ),(00y x .设原坐标系xOy 两个坐标轴的单位向量分别为i 和j ,则新坐标系111x O y 的单位向 量也分别为i 和j ,设点P 在原坐标系中的坐标为),(y x ,在新坐标系中的坐标为),(11y x ,于是有 OP = x i +y j ,1O P = x 1i +y 1 j , 1OO = x 0i +y o j , 因为 11OP OO O P =+ , 所以 0011 x y x y x y +=+++i j i j i j , 即 0101 )()x y x x y y +=+++i j i j (.(转下节)

参数方程化为普通方程教案

课题:参数方程和普通方程的互化(一) 教学目标: 知识目标:掌握如何将参数方程化为普通方程; 能力目标:掌握参数方程化为普通方程几种基本方法; 情感目标: 培养严密的逻辑思维习惯。 教学重点:参数方程化为普通方程 教学难点:普通方程与参数方程的等价性 教学过程: 一:复习引入: 课本第24页的例题2中求出点M 的轨迹的参数方程为:cos 3,()sin x y θθθ=+??=? 为参数。 问题1:你能根据该参数方程直接判断点M 的轨迹图形吗?如果要判断点M 的轨迹图形,你有什么方法吗? 二:新课探究 1:问题2:结合前面的例子,从参数方程到普通方程有什么变化?你能从中得到什么启发? 2:试一试:把下列参数方程化为普通方程,并说明它们各表示什么曲线? (1)???--=-=t y t x 4123(t 为参数); (2)???==? ?sin 3cos 5y x (?为参数). 3:例题讲解: 例3、把下列参数方程化为普通方程,并说明它们各表示什么曲线? 4:问题3:将参数方程化为普通方程需要注意哪些要点? 5:变式练习: (1)??? ????-=+=t t y t t x 1 1(t 为参数); (2)???+==12cos cos θθy x (θ为参数); 6:问题4:从以上例3和练习中你逐一能总结出消去参数的一些常用方法吗? 1)1t y ???=-??(1)为参数sin cos ().1sin 2y θθθθ+??=+?x=(2)为参数

7:补充例题: 若直线1223x t y t =-??=+?(t 为参数)与直线41x ky +=垂直,则常数k =________. 8:变式练习: (1)曲线的参数方程为)50(1 2322≤≤?????-=+=t t y t x ,则曲线为( ). A .线段 B .双曲线的一支 C .圆弧 D .射线 (2)在平面直角坐标系xoy 中,直线l 的参数方程为33x t y t =+??=-?(参数t R ∈),圆C 的参数 方程为2cos 2sin 2x y θθ=??=+? (参数[]0,2θπ∈),则圆C 的圆心坐标为 ,圆心到直线l 的距离为 。 三:课堂小结 ( ) 1: 2: 参数方程化为普通方程要注意哪些要点? 3:消去参数的一些常用方法: 四:作业 1:把下列参数方程化为普通方程,并说明它们各表示什么曲线。 (1)?????-=+=2211t y t x (2)???==θθsin 3cos 2y x (3) ???==θθ2cos sin y x 2:若直线340x y m ++=与圆1cos 2sin x y θθ=+?? =-+?(θ为参数)没有公共点,则实数m 的取值范围 是 。

曲线的参数方程(教案)

曲线的参数方程 教材 上海教育出版社高中二年级(理科)第十七章第一节 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。 已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处? 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 1、圆的参数方程的推导 (1)一般的,设⊙的圆心为原点,半径为,0OP 所在直线 为轴,如图,以0OP 为始边绕着点按逆时针方向绕原点以匀角 速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢? (其中与为常数,为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

参数方程教案

参数方程教案 第一节 曲线的参数方程 【教学目标】 1.通过圆及弹道曲线的参数方程的建立,使学生理解参数方程的概念,初步掌握求曲线的参数方程的思路. 2.通过弹道曲线的参数方程的建立及选取不同参数建立圆的参数方程,培养学生探索发现能力以及解决实际问题的能力. 3.从弹道曲线的方程的建立,对学生进行数学的返璞归真教育,使学生体会数学来源于实践的真谛,帮助学生树立空间和时间是运动物体的形式这一辩证唯物主义观点. 【教学重点与难点】 重点:曲线参数方程的探求及其有关概念; 难点:是弹道曲线参数方程的建立. 【教学过程】 一. 复习: 1.满足什么条件时,一个方程才能称作曲线的方程,而这条曲线才能够称作方程的曲线? 曲线方程的概念:(1)曲线C 上任一点的坐标(x,y )都是方程f(x,y)=0的解;(2)同时以这个方程F(x,y)=0的每一组解(x,y)作为坐标的点都在曲线C 上.那么,这个方程f(x,y)=0就称作曲线C 的方程,而这条曲线C 就称作这个方程f(x,y)=0的曲线. 2.写出圆心在原点,半径为r 的圆O 的方程,并说明求解方法. ⊙O 的普通方程是:x 2 +y 2 =r 2 ; ⊙O 的参数方程是: ?? ?==θ θ sin cos r y r x (θ为参数) 这里,我们从另一个角度重新审视了圆,通过第三个变量θ把圆上任意一点的横、纵坐标x 、y 联系了起来,获得了圆的方程的另一种形式.

二.新课: 1.参数方程的定义:一般地,在直角坐标系中,如果曲线上的任意一点的坐标x,y ,都是某个变数t 的函数 ?? ?==) () (t g y t f x )(*,并且对于t 的每个允许值,由方程组)(*所确定的点M(x,y)都在这条曲线上,那么方程组)(*就叫做这条曲线的参数方程,联系x,y 之间关系的变量t 叫做参变数,简称参数。 2.例:炮兵在射击目标时,需要考虑炮弹的飞行轨迹、射程等等.现在,我们假设一个炮兵射击目标,炮弹的发射角为α,发射的初速度为v 0,求出弹道曲线的方程.(不计空气阻力)。 我们知道弹道曲线是抛物线的一段.现在的问题就是怎样求弹道曲线的方程(即点的轨迹方程),那么,怎样来求点的轨迹方程? (1)建系:建立适当的直角坐标系; 以炮口为原点,水平方向为x 轴,建立直角坐标系。 (2)设标,设炮弹发射后t 秒时的位置为M(x ,y). (3)列式:即找出x 与y 之间的关系。 怎样把x 、y 之间的关系联系起来呢。 这里,炮弹的运动实际上是物理学中的斜抛运动.炮弹在水平方向作匀速直线运动,在竖直方向上作竖直上抛运动.显然在x 、y 分别是炮弹飞行过程中的水平位移和竖直位移(竖直高度)。x 、y 都与时间t 有关. 在水平方向的初速度是v 0cos α,在竖直方向的初速度是v 0sin α. 水平方向的位移,因为水平方向是作匀速直线运动,所以x=v 0cos α; 在竖直方向上,炮弹作竖直上抛运动,即炮弹受重力的作用作初速度不为零的匀减速直线运动.所以y=v 0sin α·t-2 1gt 2 这里我们把水平位移和竖直位移都用时间t 表示出来了,即把x 、y 都表示成了t 的函数,t 应该有一个确定的范围? 令y=0,得t=0或t = g v α sin 20, ∴0≤t ≤ g v αsin 20。

参数方程的概念(教学设计)

曲线的参数方程(孙雷) 教材人民教育出版社高中数学选修4-4第二讲第一节 授课教师孙雷 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 当两个齿轮接触时,蓝色齿轮会带动红色齿轮转动,当两个齿轮没有接触时,蓝齿轮要带动红色齿轮转动,有一种方法是加入一个新的齿轮,使之与红蓝两个齿轮同时接触。 (上述过程让学生感受中间变量的作用,为参数方程中的参变量的引出作铺垫。) 思考1: 若齿轮A、B、C的半径相等,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,A与B角速度之间的关系是_______________; (2) 第二组图中,A与C角速度之间的关系是_______________; B与C角速度之间的关系是________________; 思考2: 思考: 若齿轮A、B、C的半径分别为4、1、2,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,它们角速度之间的关系是_________________;

(2) 第二组图中,它们角速度之间的关系是_________________; 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 例1、圆的参数方程的推导 (1)一般的,设⊙O 的圆心为原点,半径为r ,0OP 所在 直线为x 轴,如图,以0OP 为始边绕着点O 按逆时针方向绕原 点以匀角速度ω作圆周运动,则质点P 的坐标与时刻t 的关系 该如何建立呢?(其中r 与ω为常数,t 为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈? ??==t t r y t r x ωω t 为参数 ① (2)点P 的角速度为ω,运动所用的时间为t ,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈? ??==θθθr y r x θ为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力) (3)方程①、②是否是圆心在原点,半径为r 的圆方程?为什么? 由上述推导过程可知:对于⊙O 上的每一个点),(y x P 都存在变数t (或θ)的值,使t r x ωcos =,t r y ωsin =(或θsin r y =,θcos r x =)都成立。 对于变数t (或θ)的每一个允许值,由方程组所确定的点),(y x P 都在圆上; (1、对曲线的方程以及方程的曲线的定义进行必要的复习;2、学生从曲线的方程以及方程的曲线的定义出发,可以说明以上由变数t (或θ)建立起来的方程是圆的方程;) (4)若要表示一个完整的圆,则t 与θ的最小的取值范围是什么呢? )2,0[s i n c o s ωπωω∈???==t t r y t r x , )2,0[s i n c o s πθθθ∈???==r y r x (5)圆的参数方程及参数的定义 我们把方程①(或②)叫做⊙O 的参数方程,变数t (或θ)叫做参数。 (6)圆的参数方程的理解与认识 (ⅰ)参数方程)2,0[sin 3cos 3πθθθ∈???==y x 与]2,0[sin 3cos 3πθθ θ∈???==y x 是否表示同一曲线?为什么? (ⅱ)根据下列要求,分别写出圆心在原点、半径为r 的圆的部分圆弧的参数方程: ①在y 轴左侧的半圆(不包括y 轴上的点);

选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

焦点在y 轴上的椭圆的参数方程: 22 22y 1,b a x += 练习:已知椭圆4 92 2y x +=1,点M 是椭圆上位于第一象限的弧上一点,且∠xOM =60°。(1)求点M 的坐标;(2)如何表示椭圆在第一象限的弧? 错解:由已知可得a =3,b =2,θ=600, ∴x =acos θ=3cos60°=2 3,y =bsin θ=2sin60°=3。 从而,点M 的坐标为)3,2 3(。 正解:设点M 的坐标为(x,y),则由已知可得y =3x,与4 92 2y x +=1联立, 解得x =31316, y =9331 6。 所以点M 的坐标为(31316,9331 6)。 另解:∵∠xOM=60°,∴可设点M 的坐标为(|OM|cos60°,|OM|sin60°)。 代入椭圆方程解出|OM|,进而得到点M 的坐标(略)。 例1 求椭圆)0b a (1b y a x 22 22>>=+的内接矩形的面积及周长的最大值。 解:如图,设椭圆1b y a x 22 22=+的内接矩形在第一象限的顶点是 A )sin cos (ααb a ,)2 0(π α< <,矩形的面积和周长分别是S 、L 。 ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α?α=?=, 当且仅当4 a π = 时,22max b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,cos y a sin x b ? ? =?? =?

5 3 arcsin 23-π= α时,距离d 有最大值2。 例4 θ取一切实数时,连接A(4sin θ,6cos θ)和B(-4cos θ, 6sin θ)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段 例5 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =, 试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+?+α=++ = cos 8211021cos 12211x 21x x B A 3sin 42 11921 sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ? ?+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 例6 椭圆)0b a (1b y a x 22 22>>=+与x 轴的正向相交于点A ,O 为坐标原 点,若这个椭圆上存在点P ,使得OP ⊥AP 。求该椭圆的离心率e 的取值范围。 解:设椭圆)0b a (1b y a x 22 22>>=+上的点P 的坐标是(ααsin b cos a ,)(α≠0且α≠π),A

高中数学选修4-4《坐标系与参数方程》全套教案

高中数学选修4-4全套教案 第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

《圆锥曲线的参数方程》教学案

2.3《圆锥曲线的参数方程》教学案 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 二、重难点: 教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法: 启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程. (1)圆222r y x =+参数方程?? ?==θ θ sin cos r y r x (θ为参数) (2)圆2 2 02 0r y y x x =+-)\()(参数方程为:?? ?+=+=θ θ sin cos r y y r x x 00 (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程. 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆 12 22 2=+ b y a x 参数方程 ?? ?==θ θ sin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角 2.双曲线的参数方程的推导:双曲线12 22 2=- b y a x 参数方程 ?? ?==θ θ tan sec b y a x (θ为参数)

. 3.抛物线的参数方程:抛物线Px y 22 =参数方程?? ?==Pt y Pt x 222 (t 为参数),t 为以抛物线上一点(X ,Y)与其顶点连线斜率的倒数. (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义. B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标. (3)、参数方程求法:(A)建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B)选取适当的参数;(C)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D)证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单.与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等. 4、椭圆的参数方程常见形式:(1)、椭圆122 22=+b y a x 参数方程 ?? ?==θ θsin cos b y a x (θ 为参数);椭圆 2 2 221(0)y x b a b a +=>>的参数方程是 c o s s i n (2x b y a θθθθ==≤≤π? 为参数,且0). (2)、以0 ( ,)y x 为中心焦点的连线平行于x 轴的椭圆的参数方程是 00 cos sin ({x a y b x y θθ θ= +=+为参数). (3)在利用???==θθ sin cos b y a x 研究椭圆问题时,椭圆上的点的坐标可记作(acos θ,bsin θ). (三)、巩固训练

选修4-4参数方程教案

第二章 参数方程 【课标要求】 1、了解抛物运动轨迹的参数方程及参数的意义。 2、理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用。 3、会进行曲线的参数方程与普通方程的互化。 第一课时 参数方程的概念 一、教学目标: 1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。 2.分析曲线的几何性质,选择适当的参数写出它的参数方程。 二、教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。 教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。 三、教学方法:启发诱导,探究归纳 四、教学过程 (一).参数方程的概念 1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为0ν ,与地面成 α 角,如何来刻画铅球运动的轨迹呢? 2.分析探究理解: (1)、斜抛运动: 为参数) t gt t v y t v x (21sin cos 200?? ? ??-?=?=αα (2)、抽象概括:参数方程的概念。(见课本第27页) 说明:(1)一般来说,参数的变化范围是有限制的。 (2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。 (3)平抛运动:【课本P27页例题】 为参数) t gt y t x (215001002?? ? ??-==

(4)思考交流:把引例中求出的铅球运动的轨迹 的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用。 (二)、应用举例: 例1、(课本第28页例1)已知曲线C 的参数方程是???+==1 232 t y t x (t 为参数)(1)判断点 1 M (0,1), 2M (5,4)与曲线C 的位置关系; (2)已知点3M (6,a )在曲线C 上,求a 的值。 分析:只要把参数方程中的t 消去化成关于x,y 的方程问题易于解决。学生练习。 反思归纳:给定参数方程要研究问题可化为关于x,y 的方程问题求解。 例2、设质点沿以原点为圆心,半径为2的圆做匀速(角速度)运动,角速度为60π rad/s,试以时间t 为参数,建立质点运动轨迹的参数方程。 解析:如图,运动开始时质点位于A 点处,此时t=0,设动点M (x,y )对应时刻t,由图可知2cos 602sin { x y t θθ θ=π ==又,得参数方程为 6060 2cos 2sin (0){ x t y t t ππ==≥。 反思归纳:求曲线的参数方程的一般步骤。 (三)、课堂练习:课本P28页中练习题1、2 (四)、小结:1.本节学习的数学知识;2、本节学习的数学方法。学生自我反思、教师引导,抓住重点知识和方法共同小结归纳、进一步深化理解。

参数方程和普通方程的互化

参数方程和普通方程的 互化 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

参数方程和普通方程的互化 教学目标 1.理解参数方程和消去参数后所得的普通方程是等价的. 2.基本掌握消去参数的方法. 3.培养学生观察、猜想和灵活地进行公式的恒等变形的能力.即在“互化”训练中,提高学生解决数学问题的转化能力. 教学重点与难点 使学生掌握参数方程与普通方程之间的互化法则,明确新旧知识之间的联系,掌握消去参数的基本方法. 教学过程 师:前面的课程里,我们学习了参数方程,下面请看这样一个问题:(放投影片) 由圆外一点Q(a,b)向圆x2+y2=r2作割线,交圆周于A、B两点,求AB中点P的轨迹的参数方程(如图3-5). 分析割线过点Q(a,b),故割线PQ方程为: 此斜率k可作为参数.(投影) 解设过点Q的直线方程是y-b=k(x-a),则圆心O与AB中点P的 即为所求点P的轨迹的参数方程. 师:你能根据点P的参数方程说出点P的轨迹吗 生:(无言以对)看不出来. (启发学生猜想,培养参与意识.) 师:你通过题目中点P符合的条件,多画几个点,猜想一下它的形状. (学生在纸上画,讨论.) 生:点P的轨迹(1)过坐标原点,也就是已知圆的圆心.(2)轨迹不是直线.

师:参数方法是研究曲线和方程的又一种方法,是一种利用参数建立两个变量之间的间接联系的方法.也就是说,参数方程里的参数可以协调x、y的变化.基于这点理论,有时为了判定曲线的类型、研究曲线的几何性质,需要把参数方程化为普通方程.即想办法消去参数k,把参数方程转化为我们熟知的普通方程,再去研究它的几何性质就容易了. 把(3)代入(2)得:x2-ax+y2-by=0.(4) 方程(4)证实了我们的猜想是正确的,具体地说:点P的轨迹是一个过圆心的圆弧(在圆x2+y2=r2的内部). 师:以上事例说明,有时为了判定曲线的类型,研究曲线的几何性质,确实需要把参数方程化为我们认知的普通方程.这节课我们就来学习把参数方程化为普通方程的法则. 例1 炮弹从点(0,0)以初速度v0向倾斜角为α的方向发射,问:(1)在时刻t的高度和水平距离如何(2)炮弹描绘的(弹道)是一条什么样的曲线 (学生通过物理知识,很容易解决这个问题.) 解(1)设炮弹发射后的位置在点M(x,y)(如图3-6),因为炮弹在Ox方向是以v0cosα为速度的匀速直线运动,在Oy方向是以v0sinα为初速度的竖直上抛运动,所以按匀速直线运动的公式知:炮弹在时刻t的水平距离是x=v0cos α·t,按竖直上抛运动的位移公式知:炮弹在时 即弹道曲线的参数方程上看不出来,那么怎么办呢 生:消去参数t,转化成为普通方程后,就可看出曲线的形状了. 故炮弹描绘的曲线是一条抛物线.(含顶点在内的一部分.因为二次项系数是负值,所以这是开口向下的抛物线,与实际问题相吻合.) 例2 把参数方程 即3x+5y-11=0是所求的普通方程,它的轨迹是一条直线. 师:这个同学理解了消参的基本方法——代入消参法.这正与解方程组中代入消元法相类似.他用学过的知识解决了新问题.你认为他的解题过程有问题吗 生:挺好的.我与他解的一样,没问题. 师:同学们在解题时注意参数t的取值范围了吗 生:t为不等于-1的实数,即t≠-1.

相关主题