搜档网
当前位置:搜档网 › 高二数学数列练习题(答案)

高二数学数列练习题(答案)

高二《数列》专题

1.n S 与n a 的关系:1

1(1)(1)

n n n S n a S S n -=??=?->?? ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a =

两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

3.数列通项公式求法。(1)定义法(利用等差、等比数列的定义);(2)累加法

(3)累乘法(n n n c a a =+1型);(4)利用公式1

1(1)(1)n n

n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等 4.数列求和

(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:

(1)当0,01<>d a 时,满足???≤≥+00

1

m m a a 的项数m 使得m S 取最大值.

(2)当 0,01>

?≥≤+00

1

m m a a 的项数m 使得m S 取最小值。

也可以直接表示n S ,利用二次函数配方求最值。在解含绝对值的数列最值问题时,注意转化思想的应用。 6.数列的实际应用

现实生活中涉及到银行利率、企业股金、产品利润、人口增长、工作效率、图形面积、等实际问题,常考虑用数列的知识来解决.

训练题

一、选择题

1.已知等差数列{}n a 的前三项依次为1a -、1a +、23a +,则2011是这个数列的 ( B )

A.第1006项

B.第1007项

C. 第1008项

D. 第1009项

2.在等比数列}{n a 中,485756=-=+a a a a ,则10S 等于 (A ) A .1023 B .1024 C .511 D .512

3.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =

( )

A .-2

B .-12 C.1

2

D .2

由等差中项的定义结合已知条件可知2a 4=a 5+a 3,∴2d =a 7-a 5=-1,即d =-1

2

.故选B.

4.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( A )

A.180

B.-180

C.90

D.-90

5.(2010青岛市)已知{}n a 为等差数列,若π=++951a a a ,则28cos()a a +的值为( A ) A .2

1

-

B .23-

C .2

1

D .

2

3

6.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则

a 29

a 11

的值为 ( )

A .9

B .1

C .2

D .3

解析 由等比数列性质可知a 3a 5a 7a 9a 11=a 57=243,所以得a 7=3,又

a 29

a 11

a 7a 11a 11

=a 7,故选

D.

7.已知等差数列{a n }的前n 项和为S n ,a 1+a 5=1

2

S 5,且a 9=20,则S 11=( ) A .260

B .220

C.130 D.110

解析∵S5=a1+a5

2

×5,又∵

1

2

S5=a1+a5,∴a1+a5=0.∴a3=0,∴S11=

a1+a11

2

×11=

a3+a9

2

×11=0+20

2

×11=110,故选D.

8各项均不为零的等差数列{a n}中,若a2n-a n-1-a n+1=0(n∈N*,n≥2),则S2 009等于A.0 B.2

C.2 009 D.4 018

解析各项均不为零的等差数列{a n},由于a2n-a n-1-a n+1=0(n∈N*,n≥2),则a2n-2a n =0,a n=2,S2 009=4 018,故选D.

9.数列{a n}是等比数列且a n>0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于A.5 B.10

C.15 D.20

解析由于a2a4=a23,a4a6=a25,所以a2·a4+2a3·a5+a4·a6=a23+2a3a5+a25=(a3+a5)2=25.所以a3+a5=±5.又a n>0,所以a3+a5=5.所以选A.

10. 首项为1,公差不为0的等差数列{a n}中,a3,a4,a6是一个等比数列的前三项,则这个等比数列的第四项是( ) A.8 B.-8

C.-6 D.不确定

答案 B

解析a24=a3·a6?(1+3d)2=(1+2d)·(1+5d)

?d(d+1)=0?d=-1,∴a3=-1,a4=-2,∴q=2.

∴a6=a4·q=-4,第四项为a6·q=-8.

11.在△ABC 中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以3

1

为第三项,9为第六项的等比数列的公比,则这个三角形是(B )

A.钝角三角形

B.锐角三角形

C.等腰三角形

D.非等腰的直角三角形

12、(2009澄海)记等差数列{}n a 的前项和为n s ,若103s s =,且公差不为0,则当n s 取最大值时,

=n ( )C A .4或5 B .5或6 C .6或7 D .7或8

13.在等差数列{a n }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为

A .1 006

B .-2 012

C .2 012

D .-1 006

答案 C 解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得,

?????

S 2 011=2 011a 1+

-2

d =-2 011,

a 1 007=a 1+1 006d =3,

即?????

a 1+1 005d =-1,a 1+1 006d =3,

解得???

??

a 1=-4 021,

d =4.

所以,S 2 012=2 012a 1+-2

d

=2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012.

方法二 由S 2 011=

a 1+a 2 0112

=2 011a 1 006=-2 011, 解得a 1 006=-1,则

S 2 012=

a 1+a 2 0122

a 1 006+a 1 007

2

-1+2

=2 012.

14.设函数f (x )满足f (n +1)=

2f

n +n 2

(n ∈N *),且f (1)=2,则f (20)=( B )

A .95

B .97

C .105

D .192

解析

f (n +1)=f (n )+n

2

,∴?

??????

f =f

+192,f =f

+182

,……f =f

+12

.

累加,得f (20)=f (1)+(12+22+…+192)=f (1)+19×20

4

=97.

15.已知数列{}n a 的前n 项和n S 满足1)1log 2+=+n S n (,则通项公式为(B )

A.)(2*

N n a n n ∈= B. ???≥==)2(2)

1(3n n a n n

C. )(2*

1N n a n n ∈=+ D. 以上都不正确

16.一种细胞每3分钟分裂一次,一个分裂成两个,如果把一个这种细胞放入某个容器内,恰好一小时充满该容器,如果开始把2个这种细胞放入该容器内,则细胞充满该容器的时间为

( D )

A .15分钟

B .30分钟

C .45分钟

D .57分钟

二、填空题

1、等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4= 8.

2.(2008·广东理,2)记等差数列{a n }的前n 项和为S n ,若a 1=2

1

,S 4=20,则S 6= . 48 3..(2010广州一模).在等比数列{}n a 中,11a =,公比2q =,若64n a =,则n 的值为 .7 4.(2008·海南、宁夏理,4)设等比数列{a n }的公比q=2,前n 项和为S n ,则

24a S = . 2

15

5.等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若

S n

T n =

2n

3n +1

,则

a 100

b 100

=________.

答案 199299 解析 a 100b 100=a 1+a 199

2b 1+b 1992

=S 199T 199=199

299

6、数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥则{}n a 的通项公式 解:(Ⅰ)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥

又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列 ∴1

3n n a -=

7.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>1

9的

最大正整数n 的值为________.答案 4

解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4.又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =1

2,a 1=8,a n =8×(1

2)n -1=24-n ,a n ·a n +1·a n

+2=29-3n .由于2-3=18>19,因此要使29-3n >1

9,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n +2>1

9

的最大正整数n 的值为4.

8.等比数列{a n }的首项为a 1=1,前n 项和为S n ,若

S 10S 5

3132

,则公比q 等于________. 答案 -12 解析 因为S 10S 5=3132,所以S 10-S 5S 5=31-3232=-132,即q 5=(-12)5,所以q =-1

2

.

三、解答题

1(2010山东理数)(18)(本小题满分12分)

已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =

2

1

1

n a -(n ∈N *),求数列{}n b 的前n 项和n T . 1【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有

11

27

21026a d a d +=??

+=?,解得13,2a d ==, 所以321)=2n+1n a n =+-(

;n S =n(n-1)

3n+22

?=2n +2n 。 (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =

211n a -=21=2n+1)1-(114n(n+1)?=111

(-)4n n+1

?,

所以n T =

111111(1-+++-)4223n n+1?-=11

(1-)=

4n+1?n 4(n+1), 即数列{}n b 的前n 项和n T =

n

4(n+1)

2.(全国新课标理17) 已知等比数列

{}

n a 的各项均为正数,且

212326

231,9a a a a a +==.

(I )求数列

{}

n a 的通项公式. (II )设

31323log log log n n b a a a =++

+,求数列1{}

n b 的前n 项和.

2解:(Ⅰ)设数列{an}的公比为q ,由

2

3

26

9a a a =得

3

234

9a a

=所以

219q =

.由条件可知c>0,故1

3q =

12231

a a +=得

12231

a a q +=,所以

11

3a =

. 故数列{an}的通项式为an=13n .

(Ⅱ )

31323n log log ...log n b a a a =+++(12...)

(1)2

n n n =-++++=-

故12112()(1)1n

b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n -+

3. (本小题满分12分)已知{a n }是各项均为正数的等比数列, 且a 1+a 2=2(1

a 1+1

a 2),a 3+a 4+a 5=64(1

a 3+1

a 4+1

a 5

).

(1)求{a n }的通项公式; (2)设b n =(a n +1

a n

)2,求数列{b n }的前n 项和T n .

解析 (1)设{a n }的公比为q ,则a n =a 1q n -1. 由已知,有

?????

a 1+a 1q =2? ??

??

?1a 1+1a 1q ,

a 1q 2

+a 1q 3

+a 1q 4

=64? ??

??

?1a 1q 2

+1a 1q 3

+1a 1q 4

,化简,得???

??

a 2

1q =2,a 21q 6=64.

又a 1>0,故q =2,a 1=1. 所以a n =2n -1. (2)由(1)知,b n =?

?????a n +1a n 2=a 2n +1a 2n +2=4n -1+14n -1+2.

因此,T n =(1+4+…+4n -1)+(1+1

4+…+1

4n -1)+2n =1-4n

1-4+1-

1

4n 1-

14

+2n =13

(4n -41-n )+2n

+1.

4.(山东省济南市2011)

已知}{n a 为等比数列,256,151==a a ;n S 为等差数列}{n b 的前n 项和,,21=b 8525S S =. (1) 求}{n a 和}{n b 的通项公式;(2) 设n T n n b a b a b a ++=2211,求n T . 解:(1) 设{a n }的公比为q ,由a 5=a 1q 4得q =4

所以a n =4n-1.设{ b n }的公差为d ,由5S 5=2 S 8得5(5 b 1+10d )=2(8 b 1+28d ),

322

3

231=?==a d ,

所以b n =b 1+(n -1)d =3n -1.(2) T n =1·2+4·5+42·8+…+4n -1(3n -1),① 4T n =4·2+42·5+43·8+…+4n (3n -1),②

②-①得:3T n =-2-3(4+42+…+4n )+4n (3n -1) = -2+4(1-4n -1)+4n (3n -1) =2+(3n -2)·4n ∴T n =(n -

32)4n +3

2

5.(2013广东理) 设数列{}n a 的前n 项和为n S .已知11a =,

21212

33

n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值; (Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有12

11

174

n a a a +++

<. 【解析】(Ⅰ) 依题意,1212

2133S a =-

--,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112

233

n n S na n n n +=---,

()()()()32

1122111133n n S n a n n n -=-------

两式相减得()()()2112

213312133n n n a na n a n n n +=----+---

整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121

a a

-=

故数列n a n ??

????

是首项为111a =,公差为1的等差数列, 所以

()111n

a n n n

=+-?=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,1211157

1444

a a +

=+=<; 当3n ≥时,

()21111111n a n n n n n =<=---,此时 22212

111111

1111111

111434

423341n a a a n n n ????

??+++

=+++++

<++-+-++- ? ? ?-????

??

11171714244

n n =+

+-=-< 综上,对一切正整数n

,有12

11

174

n a a a +

++

<. 6.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *

+=--∈且

2514,,a a a 构成等比数列.

(1) 证明:2a =

(2) 求数列{}n a 的通项公式;

(3) 证明:对一切正整数n ,有

1223

111

11

2

n n a a a a a a ++++

<. 1.【解析】(1)当1n =时,22

122145,45a a a a =-=+,

20n a a >∴=

(2)当2n ≥时,()2

14411n n S a n -=---,22114444n n n n n a S S a a -+=-=--

()2

22

1442n n n n a a a a +=++=+,

102n n n a a a +>∴=+ ∴当2n ≥时,{}n a 是公差2d =的等差数列.

2514,,a a a 构成等比数列,2

5

214a a a ∴=?,()()2

222824a a a +=?+,解得23a =, 由(1)可知,2

12145=4,1a a a =-∴=

21312a a -=-=∴ {}n a 是首项11a =,公差2d =的等差数列.

∴数列{}n a 的通项公式为21n a n =-. (3)

()()

1223

1111111

1

133557

2121n n a a a a a a n n ++++

=++++

???-+

11111111123355721211111.2212

n n n ??????????=?-+-+-+- ? ? ? ???-+????????????=

?-

7.(本题满分14分)2a ,5a 是方程2

x 02712=+-x 的两根, 数列{}n a 是公差为正的等差数列,数列{}n b 的前n 项和为n T ,且n T 2

1

1-

=n b ()*∈N n . (1)求数列{}n a ,{}n b 的通项公式; (2)记n c =n a n b ,求数列{}n c 的前n 项和n S . 2.解:(1)由27,125252==+a a a a .且0>d 得9,352==a a …………… 2分

23

2

5=-=

∴a a d ,11=a ()*∈-=∴N n n a n 12 …………… 4分 在n n b T 211-

=中,令,1=n 得.321=b 当2≥n 时,T n =,211n b -112

1

1---=n n b T ,

两式相减得n n n b b b 21211-=

-,()231

1≥=∴-n b b n n …………… 6分 ()

*-∈=

?

?

?

??=∴N n b n n n 3

2

31321

. …………… 8分 (2)()n

n n n n c 3

2

43212-=?

-=, ……………… 9分 ??? ??-++++=∴n n n S 312353331232 ,??

? ??-+-+++=+1323123323331

23n n

n n n S ,……… 10分 ??????--??? ??++++=∴+132312313131231232n n n n S =2?????

???????---

???

??-?+

+-11

31231131191231n n n =1134

43

43123131312+++-=???

??---+n n n n n , ………………13分

n

n n S 3

2

22+-

=∴ …………… 14分

8.(全国大纲理20) 设数列{}n a 满足10a =且111

1.

11n n a a +-=--

(Ⅰ)求{}n a 的通项公式;

(Ⅱ)设

1

, 1.

n

n n k n k b b S ==

=<∑记S 证明:

解: (I )由题设1111,11n n a a +-=-- 即1

{}

1n a -是公差为1的等差数列。 又1111,.11n n a a ==--故 所以

11.

n a n =- (II )由(I )得

n b ==

=, …………8分

1

1

1 1.n

n

n k k k S b =====-<∑∑ …………12分

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学数列测试题附答案与解析

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+… +f (5)+f (6)的值为 . 12.已知等比数列{a n }中,

高中数学数列综合专项练习讲义

高中数学数列综合专项 练习讲义 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

专题数 列综合 考点精要 会求简单数列的通项公式和前n 项和. 热点分析 数列的通项和求和,历来是高考命题的常见考查内容.要重点掌握错位相减法,灵活运用裂项相消法,熟练使用等差和等比求和公式,掌握分组求和法. 知识梳理 1.数列的通项求数列通项公式的常用方法: (1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、 数字、字母与项数n 在变化过程中的联系,初步归纳公式。 (2)公式法:等差数列与等比数列。 (3)利用n S 与n a 的关系求n a :则???≥-==-2111 n S S n S a n n n (注意:不能忘记讨论1=n ) (4)逐项作差求和法(累加法);已知)2)((1≥=--n n f a a n n ,且{f(n)}的和可求,则求n a 可用累加法 (5)逐项作商求积法(累积法);已知 )2)((1 ≥=-n n f a a n n ,且{f(n)}的和可求,求n a 用累乘法. (6)转化法 2几种特殊的求通项的方法 (一)1n n a ka b +=+型。 (1)当1k =时,{}1n n n a a b a +-=?是等差数列,1()n a bn a b =++ (2)当1k ≠时,设1()n n a m k a m ++=+,则{}n a m +构成等比数列,求出{}n a m +的通项,进一步求出{}n a 的通项。 例:已知{}n a 满足111,23n n a a a +==-,求{}n a 的通项公式。

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高二数学必修5数列单元测试.doc

________ 高二数学必修 5 数列单元测试 一、选择题: 时间 120 分钟 满分 100 分 3 分,共 30 分 . ) (本大题共 10 小题,每小题 1. 在数列- 1, 0, 1 , 1 , , n 2 中,是它的 9 8 n 2 A .第 100 项 B .第 12 项 C .第 10项 D .第 8项 2. 在数列 { a n } 中, a 1 2 , 2a n 1 2a n 1,则 a 101 的值为 A . 49 B . 50 C . 51 D .52 3. 等差数列 { a n } 中, a 1 a 4 a 7 39 , a 3 a 6 a 9 27 ,则数列 { a n } 的前 9 项的和等于 A . 66 B . 99 C . 144 D . 297 4. 设数列 {a n } 、 {b n } 都是等差数列,且 a 1=25,b 1=75,a 2+b 2=100,那么 a n +b n 所组成的数列的第 37 项的值是 ( ) .37 C 5.已知- 7, a 1, a 2,- 1 四个实数成等差数列,- 4, b 1, b 2, b 3,- 1 五个实数成等比数列,则 a 2a 1 = b 2 A . 1 B .- 1 C . 2 D .± 1 6. 等比数列 {a n } 中,前 n 项和 S n =3n +r ,则 r 等于 ( ) .0 C 7.已知数列 { a n } 的前 n 项和为 S 1 5 9 13 17 21 ( 1) n 1 (4n 3) , n 则 S 15 S 22 S 31 的值是( ) A. -76 B. 76 C. 46 D. 13 8. 6.已知等差数列 {a n } 的公差 d ≠0, 若 a 5、a 9、 a 15 成等比数列 , 那么公比为 A . 3 B . 2 C . 3 D . 4 4 3 2 3 9.若数列 { a } 是等比数列 , 则数列 { a +a } n n n+1 A .一定是等比数列 C .一定是等差数列 10.等比数列 {a n } 中, a 1 =512,公比 q= 1 2 B .可能是等比数列 , 也可能是等差数列 D .一定不是等比数列 ,用Ⅱ n 表示它的前 n 项之积:Ⅱ n =a 1 · a 2 a n 则Ⅱ 1 ,Ⅱ 2 , ,中最大的是 A .Ⅱ 11 B .Ⅱ 10 C .Ⅱ 9 D .Ⅱ 8 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题 :( 本大题共 5 小题,每小题 4 分,共 20分。) 11.在数 {a n } 中,其前 n 项和 S n =4n 2- n - 8,则 a 4= 。 12. 设 S n 是等差数列 a 5 5 S 9 的值为 ________. a n 的前 n 项和,若 ,则 S 5 13.在等差数列 { a } 中,当 a = a a 3 9 { a } 中,对某些正整数 r 、s ( r ≠ s ) ,当 a ( r ≠ s ) 时, { a } 必定是常数数列。然而在等比数列 r n r s n n =a s 时,非常数数列 { a n } 的一个例子是 ____________. 14. 已知数列 1, ,则其前 n 项的和等于 。 15. 观察下列的图形中小正方形的个数,则第 n 个图中有 个小正方形 . 三、解答题:(本大题共 5 小题,共 50 分。解答应写出文字说明,或演算步骤) 16. (本小题满分 8 分)已知 a n 是等差数列,其中 a 1 25, a 4 16

高中数学必修五数列单元综合测试(含答案)

数列单元测试题 命题人:张晓光 一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有 一项是符号题目要求的。) 1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 2 2 =1,则数列{a n }的公差是( ) A.1 2 B .1 C .2 D .3 2.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5 S 3 C.a n +1a n D.S n +1S n 3.设数列{a n }满足a 1=0,a n +a n +1=2,则a 2011的值为( ) A .2 B .1 C .0 D .-2 4.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13 (a 5+a 7+a 9)的值是 ( ) A .-5 B .-15 C .5 D.15 5.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n 为正偶数 时,n 的值可以是( ) A .1 B .2 C .5 D .3或11 6.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,1 2a 3,a 1成等差数列,则a 3+a 4a 4+a 5 的值为( ) A.1-52 B.5+12 C.5-12 D.5+12或5-12 7.已知数列{a n }为等差数列,若a 11 a 10 <-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大 值n 为( ) A .11 B .19 C .20 D .21 8.等比数列{a n }中,a 1=512,公比q =-1 2 ,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n , 则Πn 中最大的是( ) A .Π11 B .Π10 C .Π9 D .Π8 9.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( ) A .1004 B .1005 C .1006 D .1007 10.已知数列{a n }的通项公式为a n =6n -4,数列{b n }的通项公式为b n =2n ,则在数列{a n }的前 100项中与数列{b n }中相同的项有( ) A .50项 B .34项 C .6项 D .5项 二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11.已知数列{a n }满足:a n +1=1-1 a n ,a 1 =2,记数列{a n }的前n 项之积为P n ,则P 2011=________. 12.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n }, 已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数学《数列》测试题

11会计5班《数列》数学测试卷2012.4 一、选择题(2'1836'?=) 1.观察数列1,8,27,x ,125,216,… 则x 的值为( ) A .36 B .81 C .64 D .121 2.已知数列12a =,12n n a a +=+,则4a 的值为( ) A .12 B .6 C .10 D .8 3.数列1,3,7,15,… 的通项公式n a 等于( ) A .1 2 n - B .21n - C .2n D .21n + 4.等差数列{n a }中,16a =,418a =,则公差d 为( ) A .4 B .2 C .—3 D .3 5.128是数列2,4,8,16,… 的第( )项 A .8 B .5 C .7 D .6 6.等差数列{n a }中,12a =,327S =,则3a 的值为( ) A .16 B .20 C .11 D .7 7.在等差数列中,第100项是48,公差是 1 3 ,首项是( ) A .5 B .10 C .15 D .20 8.在等差数列{n a }中,1234525a a a a a ++++=,则3a 为( ) A .3 B .4 C .5 D .6 9.已知数列0,0,0,0,… 则它是( ) A .等差数列非等比数列 B .等比数列非等差数列 C .等差数列又等比数列 D .非等差数列也非等比数列 10.在等比数列{n a }中,4520a a ?=,则27a a ?为( ) A .10 B .15 C .20 D .25 班级 姓名 学号 11.等比数列1,2,4,… 的第5项到第11项的和等于( ) A .2030 B .2033 C .2032 D .2031 12.等差数列中,第1项是 —8,第20项是106,则第20项是( ) A .980 B .720 C .360 D .590 13.在等比数列中,12a =,3q =,则4S =( ) A .18 B .80 C .—18 D .—80 14.三个正数成等差数列,其和为9,它们依次加上1,3,13后成为等比数列,则这三个数为( ) A .6,3,0 B .1,3,5 C .5,3,1 D .0,3,6 15.在等比数列中,第5项是 —1,第8项是 — 1 8 ,第13项是( ) A .13 B .1256- C .78- D .1128 - 16.若a ,b , c 成等比数列,则函数2 ()f x ax bx c =++的图像与x 轴的交点个数为( ) A .2 B .0 C .1 D .不确定 17.某农场计划第一年产量为80万斤,以后每年比前一年多种20%,第五年产量约为( ) A .199万斤 B .595万斤 C .144万斤 D .166万斤 18.把若干个苹果放到8个箱子中,每个箱子不能不装,要使每个箱子中所装的苹果个数互不相同,至少需要苹果( ) A .35个 B .36个 C .37个 D .38个 二、填空题(3'824'?=) 19.数列1,32- ,54,78-,916 ,… 的通项公式是 20.数列2,7,14,23,( ),47,… 并写出数列的通项公式

数列经典例题

类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式, 而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】

【变式2】数列中,,求通项公式. 【答案】. 类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且 ,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时, , 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且 ,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而

的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,, ,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴ 类型三:倒数法求通项公式 3.数列中,

,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而 恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在 等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】

高二数学数列练习题含答案

高二《数列》专题 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a = 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列 3.数列通项公式求法。(1)定义法(利用等差、等比数列的定义);(2)累加法

(3)累乘法( n n n c a a =+1型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足???≤≥+00 1m m a a 的项数m 使得m S 取最大值. (2)当 0,01>

(完整版)高中数学必修五第二章数列测试题

高中数学必修5 第二章数列测试题 一、选择题(每题5分,共50分) 1、{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A 、667 B 、668 C 、669 D 、670 2、在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A 、33 B 、72 C 、84 D 、189 3、如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ) A 、a 1a 8>a 4a 5 B 、a 1a 8<a 4a 5 C 、a 1+a 8<a 4+a 5 D 、a 1a 8=a 4a 5 4、已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则|m -n |等于( ) A 、1 B 、43 C 、2 1 D 、83 5、等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A 、81 B 、120 C 、168 D 、192 6、若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ) A 、4 005 B 、4 006 C 、4 007 D 、4 008 7、已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A 、-4 B 、-6 C 、-8 D 、-10 8、设S n 是等差数列{a n }的前n 项和,若35a a =9 5,则59S S =( ). A 、1 B 、-1 C 、2 D 、2 1 9、已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A 、21 B 、-21 C 、-21或2 1 D 、41 10、在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A 、38 B 、20 C 、10 D 、9 二、填空题(每题6分,12题15分,16题10分,共49分) 11、设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0) +…+f (5)+f (6)的值为 .

人教版高中数学必修5《数列》练习题(有答案)

必修5数列 2.等差数列{}n a 中,()46810129111120,3 a a a a a a a ++++=-则的值为 A .14 B .15 C .16 D . 17 3.等差数列{}n a 中,12910S S a =>,,则前项的和最大. 解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>, ,又 4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为. 解:∵ ,,, ,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为10010=S , 6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,. ①求出公差d 的范围; ②指出1221S S S ,, , 中哪一个值最大,并说明理由. 解:①)(6)(610312112a a a a S + =+=36(27)0a d =+> ② 12671377666()013000 S a a S a a a S =+>=<∴<>∴, 最大。 1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于() A .15 B .30 C .31 D .64 794121215a a a a a +=+∴= A 2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-==. 54

3. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则. 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+= 1 1 10201930 123050 21019502 n a d a a a a n a d d +==??==∴∴=+??+==??,解方程组 5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分 钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇?②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇? 故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(2 1 -++= n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列? ?? ?? ? +11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由. 12122(1)(1)() 2n n n n n n n a n a a a a a ++++∴+=++∴=+∴数列{}n a 为等差数列. ②1)1(311-+==+n n a n na a ,

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

高二数学数列测试题

高二数学第一次月考试题 (满分:150分 时间:120分钟) 一、选择题:(本大题共12小题,每小题5分,共60分) 1、若△ABC 的周长等于20,面积是310,A =60°,则BC 边的长是( ) A . 5 B .6 C .7 D .8 2.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4 D .8 3.已知数列{}n a 对任意的* p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( ) A .165- B .33- C .30- D .21- 4.在ABC ?中,根据下列条件解三角形,其中有两个解的是( ) A. b=10, A=450, C=600 B. a=6, c=5, B=600 C. a=7, b=5, A=600 D. a=14, b=16, A=450 5.在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a =( ) A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++ 6.(理)在△ABC 中,若 c C b B a A sin cos cos = =,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形 C .有一内角为30°的等腰三角形 D .等边三角形 (文)在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 7.小长方形按照下图中的规律排列,每个图形中的小长方形的个数构成数列}{n a 有以下结论,①155=a ; ②}{n a 是一个等差数列; ③数列}{n a 是一个等比数列; ④数列}{n a 的递堆公式),(11* +∈++=N n n a a n n 其中正确的是( ) A .①②④ B .①③④ C .①② D .①④ 8.甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( ) A . 7 150 分钟 B . 7 15 分钟 C .21.5分钟 D .2.15分钟 9.在下列表格中,每格填上一个数字后,使每一横行成等差..数列,每一纵列成等比..数列,则a b c ++的值为( )

高二数学排列组合二项式定理单元测试题(带答案)

排列、组合、二项式定理与概率测试题 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是 由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( ) A. 8种 B. 12种 C. 16种 D. 20种 2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( ) A .96种 B .180种 C .240种 D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( ) A .12种 B .20种 C .24种 D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( ) A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (mod m )。已知a =1+C 120+C 220·2+C 320·22+…+C 2020· 219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.2006 6、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种 7、令1 ) 1(++n n x a 为的展开式中含1 -n x 项的系数,则数列}1 { n a 的前n 项和为 ( ) A . 2) 3(+n n B . 2) 1(+n n C . 1+n n D . 1 2+n n 8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )

1、高二数学等比数列综合测试题答案

等比数列测试题 A 组 一.填空题(本大题共8小题,每小题5分,共40分) 1.在等比数列{}n a 中,3620,160a a ==,则n a = . 1.20×2n-3.提示:q 3= 160 20=8,q=2.a n =20×2n-3. 2.等比数列中,首项为98,末项为13,公比为2 3 ,则项数n 等 于 . 2.4. 提示:1 3=98×(23 )n-1,n=4. 3.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等于 . 3. 12.提示:由题设知a n q 2=a n +a n q,得q=12 +. 4.在等比数列{a n }中,已知S n =3n +b ,则b 的值为_______. 4.b=-1.提示:a 1=S 1=3+b ,n ≥2时,a n =S n -S n -1=2×3n -1. a n 为等比数列,∴a 1适合通项,2×31-1=3+ b ,∴b =-1. 5.等比数列{}n a 中,已知12324a a +=,3436a a +=,则56a a += 5.4.提示:∵在等比数列{}n a 中, 12a a +,34a a +,56a a +也成等比数列,∵12324a a +=,3436a a +=∴563636 4324 a a ?+= =. 6.数列{a n }中,a 1,a 2-a 1,a 3-a 2,…,a n -a n -1…是首项为1、公比为3 1的等比数列,则a n 等于 。 6.23(1- n 31 ).提示:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n - a n -1)=23(1-n 3 1)。 7.等比数列 ,8,4,2,132a a a 的前n 项和S n = .

相关主题