搜档网
当前位置:搜档网 › 余弦定理三角形的边角转换的桥梁

余弦定理三角形的边角转换的桥梁

余弦定理三角形的边角转换的桥梁
余弦定理三角形的边角转换的桥梁

正、余弦定理——三角形的边角转换的桥梁

奉贤区致远高级中学 卫胤

我们知道,正、余弦定理是反映三角形中边与角之间关系的两个重要定理。

正弦定理:在△ABC 中,三边a 、b 、c 和它们所对角A 、B 、C 的正弦的比相等,并且等于外接圆的直径,即R C

c B b A a 2sin sin sin ===。 余弦定理:在△ABC 中,任何一边的平方等于其他两边平方的和,减去这两边与它们

夹角的余弦的积的2倍,即

A bc c b a cos 2222-+=

B ac c a b cos 2222-+=

C ab b a c cos 2222-+=

三角形问题常以判定三角形的形状,边角关系式的证明或确定边角的大小等形式出现,就这类问题而言,一般有两条基本思路,即从角入手或从边入手,灵活运用正弦定理与余弦定理实现边角的互相转化。下面举例说明以供参考:

例1、在△ABC 中,已知B b A a cos cos =,试判断△ABC 的形状。

解法1:(把边转化为角)

在△ABC 中, B R b A

R a sin 2sin 2== ∵B b A a cos cos =

∴B B R A A R cos sin 2cos sin 2=

∴B A 2sin 2sin =

∴π=+=B A or B

A 2222 ∴2π

=+=B A or B A

∴△ABC 是等腰三角形或直角三角形

解法2:(把角转化为边)

在△ABC 中, ac

b c a B bc a c b A 2cos ,2cos 2

22222-+=-+= 又,B b A a cos cos =

∴22222222()(b c a b a c b a -+=-+)

422422b c b a c a -=-

0))(()(2222222=-+--b a b a b a c

0))((22222=---b a c b a

∴22222b a c or b a +==

即222c b a or b a =+=

∴△ABC 是等腰三角形或直角三角形

例2、在△ABC 中,角A 、B 、C 对边分别为a 、b 、c , 证明:C B A c b a sin )sin(22

2-=- [2000全国 春季 19]

证法1:(把边转化为角)

在△ABC 中,C R c B R b A R a sin 2sin 2sin 2=== ∴C R B

R A R c b a 222222222sin 4sin 4sin 4-=-

C B

A 22

2sin sin sin -=

C B

A 2sin 2

2cos

122cos 1---=

C A

B 2sin 22cos 2cos -=

C B A B A 2sin 2)

)(sin(sin(2-+=

C B A sin )

sin(-=

证法2:(把角转化为边)

在△ABC 中,

C B

A B A C B A sin sin

cos cos sin sin )sin(-=-

R

c

R b bc a c b ac b c a R a 22222222222?-+--+?= c c a c b c b c a 222

22222-+--+=

22

2c b a -=。

解三角形题型5正、余弦定理判断三角形形状(供参考)(新)

解三角形题型5:正、余弦定理判断三角形形状 1、(2013·陕西高考文科·T9)设△ABC 的内角A , B , C 所对的边分别为a, b, c , 若 cos cos sin b C c B a A +=, 则△ABC 的形状为 ( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 不确定 2、(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =, 则△ABC (A )一定是锐角三角形. (B )一定是直角三角形. (C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 3、如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 4、在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 5、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 6、A 为ΔABC 的一个内角,且sinA+cosA= 12 7 , 则ΔABC 是______三角形. 7、在△ABC 中,若c C b B a A sin cos cos = =,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形 C .有一内角为30°的等腰三角形 D .等边三角形 8、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 9、(2010辽宁文数17)在ABC ?中,a b c 、、分别为内角A B C 、、的对边, 且2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小; (Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状. 10、在ABC ?中,已知2222()sin()()sin()a b A B a b A B +?-=-?+,判断该三角形的形状。 11、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC= B A B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).

解三角形中的边角互换导学提纲

1 解三角形中的边角互换导学提纲 班级: 姓名: 小组: 评价: 学习目标:1.在三角形中考查三角函数式变换,是近几年高考的热点,它是在新的载体上进行的三角变换,因此要时刻注意它重要性:一是作为三角形问题,它必然要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,及时进行边角转化,有利于发现解决问题的思路;其二,它毕竟是三角形变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”,即“统一角、统一函数、统一结构”,是使问题获得解决的突破口。 2.在解三角形时,要注意正弦定理和余弦定理的本质就是揭示了三角形角与边的 关系,利用正余弦定理可将将角换成边,边换成角。 重点:利用正(余弦)定理实现角边互换。 难点:正(余)弦定理的角边互换的灵活运用。 导学流程: 例1.在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若,,则A=( ) (A ) (B ) (C ) (D ) 【命题立意】考查三角形的有关性质、正弦定理、余弦定理以及分析问题、解决问题的能力。 【思路点拨】根据正、余弦定理将边角互化。 【规范解答】选A ,根据正弦定理及得:(角换边) 。 【方法技巧】根据所给边角关系,选择使用正弦定理或余弦定理,将三角形的边转化为角。 例2在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且 (Ⅰ)求A 的大小;(Ⅱ)求的最大值. 【命题立意】考查了正弦定理,余弦定理,考查了三角函数的恒等变换,三角函数的最值。 【思路点拨】(I )根据正弦定理将已知条件中角的正弦化成边,得到边的关系,再由余弦定 理求角 (II )由(I )知角C =60°-B 代入sinB+sinC 中,看作关于角B 的函数,进而求出最值 【规范解答】(Ⅰ)由已知,根据正弦定理得 即 由余弦定理得 故 ,A=120° 22a b -=sin C B =03006001200 150sin C B =c =222222()cos 22b c a c a c A bc bc +---==== 0000180,30A A <∴= 2sin (2)sin (2)sin .a A a c B c b C =+++sin sin B C +22(2)(2)a b c b c b c =+++222a b c bc =++2222cos a b c bc A =+-1cos 2 A =-

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

高中数学必备知识点 正弦与余弦定理和公式

三角函数正弦与余弦的学习,在数学中只要记住相关的公式即可。日常考试 正弦和余弦的相关题目一般不会很难,是很多数学基础不是很牢的同学拿分的好题目。但对于有些同学来说还是很难拿分,那是为什么呢? 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有 a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题 (3)相关结论: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,∠C=90°,a=1,c=4,则sinA 的值为 2.已知α为锐角,且,则α的度数是() A.30° B.45° C.60° D.90° 3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是() A.75° B.90° C.105° D.120° 4.若∠A为锐角,且,则A=() A.15° B.30° C.45° D.60° 5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点, EF⊥BC,垂足为F,求sin∠EBF的值。

(完整word版)沪科版八年级数学三角形中的边角关系

三角形中的边角关系 知识点 一、 边 1、基本概念(三角形的定义、 边、 顶点、 △、 Rt △) 2、按边对三角形的分类:≠?? ?????? 不等边三角形三角形腰底等腰三角形等边三角形 ☆3、三边关系: (1)任意两边之和大于第三边 (2)任意两边之差小于第三边 验证:两条较短边之和与第三边的关系 二、角 1、基本概念( 内角、外角、∠ ) 2、按角对三角形的分类:???? ???? 锐角三角形斜三角形三角形钝角三角形直角三角形 3、三角形的内角和 (1)三角形三个内角和等于180° (2)直角三角形的两个锐角互余 (3)一个三角形最多3个锐角,最多1个钝角,最多1个直角,最少2个锐角) 三、线 1、中线 (1) 定义 (2) 重心 (3)中线是线段 (4) 表述方法 2、高线 (1)定义 (2)垂心 (3)高是线段,垂线是直线 (4)表示方法 (5)3种高的画法 3、角平分线 (1)定义 (2)外心 (3)画法 (4)表示方法 四、数三角形的个数 (1)图形的形成过程 (2)三角形的大小顺序 (3)按某一条边沿着一定的方向 (4)固定一个顶点,按照一定的顺序不断变换另外两个顶点去数 基础练习 1、图中有____个三角形;其中以AB 为边的三角形有______________;含∠ACB 的三角形有______________;在△BOC 中,OC 的对角是___________;∠OCB 的对边是___________. 2、用集合来表示“用边长把三角形分类”,下面集合正确的是( ) A B C D 3、若三角形的三边长分别为3,4,x -1,则x 的取值范围是_________________________

三角函数正弦定理和余弦定理

(文) 已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- . (1)若m //n ,求证:ΔABC 为等腰三角形; (2)若m ⊥p ,边长c = 2,角ΔABC 的面积 . 答案: 证明:(1)//,sin sin ,m n a A b B ∴=u v v Q 即22a b a b R R ? =? ,其中R 是三角形ABC 外接圆半径,a b =. ABC ∴?为等腰三角形 (2)由题意可知//0,(2)(2)0m p a b b a =-+-=u v u v 即 a b ab ∴+= 由余弦定理可知, 2 2 2 4()3a b ab a b ab =+-=+- 2()340ab ab --=即4(1)ab ab ∴==-舍去. 11 sin 4sin 223 S ab C π ∴==??= 来源:09年高考上海卷 题型:解答题,难度:中档

(文)在ABC ?中,A C AC BC sin 2sin ,3,5=== (Ⅰ)求AB 的值。(Ⅱ)求)4 2sin(π - A 的值。 答案: (1)解:在ABC ? 中,根据正弦定理, A BC C AB sin sin = ,于是522sin sin ===BC A BC C AB (2)解:在ABC ? 中,根据余弦定理,得AC AB BC AC AB A ?-+=2cos 2 22 于是A A 2cos 1sin -== 5 5, 从而5 3sin cos 2cos ,54cos sin 22sin 22=-== =A A A A A A 10 2 4 sin 2cos 4 cos 2sin )4 2sin(= -=- π π π A A A 来源:09年高考江西卷 题型:解答题,难度:容易 在⊿ABC 中,,A B 为锐角,角,,A B C 所对应的边分别为,,a b c ,且

2020年高考数学复习利用正余弦定理破解解三角形问题专题突破

2020 年高考数学复习利用正余弦定理破解解三角形问题专题突破 考纲要求: 1. 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题 1 2.会利用三角形的面积公式解决几何计算问题S ab sin C . 2 基础知识回顾: a b c 1. ===2R,其中R 是三角形外接圆的半径. sin A sin B sin C 由正弦定理可以变形:(1) a∶b ∶c=sin A∶sin B∶sin C;(2) a=2 Rsin A,b=2Rsin B,c=2Rsin C. 2 .余弦定理:a2=b 2+c2-2 bccos A,b 2=a2+c2-2accos B,c2=a2+b2-2abcos C. b 2+c2-a2a2+c2-b2a2+b 2-c2 变形:cos A =,cos B=,cos C= 2bc 2ac 2ab 4. 三角形常用的面积公式 1 1 1 1 abc (1)S=a·h a(h a表示a边上的高).(2) S=absinC =acsinB =bcsinA = 2 2 2 2 4R

1 (3)S=2r(a+b+c)(r 为内切圆半径).应用举例: 类型一、利用正(余)弦定理解三角形 【例1】已知中,,点在边上,且.(1 )若,求; (2 )求的周长的取值范围. 【答案】(1 );(2 ). 所以: 中,利用正弦定理得:

由于: 则: ,, 由于:,则:, 得到:, 所以的周长的范围是:. 【点睛】 本题考查了用正弦定理、余弦定理解三角形,尤其在求三角形周长时解题方法是利用正弦定理将边长转化为角的问题,然后利用辅助角公式进行化简,求出范围,一定要掌握解题方法。 【例2】已知在中,所对的边分别为,. (1 )求的大小; (2)若,求的值. 【答案】(1 )或(2)1

正余弦定理与解三角形整理(有答案)

正余弦定理考点梳理: 1. 直角三角形中各元素间的关系:如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。 (1)三边之间的关系:a2+b2=c2。(勾股定理) A (2)锐角之间的关系:A+B=90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 C B 2. 2.斜三角形中各元素间的关系: a 如图6-29 ,在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。 (1)三角形内角和:A+B+C=_____ (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 3. 正弦定理: a b c 2R 。(R为外接圆半径)sin A sin B sin C a b c = ==2R的常见变形: sin A sin B sin C (1)sin A∶sin B∶sin C=a∶b∶c; (2) a b == sin A sin B c = sin C a+b+c =2R; sin A+sin B+sin C (3) a=2R sin_ A,b=2R sin_ B,c=2R sin_ C; a b c (4)sin A=,sin B=,sin C=. 2R 2R 2R 4. 三角形面积公式:S=1 2 ab sin C= 1 1 bc sin A=ca sin B. 2 2 5. 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦 的积的两倍。 2 2 2 a b c 2bccos A 2 2 2 b a c 2accosB 2 2 2 c b a 2ba cosC 或 cos A cos B cos C 2 2 2 b c a 2bc 2 2 2 a c b 2ac 2 2 2 b a c 2ab 余弦定理的公式:. 6. (1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.

解三角形中的边角互换导学提纲讲解学习

解三角形中的边角互换导学提纲

精品文档 收集于网络,如有侵权请联系管理员删除 解三角形中的边角互换导学提纲 班级: 姓名: 小组: 评价: 学习目标:1.在三角形中考查三角函数式变换,是近几年高考的热点,它是在新的载体上进行的三角变换,因此要时刻注意它重要性:一是作为三角形问题,它必然要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,及时进行边角转化,有利于发现解决问题的思路;其二,它毕竟是三角形变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”,即“统一角、统一函数、统一结构”,是使问题获得解决的突破口。 2.在解三角形时,要注意正弦定理和余弦定理的本质就是揭示了三角形角与边的 关系,利用正余弦定理可将将角换成边,边换成角。 重点:利用正(余弦)定理实现角边互换。 难点:正(余)弦定理的角边互换的灵活运用。 导学流程: 例1.在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若223a b bc -=,sin 23sin C B =,则A=( ) (A )030 (B )060 (C )0120 (D )0150 【命题立意】考查三角形的有关性质、正弦定理、余弦定理以及分析问题、解决问题的能力。 【思路点拨】根据正、余弦定理将边角互化。 【规范解答】选A ,根据正弦定理及sin 23sin C B =得:23c b =(角换边) 2222222()33cos 2222 b c a c a c c bc A bc bc bc +----====Q ,0000180,30A A <∴=Q 。 【方法技巧】根据所给边角关系,选择使用正弦定理或余弦定理,将三角形的边转化为角。 例2在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且 2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值. 【命题立意】考查了正弦定理,余弦定理,考查了三角函数的恒等变换,三角函数的最值。 【思路点拨】(I )根据正弦定理将已知条件中角的正弦化成边,得到边的关系,再由余弦定 理求角 (II )由(I )知角C =60°-B 代入sinB+sinC 中,看作关于角B 的函数,进而求出最值

三角函数之正余弦定理

教师寄语:天才=1%的灵感+99%的血汗 1 戴氏教育中高考名校冲刺教育中心 【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。谢谢使用!!!】 主管签字:________ §3.6 正弦定理和余弦定理 一、考点、热点回顾 2014会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识.自主学习 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以 变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余 弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并 可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解

正弦定理余弦定理解三角形

第一篇 正弦定理和余弦定理 【知识清单】 一、三角形有关性质 (1)在△ABC 中,A +B +C =π;a +b >c ,a -b b ?sin A >sin B ?A >B ; (2)三角形面积公式:S △ABC =12ah =12ab sin C =1 2ac sin B =1sin 2 bc A ; (3)在三角形中有:sin 2A =sin 2B ?A =B 或2 A B π += ?三角形为等腰或直角三角形; sin(A +B )=sin C ,()cos cos A B C +=-,sin A + B 2=cos C 2 . 定理 正弦定理 余弦定理 内容 2sin sin sin a b c R A B C === 2222sin a b c bc A =+- 2222sin b a c ac B =+- 222 2sin c a b ab C =+- 变形 形式 ①2sin a R A =,2sin b R B =,2sin c R C =; ②sin 2a A R =,sin 2b B R =,sin 2c C R =; ③::c sin :sin :sin a b A B C =; ④sin sin +sin sin a b c a A B C A ++=+. 222cos 2b c a A bc +-=; 222cos 2a c b B ac +-= ; 222cos 2a b c C ab +-= 解决 的问题 ①已知两角和任一边,求另一角和其他两条边. ②已知两边和其中一边的对角,求另一边和其他两角. ①已知三边,求各角; ②已知两边和它们的夹角,求第三 边和其他两个角. 三、解斜三角形的类型 (1)已知两角一边,用正弦定理,有解时,只有一解; (2)已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在ABC ?中, A 为锐角 A 为钝角或直角 图 形 关系式 sin a b A < sin a b A = sin b A a b << a b ≥ a b > 解个数 无解 一解 两解 一解 一解 上表中,为锐角,时,无解;为钝角或直角时,或均无解.

利用正余弦定理解三角形资料

复习课: 解三角形 枣庄十八中 秦真 教学目标 重点:能够运用正弦定理余弦定理并结合三角形有关知识解决与三角形面积,形状有关的问题。 难点:如何选择适当的定理,公式,方法解决有关三角形的综合问题. 能力点:定理公式方法的适当选取,培养学生自主解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:在用正弦定理解三角形问题中会出现判断几解问题中易出现错误 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.正弦定理: 2sin sin sin a b c R A B C ===,其中R 是三角形外接圆半径. 2.余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+- ,2 2 2 2cos c a b ac C =+- , 222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222 cos 2a b c C ab +-= 3.111 sin sin sin 222 ABC S ab C bc A ac B ?= == 4.在三角形中大边对大角,反之亦然. 5.射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+

6.三角形内角的诱导公式 (1)sin()sin A B C +=,cos()cos A B C +=-,tan tan()C A B =+,cos sin 22 c A B +=,sin cos 22 C A B +=,... 在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA ·tanB ·tanC; 7.解三角形常见的四种类型 (1)已知两角A 、B 与一边a ,由A+B+C=180°及 sin sin sin a b c A B C == ,可求出角C ,再求,b c . (2)已知两边,b c 与其夹角A ,由2 2 2 2cos a b c bc A =+-,求出a ,再由余弦定理,求出角B 、C. (3)已知三边,,a b c ,由余弦定理可求出角A 、B 、C. (4)已知两边a 、b 及其中一边的对角A ,由正弦定理 sin sin a b A B = ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由 sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表: 8. 三、【范例导航】 题型(一):正、余弦定理 1正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以 计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角. 例1.在?ABC 中,已知a =c = ,45B =o ,求b 及A ;

高中数学:三角函数与正余弦定理专题

高三文科数学:三角函数与正余弦定理专题 一、选择题: 1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-2 2 B.22 C.3 2 D .1 2.(2013·江西高考)若sin α 2=3 3,则cos α=( ) A .-2 3 B .-1 3 C.1 3 D.2 3 3.已知tan ????α-π 6=3 7,tan ????π 6+β=2 5,则tan(α+β)的值为( ) A.29 41 B.1 29 C.1 41 D .1 4.把y =sin 1 2x 的图像上点的横坐标变为原来的2倍得到y =sin ωx 的图像,则ω的值为( ) A .1 B .4 C.1 4 D .2 5.要得到函数y =cos(2x +1)的图像,只要将函数y =cos 2x 的图像( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移1 2个单位 D .向右平移1 2个单位 6.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 二、填空题: 7.已知角α的终边经过点(3,-1),则sin α=________. 8.已知扇形周长为10,面积是4,求扇形的圆心角为________. 9.函数y =cos ????2x +π 6的单调递增区间为________. 10.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B , 则角C =________.

三、解答题: 11. (2015·山东高考)设2()sin cos cos ()4f x x x x π =-+ (1)求()f x 的单调区间 (2)在锐角ABC ?中,角,,A B C 的对边分别为,,a b c .若()02A f =,1a =, 求ABC ?面积的最大值 12.已知2tan =θ, 求(Ⅰ)θ θθθsin cos sin cos -+;(Ⅱ)θθθθ22cos 2cos .sin sin +-的值.

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

三角形中的边角关系

三角形中的边角关系 一、选择题(每小题3分,共30分) 1、下列长度的各组线段中,能组成三角形的是( ) A .1,1,2 B .3,7,11 C .6,8,9 D .3,3,6 2、下列语句中,不是命题的是( ) A .两点之间线段最短 B .对顶角相等 C .不是对顶角不相等 D .过直线AB 外一点P 作直线AB 的垂线 3、下列命题中,假命题是( ) A .如果|a|=a ,则a ≥0 B .如果 ,那么a=b 或a=-b C .如果ab>0,则a>0,b>0 D .若,则a 是一个负数 4、若△ABC 的三个内角满足关系式∠B +∠C=3∠A ,则这个三角形( ) A .一定有一个内角为45° B .一定有一个内角为60° C .一定是直角三角形 D .一定是钝角三角形 5、三角形的一个外角大于相邻的一个内角,则它是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定 6、下列命题中正确的是( ) A .三角形可分为斜三角形、直角三角形和锐角三角形 B .等腰三角形任一个内角都有可能是钝角或直角 C .三角形外角一定是钝角 D .△ABC 中,如果∠A>∠B>∠C ,那么∠A>60°,∠C<60° 7、若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( ) A .3:2:1 B .5:4:3 C .3:4:5 D .1:2:3 8、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为( ) A .-62 9、如图9,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14 cm 2 图9 图10 10、已知:如图10,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( ) A .10° B .18° C .20° D .30° F E C A

直角三角形的边角关系(含答案)

学生做题前请先回答以下问题 问题1:在Rt△ABC中,∠C=90°,sinA=________,cosA=________,tanA=________. 问题2:在Rt△ABC中,∠C=90°,锐角A越大,正弦sinA______,余弦cosA______,正切tanA______. 问题3:默写特殊角的三角函数值: 问题4:计算一个角的三角函数值,通常把这个角放在____________中研究,常利用_________或__________两种方式进行处理. 直角三角形的边角关系 一、单选题(共14道,每道7分) 1.式子2cos30°-tan45°-的值是( ) A. B.0 C. D.2 答案:B 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 2.如果△ABC中,,则下列说法正确的是( ) A.△ABC是直角三角形 B.△ABC是等腰三角形 C.△ABC是等腰直角三角形 D.△ABC是锐角三角形

答案:A 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 3.已知为锐角,且,那么的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:锐角三角函数的增减性 4.如图,在Rt△ABC中,tanB=,BC=,则AC等于( )

A.3 B.4 C. D.6 答案:A 解题思路: 试题难度:三颗星知识点:解直角三角形 5.在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:锐角三角函数的定义 6.在Rt△ABC中,∠C=90°,若AB=4,,则斜边上的高为( ) A. B. C. D. 答案:B 解题思路:

2019-2020年高三数学一轮复习第四章三角函数解三角形第七节正弦定理和余弦定理夯基提能作业本文

2019-2020年高三数学一轮复习第四章三角函数解三角形第七节正弦定理和余弦定 理夯基提能作业本文 1.在△ABC中,若=,则B的值为( ) A.30° B.45° C.60° D.90° 2.(xx广东,5,5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=且bc.已知·=2,cos B=,b=3.求: (1)a和c的值; (2)cos(B-C)的值.

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理 教学目标 掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式. 教学重难点 掌握正弦定理和余弦定理的推导,并能用它们解三角形. 知识点清单 一. 正弦定理: 1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即a b c2R( 其中R 是三角形外接圆的半 径) sin A sinB sinC 2. 变 形:1) a b c a b c sin sin sinC sin sin sinC 2)化边为 角: a:b:c sin A:sin B: sinC ; a sin A; b sin B a sin A b sinB c sinC c sin C 3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC 4)化角为边:sin A a;sin B b ; sin A a sin B b sinC c sinC c 5)化角为边:sin A a sinB b,sinC c 2R2R2R 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a , 解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A ; 求出 b 与c c sinC ②已知两边和其中—边的对角,求其他两个角及另一边。例:已知边 a,b,A, 解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边 c sinC 4. △ABC中,已知锐角A,边b,则 ① a bsin A 时,B 无解; ② a bsin A 或 a b 时, B 有一个解;

相关主题