搜档网
当前位置:搜档网 › 碳膜电阻开路失效分析

碳膜电阻开路失效分析

碳膜电阻开路失效分析
碳膜电阻开路失效分析

碳膜电阻开路失效分析

美信检测失效分析实验室

摘要:

本文通过外观检查,CT扫描分析,去封装后光学检查,SEM/EDS分析,切片分析等手段,分析认为导致电阻开路的原因应为氧化腐蚀。

关键词:

碳膜电阻开路电阻失效分析 CT 氧化腐蚀

1. 案例背景

碳膜电阻使用过程中发生开路现象。

2. 分析方法简述

通外观检查、CT扫描未发现电阻器存在基体断裂、引线帽与电阻体有脱落等导致其开路的现象。

图1.样品外观照片(10X,20X)

剥漆后检查,发现NG样品碳膜有明显的异常段,导致电阻开路的直接原因应为此段损伤引起。OK样品未发现有碳膜异常区域,同时测试其电阻值,发现与剥漆之前并无变化(说明去除表面的封装层未对内部结构产生任何破坏)。而由SEM/EDS测试结果可以看出,NG样品的异常区域在电子显微镜下与正常区域低倍无明显差异,高倍下观察可看到异常区域存在陷坑。EDS测试发现异常区域C含量明显比正常区域低,O含量又比正常区域高,且异常区域有K离子存在。

图2.样品CT扫描照片

由切片结果可知,电阻体与引线帽接触良好,损伤无纵向延伸或其它夹杂;碳膜宽度与隔断宽度无明显异常,可判定不应是产品切割工艺不当造成其损伤开路。耐压和雷击试验后,样品解剖并无严重损伤,可判定在正常使用中,其承受的最大电压或雷击高压应不会造成其击穿烧毁。

图3.样品剥漆后外观照片(8X ,25X )

图4.样品损伤区域SEM 照片(27X ,100X ,2000X ,5000X )

碳膜异常段

图5.样品切片照片(50X)-金属帽与电阻体结合良好

3. 分析与讨论

电阻器的失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻失效的原因。导致其失效的机理如下:

1)氧化:氧化是长期起作用的因素,氧化过程由电阻体表面开始,逐步向内部深入,氧化的结果是阻值增大,电阻膜层越薄氧化作用越显著。采用有机材料(塑料、树脂等)涂覆或灌封,不能完全防止保护层透湿或透气,随能起到延缓氧化或吸附气体的作用,但也会带来与有机保护层有关的一些新的老化因素。环境条件也会影响氧化的激烈程度,高温高湿会加速老化。碳膜电阻器在湿气存在时,碳膜薄弱部分也会产生氧化,导致薄膜破坏,电阻值增大甚至开路。

2)引线断裂:引线断裂的主要失效机理是引线帽与电阻体焊接工艺缺陷,焊点污染。引线机械应力损伤。

3)电阻膜或基体污染:电阻膜有缺陷或退化,或存在可动Na、K、Cl等离子,保护涂层不良。

电应力:电阻膜受到外部高压作用,导致电阻膜被过电击穿。

4. 结论

导致电阻开路的原因应为氧化腐蚀引起,异常变色区域的C含量较低,O含量较大,同时含有少量K离子及坑陷现象,说明该变色异常区域发生了局部薄弱区域的氧化腐蚀,导致碳膜损伤而开路。氧化腐蚀失效属于缓慢失效,只有在多种综合因素的作用下才会发生的偶发性的小概率失效问题,这也与客户端失效概率相一致(约十五万分之一)。有机材料保护层无法完全防止透湿,高温高湿是电阻器氧化失效的一个重要诱因,可采取在电阻器外加保护套的方式延缓其透湿的进程。

作者简介:

MTT(美信检测)致力于提供材料及零部件品质检验、鉴定、认证及失效分析服务,公司网址:https://www.sodocs.net/doc/992591407.html,,联系电话:400-850-4050。

碳膜电阻说明

被釉功率瓷管电阻器Claze High Power Ceramic Tube Resistors (BHR ) https://www.sodocs.net/doc/992591407.html, ●特点Features: 固定型Fixed Type : 可调型Adjustable Type : ●规格尺寸Specifications and Dimensions : 备注Remark :具体规格尺寸可以根据客户的需求制作,同时也可以制作一管多个阻值,也可按客户要求取消固定支架。We can according to customer’s requirement to customize the specification and dimension, also can produce multiple resistance values of one ceramic tube or cancel the fixed plank. 1、 电阻表面被釉,抗污染性强,耐化学气体侵蚀,绝 缘度高,耐湿耐温,可在恶劣环境下使用。Surface glazed,won’t be easily polluted or by chemistry gas,high insulating capacity,can resist humidity and heat well,can be used in the atrocious environment. 2、 过负荷能力强,热稳定性好,使用寿命长。Good overload and heat-durability capacity,the use life is longer then the others. 3、 精度范围Resistance tolerance: ±5%、±10%.

色环电阻识别方法

色环电阻识别方法 每种颜色代表不同的数字,如下: 棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9 黑0 ,金、银表示误差 色环电阻是应用于各种电子设备的最多的电阻类型,无论怎样安装,维修者都能方便的读出 其阻值,便于检测和更换。但在实践中发现,有些色环电阻的排列顺序不甚分明,往往容易读错,在识别时,可运用如下技巧加以判断: 技巧1: 先找标志误差的色环,从而排定色环顺序。最常用的表示电阻误差的颜色是:金、银、棕,尤其是金环和银环,一般绝少用做电阻色环的第一环,所以在电阻上只要有金环和银环, 就可以基本认定这是色环电阻的最末一环。 技巧2: 棕色环是否是误差标志的判别。棕色环既常用做误差环,又常作为有效数字环,且常常在第一环和最末一环中同时出现,使人很难识别谁是第一环。在实践中,可以按照色环之间的间隔加以判别:比如对于一个五道色环的电阻而言,第五环和第四环之间的间隔比第一环 和第二环之间的间隔要宽一些,据此可判定色环的排列顺序。 技巧3: 在仅靠色环间距还无法判定色环顺序的情况下,还可以利用电阻的生产序列值来加 以判别。比如有一个电阻的色环读序是:棕、黑、黑、黄、棕,其值为:100×104Ω=1MΩ误 差为1%,属于正常的电阻系列值,若是反顺序读:棕、黄、黑、黑、棕,其值为140×100Ω=140Ω,误差为1%。显然按照后一种排序所读出的电阻值,在电阻的生产系列中是没有的,故后一种 色环顺序是不对的。电阻按材料分一般有:碳膜电阻、金属膜电阻、水泥电阻、线饶电阻等。一般的家庭电器使用碳膜电阻较多,因为它成本低廉。金属膜电阻精度要高些,使用在要求较高的设备上。水泥电阻和线饶电阻都是能够承受比较大功率的,线饶电阻的精度也比较高, 常用在要求很高的测量仪器上。 小功率碳膜和金属膜电阻,一般都用色环表示电阻阻值的大小,这也是我们在学习电阻的很 重要的一步。电阻阻值的单位是欧姆。下面详细说明。 色环电阻分为四色环和五色环,先说四色环。顾名思义,就是用四条有颜色的环代表阻值大小。每种颜色代表不同的数字,如下: 棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9 黑0 金、银表示误差 各色环表示意义如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:10的幂数; 第四条色环:误差表示。 例如:电阻色环:棕绿红金, 第一位:1; 第二位:5;第三位:10的幂为2(即100); 误差为5%; 即阻值为:15×100=1500欧=1.5千欧=1.5K 还有精确度更高的“五色环”电阻,用五条色环表示电阻的阻值大小,具体如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:阻值的第三位数字; 第四条色环:阻值乘数的10的幂数; 第五条色环:误差(常见是棕色,误差为1%)

外界因素造成膜式电阻器的异常失效分析

外界因素造成膜式电阻器的异常失效分析 发表时间:2019-09-05T10:00:10.157Z 来源:《中国电业》2019年第08期作者:方政 [导读] 在电子线路中的基础元件电阻器其使用量大,用途广泛,但其意外失效严重困扰生产者和使用方,究其原因,电阻器本身固有缺陷,制程工艺、安装过程和使用环境均对其有显著影响。 揭阳市美得福电子有限公司广东揭阳 522000 摘要:在电子线路中的基础元件电阻器其使用量大,用途广泛,但其意外失效严重困扰生产者和使用方,究其原因,电阻器本身固有缺陷,制程工艺、安装过程和使用环境均对其有显著影响。 关键词:电阻器,固有缺陷,使用环境,失效。 电阻器作为通用的三大基础电子元件,有着悠久的历史,而热分解碳膜电阻器于1925年由德国发明,1930年投入批量生产,因其生产工艺简单,电性能良好,价格低廉,阻值范围宽,稳定性好,受电压和频率的影响小,性价比高,是目前传统电阻器中生产使用量最大的品种,在电子线路中用做分压,分流,匹配负载,限流,在RC电路中作为振荡,滤波,旁路和时间常数元件,常规的线路板上,往往电阻器是所见的数量最多的元件,在所有元器件的失效占比中也相对较多,给使用者、生产者带来诸多困扰。 对于薄膜电阻器而言,其膜层厚度在几十埃到几个微米之间,由于厚度非常小,其厚度的均匀一致性很难保证,且其厚度的精准测量存在一定困难,此时导体的电阻率不再是一个常数,因为此时薄膜不再是密实和完整的导体,且受瓷基体表面平整度的影响,膜层具有不连续性和凹凸不平,体现在温度系数的非线性方面,而此时导体的电阻率和膜层厚度有直接关系,往往膜层越薄,电阻率越大,因而膜层薄处的方阻会成倍高于别处的方阻,如在切割工序时该处槽纹变窄,电阻器在承受负荷时该处分担的电压高,功耗多,往往是失效的隐患点,此类失效因偶发和难以重复还原,因而难以预防。但在切割工序槽纹的平滑性,有效长度的增加及对成品施加合适的老化可以有效减少该类失效。 本文就一种非常见但具有代表性的电阻器失效做一些分析,希望对有效防范该类失效起到借鉴。 1、一客户称,其灯具在国外使用时,故障率高,其中一款RT1/2WS型电阻器的失效所占比例最高,寄回不良品,望分析原因。 1.5更换该电阻器后对灯做通5秒,断1秒的通断实验后电阻外观及膜层无异常,灯具正常。 1.6从失效电阻器的引线锈蚀,金色色环变绿的情况分析,用稀盐酸、稀硫酸,稀硝酸浸泡或涂覆电阻器,发现引线或金环均变黑,并不是和不良品一样得到的是相关蓝色或绿色的结果。 1.7走访用户生产现场,发现对插件好的线路板在喷涂助剂时因人而异有一定的随机性,喷涂次数及量、助焊剂型号、参数、MSDS报告均未实施有效管理,查不到相关资料数据,现场测试一桶助焊剂PH值,显示在4.8-5.0之间,比实际要求的中性助剂明显偏酸性。

片式电阻的主要失效机理与失效模式

片式电阻的主要失效机理与失效模式 1.什么是片式电阻,片式电阻的概念。 片式电阻器又称为片式电阻,也叫表面贴装电阻,它与它片式元器件(SMC 及SMD)一样,是适用于表面贴装技术(SMT)的新一代无引线或短引线微型电子元件。其引出端的焊接面在同一平面上。片式电阻在电路内的主要作用是降低电压,分担一部分电压即分压,限流保护电路,分流等,也可以用做时间电路元件和传感器等。 2.片式电阻的特性及分类。 表面组装的电阻器是表面组装元气件的组成之一,它属于无源元件,其作用主要供厚膜、薄膜电路作外贴元件用。它一般按两种方式进行分类。按特性与材料分类分为:厚膜电阻、薄膜电阻。按外形结构分类分为:矩形片式电阻、圆柱片式电阻、异形电阻。矩形片式电阻的结构如下图(a): (a)矩形片式电阻结构示意图 2.1矩形片式电阻结构介绍: 矩形片式电阻由基板、电阻膜、保护膜、电极四大部分组成。 基板:基板材料一般使用96%的Al2O3(三氧化二铝)陶瓷。基本应具体有

良好的电绝缘性,在高温下具有良好的导热性、电性能和一定强度的机械性能。电阻膜:电阻膜是用具有一定电阻率的电阻浆料印刷在陶瓷基本上的,在经过烧结而形成厚膜电阻。电阻浆料一般用RuO2(二氧化钉)。近年来开始使用贱金属系的电阻浆料,比如氧化系(TaN-Ta)、碳化系(WC-W)和Cu系材料,目的是降低成本。 保护膜:将保护膜覆盖在电阻膜上,保护膜的主要作用是保护电阻。它一方面起机械保护作用,另一方面使电阻体表面具有绝缘性,避免电阻与邻近导体接触而产生故障。保护膜一般是低熔点的玻璃浆料,进过印刷烧结而成。 电极:电极是为了保证电阻器具有良好的可焊性和可靠性,一般采用三层电极结构:内层电极、中间电极、外层电极。内层电极作用:连接电阻体的内部电极。中间电极是镀镍层,其阻挡作用,提高电阻散热,缓冲焊接的热冲击。外层电极是锡铅层,主要作用是使电极具有可焊性。 3片式电阻常见的失效模式与失效机理。 图(1)线绕电阻失效总比例图(2)非线绕电阻失效总比例 片式电阻的主要失效模式与失效机理为: 1) 开路:主要失效机理为电阻膜烧毁或大面积脱落,基体受力发生断裂,引线帽与电阻体发生脱落。

电阻器常见的失效模式与 失效机理

电阻器常见的失效模式与失效机理失效模式:各种失效的现象及其表现的形式。 失效机理:是导致失效的物理、化学、热力学或其他过程。 1、电阻器的主要失效模式与失效机理为: 1)开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。 2)阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。 3)引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。 4)短路:银的迁移,电晕放电。 2、失效模式占失效总比例表 (1)、线绕电阻 失效模式占失效总比例 开路90% 阻值漂移2% 引线断裂7% 其它1% (2)、非线绕电阻 失效模式占失效总比例 开路49% 阻值漂移22% 引线断裂17% 其它7% 3、失效机理分析 电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。 (1)、导电材料的结构变化:

薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无 定型结构。按热力学观点,无定型结构均有结晶化趋势。在工作条件或环境条 件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内 部结构趋于致密化,能常会引起电阻值的下降。结晶化速度随温度升高而加快。 电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因 此发生变化。 结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器 使用期间终止。可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。与它们有关的阻值变化约占原阻值的千分之几。 电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负 荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体 与引线帽接触部分的温升超过了电阻体的平均温升。通常温度每升高10℃, 寿命缩短一半。如果过负荷使电阻器温升超过额定负荷时温升50℃,则电阻 器的寿命仅为正常情况下寿命的1/32。可通过不到四个月的加速寿命试验, 即可考核电阻器在10年期间的工作稳定性。 直流负荷-电解作用:直流负荷作用下,电解作用导致电阻器老化。电解 发生在刻槽电阻器槽内,电阻基体所含的碱金属离子在槽间电场中位移,产生 离子电流。湿气存在时,电解过程更为剧烈。如果电阻膜是碳膜或金属膜,则 主要是电解氧化;如果电阻膜是金属氧化膜,则主要是电解还原。对于高阻薄 膜电阻器,电解作用的后果可使阻值增大,沿槽螺旋的一侧可能出现薄膜破坏 现象。在潮热环境下进行直流负荷试验,可全面考核电阻器基体材料与膜层的 抗氧化或抗还原性能,以及保护层的防潮性能。 (2)、气体吸附与解吸: 膜式电阻器的电阻膜在晶粒边界上,或导电颗粒和黏结剂部分,总可能 吸附非常少量的气体,它们构成了晶粒之间的中间层,阻碍了导电颗粒之间的 接触,从而明显影响阻值。 合成膜电阻器是在常压下制成,在真空或低气压工作时,将解吸部分附 气体,改善了导电颗粒之间的接触,使阻值下降。同样,在真空中制成的热分 解碳膜电阻器直接在正常环境条件下工作时,将因气压升高而吸附部分气体,

电阻阻值识别方法_.

色环电阻阻值识别方法 4色环电阻: 第一色环是十位数, 二色环是个位数, 第三色环是应乘倍数, 第四色环是误差率 5色环电阻: 第一色环是百位数,第 二色环是十位数, 第三色环是个位数,第 四色环是应乘倍数, 第五色环是误差率。 例如:5色环电阻的颜色 排列为红红黑黑棕, 则其阻值是 220 X 1=220 Q,误差 ±1 % 5色环电阻通常都是误 差± 阻。 金色:几点几 Q 棕色:几百几十Q 颜色 黑棕红橙黄绿蓝紫灰白金银 代表数值 0123456789 误误差 %的金属膜电 黑色: 几十几 Q

红色:几点几k Q 橙色:几十几k Q 黄色:几百几十k Q 绿色:几点几M Q 蓝色:几十几M Q 紫色蓝色绿色棕色 士0.1 % 士0.25 %士0.5 % 士1% 五色环表示法规则如下表: 颜色蓝 rtrL 第一位有效值 第二位有效值 第三位有效值 第四位倍 乘10 2 10 -1 10 10 1 10 2 10 3 10 4 105 106 107 108 10 9 第五位误差/%±2 ±1 士0. 士 0.2 5 5 士0. 士 0.0 1 5 五色环电阻与四色环电阻之间的不同之处有: 乘, 第五色环是误差。 前三色环是有效数值,第四色环是倍

五色环电阻的阻值快速识别步骤: ①五色环电阻阻值识别步骤和四色环电阻识别的步骤是差不多的,依然是先看第五环(即最后一环),四色环电阻的最后一环只有金银无三种色,而五色环电阻的最后一环却有金银棕红绿蓝紫灰无九种色,这样使五色环的误差精度有所提高。 ②五色环电阻阻值识别第二步同四色环电阻识别一样,也是看第四环(即倒数第二 环)倍乘,因为前面三位有效数值,所以五色环电阻的倍乘与四色环电阻的倍乘完会不同,不同之处主要表现在第四色环的倍乘比四色环电阻的第三色环倍乘的倍率 大101 颜色倍乘数值范围单位 银10-1 1.00- 9.10 Q几点几几欧 10.0- 91.0 Q几十几点几欧 金 100 100-910Q几百几十几欧 黑 101 1.00- 9.10K Q几点几几千欧 棕 102 10.0- 91.0K Q几十几点几千欧 红 103 100-910K Q几百几十几千欧 橙 104 1.00- 9.10M Q几点几几兆欧 黄 105 10.0- 91.0M Q几十几点几兆欧 绿 106 t t - 蓝107100-910M Q几百几十几兆欧

晶片电阻器潜在失效模式及影响分析(过程FMEA)

產品名稱Item : 晶片电阻 產品模組Model(s)/Program(s) : Chip Resistor 跨功能小組Core Team : FMEA 編號: 頁次Page: 填表人Prepared By: 更新版本日期FMEA Date:製程責任Process Responsibility:倉庫, IQC 關鍵日期Key Date:

產品名稱Item : 晶片电阻 產品模組Model(s)/Program(s) : Chip Resistor 跨功能小組Core Team : FMEA 編號: 頁次Page: 填表人Prepared By: 更新版本日期FMEA Date:製程責任Process Responsibility:倉庫, IQC 關鍵日期Key Date:

產品名稱Item : 晶片电阻 產品模組Model(s)/Program(s) : Chip Resistor 跨功能小組Core Team : FMEA 編號: 頁次Page: 填表人Prepared By: 更新版本日期FMEA Date:製程責任Process Responsibility:倉庫, IQC 關鍵日期Key Date:

產品名稱Item : 晶片电阻 產品模組Model(s)/Program(s) : 車規-AC&AF FMEA 編號FMEA Number: 頁次Page: 製程責任Process Responsibility:Printing 跨功能小組Core Team : 關鍵日期Key Date:填表人Prepared By: 更新版本日期FMEA Date:

色环电阻识别方法

色环电阻识别方法 识别方法 1.识别顺序

色环电阻是应用于各种电子设备的最多的电阻类型,无论怎样安装,维修者都能方便的读出其阻值,便于检测和更换。但在实践中发现,有些色环电阻的排列顺序不甚分明,往往容易读错,在识别时,可运用如下技巧加以判断: 技巧1:先找标志误差的色环,从而排定色环顺序。最常用的表示电阻误差的颜色是:金、银、棕,尤其是金环和银环,一般绝少用做电阻色环的第一环,所以在电阻上只要有金环和银环,就可以基本认定这是色环电阻的最末一环。 技巧2:棕色环是否是误差标志的判别。棕色环既常用做误差环,又常作为有效数字环,且常常在第一环和最末一环中同时出现,使人很难识别谁是第一环。在实践中,可以按照色环之间的间隔加以判别:比如对于一个五道色环的电阻而言,第五环和第四环之间的间隔比第一环和第二环之间的间隔要宽一些,据此可判定色环的排列顺序。 技巧3:在仅靠色环间距还无法判定色环顺序的情况下,还可以利用电阻的生产序列值来加以判别。比如有一个电阻的色环读序是:棕、黑、黑、黄、棕,其值为:100×100Ω=1MΩ误差为1%,属于正常的电阻系列值,若是反顺序读:棕、黄、黑、黑、棕,其值为140×100Ω=140Ω,误差为1%。显然按照后一种排序所读出的电阻值,在电阻的生产系列中是没有的,故后一种色环顺序是不对的。 2.识别大小 普通电阻:四色环电阻: 第一色环是十位数,第二色环是个位数, 第三色环是应乘颜色次幂颜色次,第四色环是误差率 例子: 棕红红金 其阻值为12×102=1.2K 误差为±5% 误差表示电阻数值,在标准值1200上下波动(5%×1200)都表示此电阻是可以接受的,即在1140-1260之间都是好的电阻。 精密电阻:五色环电阻: 红红黑棕金 五色环电阻最后一环为误差,前三环数值乘以第四环的10颜色次幂颜色次,其电阻为220×101=2.2K 误差为±5% 第一色环是百位数,第二色环是十位数,

碳膜、金属膜、金属氧化膜电阻区别

碳膜、金属膜、金属氧化膜电阻 碳膜电阻 碳膜电阻(碳薄膜电阻)为最早期也最普遍使用的电阻器,利用真空喷涂技术在瓷棒上面喷涂一层碳膜,再将碳膜外层加工切割成螺旋纹状,依照螺旋纹的多寡来定其电阻值,螺旋纹愈多时表示电阻值愈大。最后在外层涂上环氧树脂密封保护而成。其阻值误差虽然较金属皮膜电阻高,但由于价钱便宜。碳膜电阻器仍广泛应用在各类产品上,是目前电子,电器,设备,资讯产品之最基本零组件。 金属膜电阻 金属膜电阻(金属拍摄电阻)同样利用真空喷涂技术在瓷棒上面喷涂,只是将炭膜换成金属膜(如镍铬),并在金属膜车上螺旋纹做出不同阻值,并且于瓷棒两端度上贵金属。虽然它较碳膜电阻器贵,但低杂音,稳定,受温度影响小,精确度高成了它的优势。因此被广泛应用于高级音响器材,电脑,仪表,国防及太空设备等方面。

金属氧化膜电阻 某些仪器或装置需要长期在高温的环境下操作,使用一般的电阻会未能保持其安定性。在这种情况下可使用金属氧化膜电阻(金属氧化物薄膜电阻器),它是利用高温燃烧技术于高热传导的瓷棒上面烧附一层金属氧化薄膜(如氧化锌),并在金属氧化薄膜车上螺旋纹做出不同阻值,然后于外层喷涂不燃性涂料。它能够在高温下仍保持其安定性,电阻皮膜负载之电力亦较高。它还兼备低杂音,稳定,高频特性好的优点。 方形线绕电阻 方形线绕电阻(钢丝缠绕电阻)又俗称为水泥电组,采用镍,铬,铁等电阻较大的合金电阻线绕在无碱性耐热瓷件上,外面加上耐热,耐湿,无腐蚀之材料保护而成,再把绕线电阻体放入瓷器框内,用特殊不燃性耐热水泥充填密封而成。而不燃性涂装线绕电阻的差别只是外层涂装改由矽利康树脂或不燃性涂料。它们的优点是阻值精确,低杂音,有良好散热及可以承受甚大的功率消耗,大多使用于放大器功率级部份。缺点是阻值不大,成本较高,亦因存在电感不适宜在高频的电路中使用。 碳质电阻 碳质电阻(碳电阻器)是利用石墨,碳等较大电阻系数的物质加上胶合剂加压,加热成棒状,并在制造时植入导线。电阻值的大小是根据碳粉的比例及碳棒的粗细长短而定。其制造成本最为低廉,但稳定性较差及误差大。

热电阻故障分析

1.热电阻三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制。采用三线制是为了消除连接导线电阻引起的测量误差。这是因为测量热电阻的电路一般是不平衡电桥。热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。 上图左边部分是三线制的原理接线图。由图中可以看出电源通过C线接入测量桥路,这时电路就可以等效为右图。从右图可知A线和B线的线路电阻r被分别接到上下桥臂中,由于这两根导线的长度一样,即电阻一样,这样就消除了线路电阻的影响。注意:等效电路中没有将C线的线路电阻画出来,这是因为它在供电线路中可以忽略不计。但是由于接触不良造成C线路电阻过大时,情况就会发生变化。由于C线路电阻过大,供到电桥中会有较大的压降损失,从而导致桥路的输出比实际的要低。因此在实际维护中发现仪表的显示值比实际低时,应检查C线电阻值。 2.PT100热电阻测量介质温度发生故障时的一般检查方法:①当仪表显示值波动较为剧烈时,一般情况下是由于接触不良造成的。这是因为温度是一种变化缓慢的量,属于惯性环节,特别是热容较大的被测对象。在这种情况下应检查各接线端子处的端子接线是否有松动现象或连接导线有无似断丝连的现象。②当仪表显示值为无穷大时,一般情况下是由于线路开路引起。如果显示值为负最大,一般情况下为线路短路引起。③如果显示温度比实际高,则可能由于接线端子接触不良或接线松脱、折断造成电阻增大所致。这时应对接线端子进行检查紧固。另外也可能由于端子与导线间有氧化层使得电阻增大所引起。这时应用砂纸或其他

电阻基础知识

电阻基础知识 电阻” 导电体对电流的阻碍作用称着电阻,用符号R 表示,单位为欧姆、千欧、兆欧,分别用Ω、kΩ、MΩ 表示。 一、电阻的型号命名方法 国产电阻器的型号由四部分组成(不适用敏感电阻) 第一部分:主称,用字母表示,表示产品的名字。如R 表示电阻,W 表示电位器。 第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。 第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频、4-高阻、5-高温、6- 精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。 第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等。例如:R T 1 1 型普通碳膜电阻a1} 二、电阻器的分类 1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。 2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。 3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。 4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。 三、主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa 及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

碳膜电阻开路失效分析

碳膜电阻开路失效分析 美信检测失效分析实验室 摘要: 本文通过外观检查,CT扫描分析,去封装后光学检查,SEM/EDS分析,切片分析等手段,分析认为导致电阻开路的原因应为氧化腐蚀。 关键词: 碳膜电阻开路电阻失效分析 CT 氧化腐蚀 1. 案例背景 碳膜电阻使用过程中发生开路现象。 2. 分析方法简述 通外观检查、CT扫描未发现电阻器存在基体断裂、引线帽与电阻体有脱落等导致其开路的现象。 图1.样品外观照片(10X,20X) 剥漆后检查,发现NG样品碳膜有明显的异常段,导致电阻开路的直接原因应为此段损伤引起。OK样品未发现有碳膜异常区域,同时测试其电阻值,发现与剥漆之前并无变化(说明去除表面的封装层未对内部结构产生任何破坏)。而由SEM/EDS测试结果可以看出,NG样品的异常区域在电子显微镜下与正常区域低倍无明显差异,高倍下观察可看到异常区域存在陷坑。EDS测试发现异常区域C含量明显比正常区域低,O含量又比正常区域高,且异常区域有K离子存在。

图2.样品CT扫描照片 由切片结果可知,电阻体与引线帽接触良好,损伤无纵向延伸或其它夹杂;碳膜宽度与隔断宽度无明显异常,可判定不应是产品切割工艺不当造成其损伤开路。耐压和雷击试验后,样品解剖并无严重损伤,可判定在正常使用中,其承受的最大电压或雷击高压应不会造成其击穿烧毁。

图3.样品剥漆后外观照片(8X ,25X ) 图4.样品损伤区域SEM 照片(27X ,100X ,2000X ,5000X ) 碳膜异常段

图5.样品切片照片(50X)-金属帽与电阻体结合良好 3. 分析与讨论 电阻器的失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻失效的原因。导致其失效的机理如下: 1)氧化:氧化是长期起作用的因素,氧化过程由电阻体表面开始,逐步向内部深入,氧化的结果是阻值增大,电阻膜层越薄氧化作用越显著。采用有机材料(塑料、树脂等)涂覆或灌封,不能完全防止保护层透湿或透气,随能起到延缓氧化或吸附气体的作用,但也会带来与有机保护层有关的一些新的老化因素。环境条件也会影响氧化的激烈程度,高温高湿会加速老化。碳膜电阻器在湿气存在时,碳膜薄弱部分也会产生氧化,导致薄膜破坏,电阻值增大甚至开路。 2)引线断裂:引线断裂的主要失效机理是引线帽与电阻体焊接工艺缺陷,焊点污染。引线机械应力损伤。 3)电阻膜或基体污染:电阻膜有缺陷或退化,或存在可动Na、K、Cl等离子,保护涂层不良。 电应力:电阻膜受到外部高压作用,导致电阻膜被过电击穿。

电阻和电容的识别方法如何正确读出基本元器件电阻、电容的值

实验一基本元器件电阻和电容的识别 学号:姓名: 一、实验目的 1.熟悉基本电子元器件:电阻、电容 2.学习基本元器件的识别方法 3.学会基本元器件参数的读取方法 二、实验内容 1.认识基本元器件 2.识别基本元器件的基本参数及作用 三、实验报告 1.电阻的识别方法 电阻电容参数识别方法有直标法、色标法、数标法三种 1.直标法 直标法是指将电阻器的类别、标称电阻值、允许偏差、额定功率及其他参数的数值等直接标注在电阻器的表面。如电阻器上印有68±5%,则阻值为68Ω,误差为±5%,而标注为“58”则表 示阻值为58Ω。 也有的用数字加字母符号(Ω、K、M)或两者有规律的组合来表示电阻器的阻值,其中字母符号前面的数字表示阻值的整数部

分,字母符号后面的数字表示阻值的小数部分。 2.数标法 数标法主要用三位数表示阻值,前两位表示有效数字,第三位数字是倍率。如电阻上标注"ABC",表示其阻值为AB×lOc,其中,"C"如果为9,则表示1。例如标注为”653”,表示阻值为65 xl03Ω=65 kΩ;标注为“279”,表示阻值为 27×10-1Ω=2.7Ω;标注“000”,阻值为0,这种电阻通常作保险用。 另外,可调电阻在标注阻值时,也常用两位数字表示。第一位表示有效数字,第二位表示倍率。如“24”表示2xl04= 20kΩ。 3、文字符号法 文字符号法和直标法相同,也是直接将有关参数印制在电阻体上。文字符号法,将5.7k电阻器标注成5k7,其中k既作单位,又作小数点。文字符号法中,偏差通常用字母表示,如(a)图所示。此电阻器,阻值为5.7k,偏差为±1%。 图(b)所示为碳膜电阻,阻值为1.8k偏差为±20%,其中用级别符号Ⅱ表示偏差 4.色标法

电阻失效分析

片式厚膜电阻器—电极断裂开路 1) 样品名称:片式厚膜电阻器 2) 背景:型号为5.6K Ω/1206和47K Ω/1206,在使用一年后发现失效。 3) 失效模式:阻值超差和开路。 4) 失效机理:面电极的银层断裂是样品开路和阻值增大的原因。 5) 分析结论:电极的银层断裂是由于焊接时,在Pb-Sn 焊料边缘的面电极Ag 大量熔于焊 料中,形成边缘的Ag 层空洞,在长期工作过程Ag 的迁移和腐蚀造成空洞的扩大甚至断开而导致电子开路。 6) 分析说明: 失效品外观显示,端电极焊接不良(图1)。 X-RAY 观察分析,在端电极和面电极相连的区域发现面电极有断裂空洞(图2),在与端电极焊料边缘相连的面电极Ag 层部分,都有不连续的现象,形成一条把银层断开的空洞;同时,样品研磨切面也可见到银层空隙,开封都能观察到面电极银层不连续带状空隙(图3),因此,面电极在焊料边缘的空隙造成银层不连续是造成样品电阻增大和开路的真正原因。 面电极在焊料边缘出现不连续或空洞的原因是在焊接过程中,靠近端电极的面电极中的Ag 在焊接过程中大量损耗掉,“熔化”在焊料之中,形成边缘面电极局部区域的Ag 层空洞。在长时间的使用过程中,由于Ag 迁移或者被腐蚀,空洞的扩大导致银层开路。 图1 样品的典型外貌 图2面电极有断裂空洞 图3 面电解银层不连续带状空隙 端电极 面电极 厚膜浆料 陶瓷基片 面电极断裂 面电极 端电极 断裂处

氧化膜电阻器—电解腐蚀开路 1) 样品名称:氧化膜电阻器 2) 背景:标称值为22KΩ±5%/2W,使用过程中出现开路。 3) 失效模式:电阻开路。 4) 失效机理:在水汽和直流电场作用下,镍铬膜被电解腐蚀开路。 5) 分析结论:电阻器镍铬膜在水汽和直流电场作用下,发生电解腐蚀开路,包封料中有少 量的K+、Cl-加速了电解腐蚀的发生。 6) 分析说明: 10只样品具有相同的失效模式-开路。开封表明:电阻膜由于局部被腐蚀而导致电阻开路。具体的腐蚀过程如下:电阻器在潮湿环境工作时,水份透过包封材料吸附在导电膜或刻槽表面,在直流电场作用下会在导电膜有缺陷的地方首先产生电解腐蚀。(图1,图2,图3)。 在电场作用下,水会发生电解成氢和氢氧根离子,氢氧根负离子在电场作用下趋向电阻器施加电压的正极(或高电位),分别与导电膜中的铬和镍产生反应,生成三氧化二铬和氧化镍,沉积在电阻器施加电压正极端附近的刻槽表面导致导电膜的电解腐蚀。随着导电膜中的部分镍和铬被氧化,使得该部分电阻继续增大,温度升高,电化学反应进一步加剧,直至将该部分腐蚀断裂,最后导致电阻器开路。电阻器陶瓷基体或者包封材料中如果含有K+、Cl-,均极易溶于水中,会降低水膜的电阻率,使电解腐蚀加剧。 开路区域

电阻识别方法

一、常用电阻器的标志方法: 1.直标法 把元件的主要参数直接印制在元件的表面上,这种方法主要用于 功率比较 大的电阻。如电阻表面上印有RXYC-50-T-1k5-±10%,其含义是耐潮被釉线 绕可调电阻器,额定功率为50W,阻值为1.5kΩ,允许误差为±10 %。 2.文字符号法 随着电子元件的不断小型化,特别是表面安装元器件(SMC和SMD)的制 造工艺不断进步,使得电阻器的体积越来越小,其元件表面上标 注的文字 符号也作出了相应改革。一般仅用三位数字标注电阻器的数值, 精度等级 不再表示出来(一般小于±5%)。具体规定如下: (1)元件表面涂以黑颜色表示电阻器。 (2)电阻器的基本标注单位是欧姆(Ω),其数值大小用三位 数字标注。 (3)对于十个基本标注单位以上的电阻器,前两位数字表示数 值的有效数 字,第三位数字表示数值的倍率。如100表示其阻值为10×100=10 Ω;223 表示其阻值为22×103=22kΩ。 (4)对于十个基本标注单位以下的元件,第一位、第三位数字 表示数值的 有效数字,第二位用字母“R”表示小数点。如3R9表示其阻值为3.9 Ω。 3.色标法 小功率电阻器使用最广泛的是色标法,一般用背景区别电阻器 的种类: 如浅色(淡绿色、淡蓝色、浅棕色)表示碳膜电阻,用红色表示 金属或金 属氧化膜电阻,深绿色表示线绕电阻。一般用色环表示电阻器的 数值及精 度。 普通电阻器大多用四个色环表示其阻值和允许偏差。第一、二 环表示有 效数字,第三环表示倍率(乘数),与前三环距离较大的第四环 表示精度 。 精密电阻器采用五个色环标志,第一、二、三环表示有效数字 ,第四环 表示倍率,与前四环距离较大的第五环表示精度。有关色码标注

金属膜电阻与碳膜电阻

金属膜电阻与碳膜电阻 金属膜电阻 在电阻器的外表面涂有蓝色或红色或绿色保护漆。 特点 ①耐热性好,额定工作温度为70℃,最高工作温度可达155℃。 ②电压稳定性好,温度系数小。 ③工作频率范围宽,噪声电动势很小,可在高频电路中使用。 ④在相同的功率条件下,它比碳膜电阻器体积小很多,约为碳膜电阻器的一半。 ⑤它可以通过切割螺纹方法进行精密阻值调节,精度可达±0.5%、±0.05%。 ⑥阻值范围很宽。金属膜电阻器提供广泛的阻值范围,有着精密阻值,公差范围小的特性。可制成1Ω-10OOMΩ的电阻器。 ⑧脉冲负荷稳定性较差,不如碳膜电阻器。

碳膜电阻 碳膜电阻是目前电子、电器、资讯产品使用量最大,价格最便宜。在其表面涂上环氧树脂密封。它的电性能和稳定性较差。但由于它容易制成高阻值的膜,所以主要用作高阻高压电阻器。 二者的对比: 金属膜电阻,稳定,温度系数小,误差小,精度高,体积小。 碳膜电阻,稳定性差,误差大,相同功率体积比金属膜大。 区分: 金属膜的为四环或五个色环(1%),碳膜的为四环(5%)。 金属膜的为底漆一般蓝色或绿色,碳膜的为土黄色或是其他的颜色。(过去的国标是按颜色区别,金属膜电阻用红色,碳膜电阻用绿色。) 内部区别(破坏性检查)用刀片刮开保护漆,露出的膜的颜色为黑色为碳膜电阻;膜的颜色为亮白的则为金属膜电阻。 由于金属膜电阻的温度系数比碳膜电阻小得多,所以可以用万用表测电阻的阻值,然后用烧热的电铬铁靠近电阻,假如阻值变化很大,则为碳膜电阻,反之则为金属膜电阻。 金属膜电阻“△电阻的/△温度”系数是正值,金属膜电阻的值随电阻温度的升高而增大;碳膜电阻“△电阻的/△温度”系数是负值,碳电阻的值随电阻温度的升 高而减小。

色环碳膜电阻

■D I P R e s i s t o r ■Carbon Film Fixed Resistor — CB Series ■ Features ─Lowest cost, prompt delivery ─Excellent long term stability ─Wide resistance range 0Ω22~100MΩ ─ Power ratings ■Dimension Unit: mm TYPE / Rated Power at 70℃ Standard Miniature L D H d Comment 0.4 0.2 1/8W 1/4WS 3.3± 0.2 1.8±0.3 26± 2.0 0.43±0.05 1/4W 1/2WS 6.3±0.5 2.3±0.3 26±2.0 0.5±0.03 1/3W 1/2WSS 8.5±0.5 2.7±0.5 26±2.0 0.52±0.03 1/2W 1WS 9.0±0.5 3.2±0.5 26±2.0 0.65±0.03 1W 2WS 11.5±1.0 4.5±0.5 30±2.0 0.76±0.03 2W 3WS 15.5±1.0 5.0±0.5 32±2.0 0.76±0.03 ★ Standard Series: Light Brown (khaki) Color Epoxy Coating ★ Miniature Series: Pink Color Epoxy Coating ■ Electrical Characteristics Power rating at 70℃1/8W 1/4WS 1/4W 1/2WS1/3W1/2WSS1/2W1WS1W 2WS 2W 3WS Operating Temp. Range -55℃ to +155℃ Max. Working Voltage 150V 200V 250V 300V280V320V350V400V450V 500V 500V 500V Max. Overload Voltage 300V 400V 500V 500V500V600V700V800V1000V 1000V 1000V1000V Dielectric Withstanding Voltage 300V 400V 500V 500V500V600V700V800V1000V 1000V 1000V1000V Resistance Range (±5%) 1Ω~10MΩ, E24 series ●For non-standard parts, please contact our sales dept. ■Power Graph (℃)■ Hot-Spot Temperature (%) Rated Load(%) SURFACE TEMP. RISE (CB 2WS CB 200/CB1WS CB 100/CB50S CB 50 / CB25S CB 12 / CB25

三线制热电阻工作原理解析及常见故障分析

三线制热电阻传感器的故障分析 摘要:热电阻传感器是一种稳定性好、精度高、测量范围大的温度传感器,因而被广泛应用。但是热电阻传感器的连接导线电阻随温度的变化而变化,对测量结果的影响不容忽视。为了消除导线电阻的影响,热电阻测温常采用不平衡电桥式三线制接法,从而使温度误差得到了补偿。 关键词:热电阻、平衡电桥、三线制 一、热电阻与热电偶的区别 1.热电阻和热电偶的工作原理 热电偶工作原理是基于赛贝克效应,即两种不同热点特性的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电势的物理现象。它由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)。将它插入待测温度的介质中;而热电偶的另一端(参比端或自由端)则与显示仪表相连。如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。 热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上或通过激光溅射工艺在基片形成。当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。 2. 如何选择热电偶和热电阻 根据测温范围选择:500℃以上一般选择热电偶,500℃以下一般选择热电阻; 页脚内容1

页脚内容2 根据测量精度选择:对精度要求较高选择热电阻,对精度要求不高选择热电偶; 根据测量范围选择:热电偶所测量的一般指“点"温,热电阻所测量的一般指空间平均温度。 二.热电阻的二线制原理和三线制原理的区别 1.热电阻的二线制原理 在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制。这种引线方法很简单,但由于连接导线必然存在引线电阻r ,r 大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合。 图1-1 热电阻二线制接法 如图1-1 所示,假设现场的可变电阻RTD 接在电桥的一个桥臂上,另外三个桥臂上均接了电阻R ,这样在检流计中流过的电流就会随着热电阻阻值的变化而变化。设电源电压为E ,可变电阻RTD 的阻值t R R R =+?,检流计的电压值为0U ,则计算如下: 022t R R U E E R R r R =-+++

金属膜电阻识别方法

膜电阻精度要高些,使用在要求较高的设备上。水泥电阻和线饶电阻都是能够承受比较大功率的,线饶电阻的精度也比较高,常用在要求很高的测量仪器上。一般体积大的电阻其阻值标明在电阻上,小功率碳膜和金属膜电阻,一般都用色环表示电阻阻值的大小,。电阻阻 色环电阻分为四色环和五色环,先说四色环。顾名思义,就是用四条有颜色的环代表阻值大小。 每种颜色代表不同的数字,如下:棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9 黑0 金、银表示误差 各色环表示意义如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:10的幂数; 第四条色环:误差表示。 例如:电阻色环:棕绿红金,第一位:1;第二位:5;第三位:10的幂为2(即100);误差为5%;即阻值为:15×100=1500欧=1.5千欧=1.5K 还有精确度更高的“五色环”电阻,用五条色环表示电阻的阻值大小,具体如下:

第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:阻值的第三位数字; 第五条色环:误差(常见是棕色,误差为1%) 有些五色环电阻两头金属帽上都有色环,远离相对集中的四道色环的那道色环表示误差,是第五条色环,与之对应的另一头金属帽上的是第一道色环,读数时从它读起,之后的第二道、第三道色环是次高位、次次高位,第四道环表示10的多少次方,例如某电阻色环电阻顺序为:红(2)-黑(0)-黑(0)-黑-棕,则它表示该电阻阻值为:200×100Ω。再如棕-黑-黑-红-棕,表示该电阻阻值为:100×102Ω=10000Ω=10KΩ。 可见,四色环电阻误差为5-10%,五色环常为1%,精度提高。例如:有电阻:黄紫红橙棕,前三位数字是:472,第四位表示10的3次方,即1000,阻值为:472×1000欧=472千欧(即472K)综上,只要金、银色环在最后,那就可以了。 在实践中发现,有些色环电阻的排列顺序不甚分明,往往容易读错,在识别时,可运用如下技巧加以判断:技巧1:先找标志误差的色环,从而排定色环顺序。最常用的表示电阻误差的颜色是:金、银、棕,尤其是金环和银环,一般绝少用做电阻色环的第一环,所以

相关主题