搜档网
当前位置:搜档网 › 第一章流体力学基础知识

第一章流体力学基础知识

第一章流体力学基础知识
第一章流体力学基础知识

第一章流体力学基本知识

学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。

§1-1 流体的主要物理性质

1.本节教学内容和要求:

1.1本节教学内容:

流体的4个主要物理性质。

1.2教学要求:

(1)掌握并理解流体的几个主要物理性质

(2)应用流体的几个物理性质解决工程实践中的一些问题。

1.3教学难点和重点:

难点:流体的粘滞性和粘滞力

重点:牛顿运动定律的理解。

2.教学内容和知识要点:

2.1 易流动性

(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。

流体也被认为是只能抵抗压力而不能抵抗拉力。

易流动性为流体区别与固体的特性

2.2密度和重度

(1)基本概念:密度——单位体积的质量,称为流体的密度即:

M

ρ =

V

M——流体的质量,kg ;

V——流体的体积,m3。

常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3

基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。

G

γ =

V

G——流体的重量,N ;

V——流体的体积,m3。

∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3

γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化

液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。

2..3 粘滞性

(1)粘滞性的表象

基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表

现。

为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示

设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。

由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。

平板实验

(2)牛顿内摩擦定律

基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律:

当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

阻抗剪切变形速度的特性。

μ——是比例系数,称为动力粘度,μ越大,流体越粘,流动性越差。单位为Pa..s ν ——运动粘度,m2/s; ν=μ/ρ

液体的粘度随温度升高而减小——分子间的引力即内聚力是形成粘性的主要因素;

气体的粘度是随温度的升高而增大——分子间的热运动而引起的动量交换是形成粘滞性的主要因素。

需要强调的是:牛顿内摩擦定律只适用于牛顿流体和层流运动,牛顿流体是指在温度不变的情况下切应力τ与流速梯度成正比,这时粘滞系数μ为常数。

对于静止液体,液体质点之间没有相对运动,因而也就不存在粘滞性。(3.)理想流体

基本概念:所谓理想流体是指无粘滞性,即μ=0。

例一平板在油面上作水平运动,已知平板的运动速度为40cm./s,有层厚度为5mm,油的动力粘度μ=0.1Pa..s,求作用于平板单位面积上的粘性阻力

2.4 压缩型和膨胀性

(1)液体的压缩性和膨胀性

基本概念:压缩性是流体受压,分子间距离缩小,体积缩小的性质。

液体的压缩性通常用压缩系数来表示

膨胀性当作用于流体上的温度升高,体积膨胀,温度降低体积收缩称为流

体的膨胀性。

液体的膨胀性通常用膨胀系数来表示

液体的压缩性和膨胀性都比较小。如水压强增加一个大气压,体积压缩率约为1/20000,在常温下,温度升高1℃,体积膨胀率约为1.5/100000

(2)气体的压缩性和膨胀性

气体的压缩型和膨胀性比较显著,在常温下符合理想气体状态方程,即P/ρ =R T.。

§1-2 流体静压强及其分布规律

1.本节教学内容和要求:

1.1本节教学内容:

(1)静水压强的两个特性及有关基本概念。

(2)重力作用下静水压强基本公式和物理意义。

(3)静水压强的表示和计算。

1.2 教学要求:

(1)正确理解静水压强的两个重要的特性和等压面的性质。

(2)掌握静水压强基本公式和物理意义,会用基本公式进行静水压强计算。(3)掌握静水压强的单位和三种表示方法:绝对压强、相对压强和真空度;理解位置水头、压强水头和测管水头的物理意义和几何意义。

(4)掌握静水压强的测量方法和计算。

1.3 教学难点和重点:

难点:静水压强的两个特性及有关基本概念。

重力作用下静水压强基本公式和物理意义。

静水压强的表示和计算。

重点:重力作用下静水压强基本公式和物理意义。

2.教学内容和知识要点:

2.1 流体静压强及其特性

(1)基本概念:取静止流体中的隔离体,设作用于隔离体上某一微小面积△w 上的总压力为△P,则△w面上的平均压强为:

p = △P/△w(N/m2)

当所取的面积无限缩小为一点,则平均压强的极限值为

这个极限值称为该点的静压强。

(2)流体静压强的单位是帕(牛/米2),以Pa表示。1Pa=1 N/m2,105 Pa称为1巴(bar).

(3)流体静力学的两个特征:

a..流体静压强必定沿着作用面的内法线方向。

b.任一点的流体静压强只有一个值,它不因作用面的方位改变而改变。

2.2 流体静压强的分布规律

在静止流体中去上表面与流体自由表面相重合的微小柱体,其底面积为△w,高为h,其自由表面的压强p0,则该微小柱体沿垂直方向的受力分别为自由面的压力,重力,下底面的静水压力。侧面的静水压力与轴垂直,在轴向投影为零。此铅直小圆柱体处于静止状态,故其轴向力平衡为:

化简后的:

——静止液体中任一点的压强;

——表面压强;

——液体的容重;

——所研究的点在自由表面下的深度。

此方程式为静水压强的基本方程式,又称静水力学基本方程式。

该方程式的含义:

a.静水压强与水深成正比的直线分布规律;

b.作用于液面上的表面压强是等值地传递到静止液体的每一点上;

c.方程适用于静止气体压强的计算,p=p0.;

d.压强只与深度有关,而与受压面的大小,形状无关

应用静水压强方程式分析问题时,要抓住等压面这个概念。

等压面——流体中压强相等的点组成的面叫等压面。

推论:静止连续的同种液体的水平面是等压面;

静止的互不混杂的两种液体的交界面是等压面。

2.3压强的计量单位与表示方法

(1) 压强的计量单位:

a 从压强的定义出发——单位面积上的力,N/m2

b 大气压强的倍数

1个标准大气压(0度,纬度为45度的海平面上的压强,用atm表示)

1atm=760mm汞柱对底部产生的压强

1atm=1.013*105Pa

1个工程大气压(海拔200m的正常大气压,用at表示)

1at=736nn汞柱对底部产生的压强。

1at=9.8*104Pa

c 用液柱的高度表示——常用水柱高度或汞柱高度表示

(2) 压强的表示方法;

a.绝对压强——以完全真空作为压强的起点叫绝对压强。(p’)

b.相对压强——以当地大气压强pa作为压强起点记的压强叫响度压强p. p=

p’ –pa

以后所指的压强均为相对压强,除非给出特殊说明。

绝对压强永远为正,而相对压强可正可负。

c.真空压强——指流体中某点的绝对压强小于大气压强的部分,而不是指绝对

压强本身(也就是该点点相对压强的绝对值)(pv)

Pv=pa-p’

§1-3 流体运动的基本知识

1、本节教学内容和要求:

1.1本节教学内容:

(1) 液体运动的基本概念,包括流线和迹线,元流和总流,过水断面、流量和断面

平均流速,恒定流和非恒定流,均匀流和非均匀流,渐变流和急变流。(2)恒定总流连续性方程。

(3)恒定总流的能量方程。

1.2 教学要求:

(1)理解液体运动的基本概念,包括流线和迹线,元流和总流,过水断面、流量和断面平均流速,恒定流和非恒定流,均匀流和非均匀流,渐变流和急变流。(2)掌握并会应用恒定总流连续性方程。

(3)掌握并会应用恒定总流的能量方程解决一些工程实践中的问题。

1.3 教学难点和重点:

难点:恒定总流的能量方程。

重点:恒定总流连续性方程,恒定总流的能量方程。

2.教学内容和知识要点:

2.1 流体运动的基本概念:

a. 压力流和无压流

压力流:流体在压差作用下流动,流体整个周围都和固体笔相接触,没有自由表面。

无压流:液体在重力作用下流动时,液体的部分周界与固体壁面相接处,不分界面与大气相接触,形成自由表面。

b. 恒定流域非恒定流

恒定流:流场中液体质点通过空间点时所有的运动要素都不随时间而变化的流动称为恒定流;

非恒定流:反之,只要有一个运动要素随时间而变化,就是非恒定流。非恒定流的流速、压强等运动要素是时间的函数,由于描述液体运动的变量增加,使得水流运动分析更加复杂和困难。虽然自然界的水流绝大部分是非恒定流,但在一定条件下,常将非恒定流简化为恒定流进行讨论。本课程主要讨论恒定流运动。

c. 迹线与流线

迹线:迹线是液体质点运动的轨迹,它是某一个质点不同时刻在空间位置的连线,迹线必定与时间有关。

流线:流线是某一瞬间在流场中画出的一条曲线,这个时刻位于曲线上各点的质点的流速方向与该曲线相切。

对于恒定流,流线的形状不随时间而变化,这时流线与迹线互相重合;对

于非恒定流,流线形状随时间而改变,这时流线与迹线一般不重合。

流线有两个重要的性质,即流线不能相交,也不能转折,否则交点(或转折)

处的质点就有两个流速方向,这与流线的定义相矛盾。也可以说某瞬时通过流场中的任一点只能画一条流线。

流线的形状和疏密反映了某瞬时流场内液体的流速大小和方向,流线密的地方表示流速大,流线疏处表示流速小。

d. 均匀流与非均匀流

均匀流:流线是相互平行的直线的流动称为均匀流。这里要满足两个条件,即流线既要相互平行,又必须是直线,

非均匀流:其中有一个条件不能满足,这个流动就是非均匀流。均匀流的概念也可以表述为液体的流速大小和方向沿空间流程不变。

流动的恒定、非恒定是相对时间而言,均匀、非均匀是相对空间而言;恒定流可是均匀流,也可以是非均匀流,非恒定流也是如此,但是明渠非恒定均匀流是不可能存在的,请注意区分。

均匀流具有下列特征:1)过水断面为平面,且形状和大小沿程不变;2)同一条流线上各点的流速相同,因此各过水断面上平均流速v相等;3)同一过水断面上各点的测压管水头为常数。

e. 元流、总流、过水断面、流量与断面平均流速

元流:元流是横断面积无限小的流束,它的表面是由流线组成的流管。

总流:由无数个元流组成的宏观水流称为总流。

过水断面:与元流或总流的所有流线正交的横断面称为过水断面。过水断面的形状可以是平面(当流线是平行的直线时)或曲面(流线为其它形状)。

流量:单位时间内流过某一过水断面的液体体积称为流量,流量用Q表示,单位为(m3/s)。

引入元流概念的目的有两个:1)、元流的横断面积dA无限小,因此dA面积上各点的运动要素(点流速u和压强p)都可以当作常数;2)、元流作为基本无限小单位,通过积分运算可求得总流的运动要素。元流的流量为dQ=udA,则通过总流过水断面的流量Q为

Q=∫dQ=∫AudA(3—1)

断面平均流速:一般情况下组成总流的各个元流过水断面上的点流速是不相等的,而且有时流速分布很复杂。为了简化问题的讨论,我们引入了断面平均流速v的概念。这是恒定总流分析方法的基础,也称为一元流动分析法,即认为液体的运动要素只是一个空间坐标(流程坐标)的函数。断面平均流速v等于通过总流过水断面的流量Q除以过水断面的面积A,即V=Q/A。

2.2恒定一元流的连续性方程

根据质量守恒定律可以导出没有分叉的不可压缩液体一维恒定总流任意两个过水断面的连续性方程有下列形式。

Q1=Q2或v 1A1= v 2A2

上式说明:任意两个过水断面的平均流速与过水断面的面积成反比。

对于有分叉的恒定总流,连续性方程可以表示为:

∑Q流入=∑Q流出

连续性方程是一个运动学方程,它没有涉及作用力的关系,通常应用连续方程来计算某一已知过水断面的面积和断面平均流速或者已知流速求流量,它是水力学中三个最基本的方程之一。

2.3 恒定总流能量方程式

a. 将恒定元流能量方程沿总流的2个过水断面进行积分,并且引入过水断面处水流是均匀流或者渐变流的条件,就可得到恒定总流的能量方程(称为伯努利方程)

请注意:积分过程中用到均匀流和渐变流条件,表明同一过流断面上各点的测压管水头具有= c的性质;用断面平均流速v替代过水断面上的实际流速,计算单位重量液体具有的动能并不相等,因此就必须引进动能修正系数α,在式(3—4)中,表示过水断面上单位重量液体具有的平均动能,同样hw表示单位重量液体从1断面流到2断面平均的水头损失。

恒定总流能量方程是水力学的三个基本方程之一,是最重要最常用的基本方程,它与连续方程联合求解可以计算断面上的平均流速或平均压强,它们与后面讨论的恒定总流动量方程联解,可以计算水流对边界的作用力,在确定建筑物荷载和水力机械功能转换中十分有用。

b. 恒定总流能量方程的意义

恒定总流能量方程各项的量纲都是长度量,因此可以用比例线段表示位置水头、压强水头、流速水头的大小。各断面的位置水头、测压管水头和总水头端点的连线分别称为位置水头线、测压管水头线和总水头线。

位置水头线与测压管水头线、测压管水头线与总水头线之间的距离分别表示该过水断面上各点的平均压强水头和平均流速水头。所以画出水流的水头线可以清楚地反映沿流程各个断面上位能、压能和动能的变化关系,它在分析有压管道各个断面的压强变化十分重要。

假如水流从1断面流到2断面的平均水头损失为hw,流程长度为l,则将单位长度上的水头损失定义为水力坡度J,它也表示总水头线的斜率:

J是没有单位的纯数,也称为无量纲数。根据水头线表示的能量转换关系,恒定总流能量方程的几何意义可以这样来描述:对于理想液体(hw=0),总水头线是一条水平线;对于实际液体(hw>0),总水头线总是一条下降的曲线或直线,它下降的数值等于两个过水断面之间水流的水头损失。

请注意:测压管水头线不一定是下降的曲线,需要由位能与压能的相互转换情况来确定其形状。对于均匀流,流速水头沿程不变,总水头线与测压管水头是相互平行的直线。

c.. 应用恒定总流能量方程的条件和注意事项

在推导恒定总流能量方程的过程中曾经引入过一些条件,这些条件限制了恒定总流能量方程的使用范围,同时在应用能量方程解决工程实际问题时还必须处理好一些具体事项,现归纳说明如下。

1)恒定总流能量方程的应用条件

a)液体流动必须是恒定流,而且是不可压缩液体(ρ=常数);

b)作用在液体上的质量力只有重力;

c)建立能量方程的两个过水断面都必须位于均匀流或渐变流段,但该两个断面之间的某些流动可以是急变流

d)在推导能量方程的过程中,两个计算断面之间没有流量的汇入或流出。

如果有流量的汇入或分流,也可以建立相应的能量方程式,参见书上第

80页。这时必须强调能量方程的两侧都是单位重量液体具有的能量,但

确定相应的水头损失非常困难。

2)应用恒定总流能量方程需要注意的具体问题

a)为了计算能量方程中的位置水头,必须确定基准面。基准面可以任意选择,但尽可能使所选的基准面能简化能量方程,便于求解。例如所选基

准面使z = 0,这样能量方程项数减少。还必须强调,同一个能量方程

只能选择同一个基准,否则能量方程就不能成立。

b)计算压强水头,既可选择绝对压强也可选用相对压强,但两个断面必须选用一致。实际工程计算中一般采用相对压强更为方便。

c)在过水断面上要选好计算点,便于计算测压管水头

d)选取过水断面除了满足渐变流条件外,还应使所选断面上未知量仅可能少,这样可以简化能量方程的求解过程。

e)求解能量方程必须确定动能修正系数α。α值与断面流速分布有关,流速分布越均匀,α值趋向于1,断面流速分布不同,α值也不同。严格地讲

两个断面上的α1与α2是不相等的,但是实际工程中的动能修正系数大

多在1.05~1.10之间,一般可以取α1=α2=1计算。对于流速分布相当不

均匀的水流(例如层流运动),动能修正系数远大于1。

f)能量方程中水头损失hw是十分重要又非常复杂的一项,不能正确地计算液体流动的hw,能量方程难以解决实际问题。关于hw的讨论和计算也将在第四章专门讨论。

g) 当一个问题中有2~3个未知数的时候,能量方程需要和连续方程、动量

方程组成方程组联合求解。

【思考题】

1. 什么是流线和迹线?什么是过水断面和断面平均流速?为何要引入断面平

均流速?

2.. 应用能量方程判断下列说法是否正确:(1)水一定从高处向低处流动;(2)

水一定从压强大的地方向压强小的地方流动;(3)水总是从流速大的地方向

流速小的地方流动?

§1-4 液流形态及水头损失

1、本节教学内容和要求:

1.1 本节教学内容:

(1)水流阻力和水头损失产生的原因及分类。

(2.)理解雷诺实验现象和液体流动两种流态的特点,掌握层流与紊流的判别方法及雷诺数Re的物理含义。

(3)圆管均匀层流的流速分布,沿程水头损失的计算及沿程水头损失系数的确定。

(4)尼古拉兹实验中沿程水头损失系数λ的变化规律。

(5)局部水头损失产生的原因及计算

1.2 教学要求:

(1)理解雷诺实验现象和液体流动两种流态的特点,掌握层流与紊流的判别方法及雷诺数Re的物理含义。

(2)掌握圆管均匀层流的流速分布,掌握沿程水头损失的计算及沿程水头损失系数的确定。

(3)掌握局部水头损失产生的原因,能正确选择局部水头损失系数进行局部水头损失计算。

1.3 教学难点和重点:

难点:沿程阻力系数的确定。

重点:沿程阻力系数的确定。

2.教学内容和知识要点:

2.1 水流阻力和水头损失的两种形式

水流阻力和水头损失是两个不同而又相关联的重要概念,确定它们的性质、大小和变化规律在工程实践是有十分重要的意义。

(1)基本概念:水流阻力是由于液体的粘滞性作用和固体边界的影响,使液体与固体之间、液体内部有相对运动的各液层之间存在的摩擦阻力的合力,水流阻力必然与水流的运动方向相反。

基本概念:水流在运动过程中克服水流阻力而消耗的能量称为水头损失。其中边界对水流的阻力是产生水头损失的外因,液体的粘滞性是产生水头损失的内因,也是主要原因。

(2)根据边界条件的不同,可以把水头损失分为两类:对于平顺的边界,水头损失与流程成正比,我们称为沿程水头损失,用h f表示;由于局部边界急剧改变,导致水流结构改变、流速分布调整并产生旋涡区,从而引起的水头损失称为局部水头损失,用h j表示。

(3)对于在某个流程上运动的液体,它的总水头损失hw遵循叠加原理即hw=∑hf+∑hj

2.2 液体流动的两种型态和流态的判别

1883年英国科学家雷诺(Reynolds)通过实验发现液体在流动中存在两种内部结构完全不同的流态:层流和紊流。

(1)雷诺试验

当流速较小时,各流层质点互不混杂,这种型态的流动叫层流。当流速较大时,

各流层质点形成涡体互相混掺,这种型态的流动叫做紊

流。

试验结果:液流型态不同,沿程水头损失的规律也不同。

相应于液体运动型态转变时的流速叫做临界流速。雷诺数Re=vd/ν, 上、下临界雷诺数。

液流型态的判别:圆管中液流的

下临界雷诺数是一个比较稳定的数

值,上临界雷诺数是一个不稳定的

数值,因此判别液流型态要以下临

界雷诺数为标准。实际雷诺数大于下临界雷诺数时就是紊流,小于下临界雷诺数时一定是层流。

液体流态的判别是用无量纲数雷诺数Re作为判据的。

对于明渠水流Re

明渠水流临界雷诺数Re k=500,当Re<500为层流,Re>500为紊流。对于圆管水流Re

圆管水流临界雷诺数Re k=2000,当Re<2000为层流,Re>2000为紊流。

2.3沿程水头损失

沿程阻力系数如何确定的问题。

层流情况

紊流情况

2.4 尼古拉兹实验和沿程阻力系数λ的变化规律

尼古拉兹实验是本章又一个重要的内容。通过尼古拉兹实验,我们可以发现沿程阻力系数λ在层流和紊流三个不同流区内的变化规律,并且层流内的λ变化规律与前面理论分析的成果相一致。据此可推论在紊流三个流区内的λ变化规律也是符合实际的,从而为确定λ值,进而计算紊流各流区的沿程水头损失hf提供了可应用的方法。

本节需要注意下列问题:

(1)尼古拉兹是用人工粗糙管进行实验的,其目的是用粒径相同的人工砂

粘贴在管内壁,使原来表面粗糙度Δ不均匀的管道变为Δ值均匀且等于

人工砂粒径d的管道,从而可以通过实验寻找λ与相对光滑度r0/Δ的关系。(2)层流状态时,圆管的与理论公式相一致,说明层流的λ仅是Re的函数,而且水头损失hf与流速v的一次方成正比,与雷诺实验的结果相一致。

(3)液体处于紊流状态时,在紧邻固体边壁处存在厚度为δ0的粘性底层,根据δ0与粗糙度Δ的对比关系分为3个流区。

a)Re较小,δ0 >>Δ,粗糙突起对紊流核心不起作用,这是紊流光滑区,类似于层流,λ只与Re有关而与相对粗糙度△/r0无关。

b)Re较大,δ0 <<Δ,粗糙突起严重影响紊流核心的运动,尼古拉兹实验结果表明,λ与Re无关,只与相对粗糙度Δ/r0有关,这时为紊流粗糙区。紊流粗糙又称为阻力平方区。

c)当Re介于紊流光滑区和粗糙区之间时,尼古拉兹实验表明λ既与Re 有关,也与Δ有关,这就是紊流过渡区。

(4)计算流动液体的沿程阻力系数λ值的步骤:

a)首先计算Re值判别流态,若是层流可直接用理论公式计算λ值。

b)对于紊流,需要确定紊流的流区才能选用相应公式,但λ值不确定又难以确定流区。在实际计算中根据Re值首先假设紊流的流区,选用该流区的公式计算λ值,再检验所设流区的合理性。若所设合理,则计算完成;否则重新假设流区计算

2.5 局部水头损失的计算

局部水头损失产生于边界发生明显改变的地方,其特点为能耗大、能耗集中而且主要为旋涡紊动损失。局部水头损失的计算公式局部水头损失的计算在于正确选择局部水头损失系数ζ。ζ的确定除管道突然扩大可以通过理论推导得到,其他主要通过实验确定。

【思考题】

1.水头损失由哪几部分组成?产生水头损失的原因是什么?

2.什么是层流和紊流?怎样判别水流的流态?试说明无量纲数雷诺数Re

的物理意义。

3.简单叙述尼古拉兹实验所得到的沿程水头损失系数λ的变化规律。

工程流体力学复习知识总结

一、 二、 三、是非题。 1.流体静止或相对静止状态的等压面一定是水平面。(错误) 2.平面无旋流动既存在流函数又存在势函数。(正 确) 3.附面层分离只能发生在增压减速区。 (正确) 4.等温管流摩阻随管长增加而增加,速度和压力都减少。(错误) 5.相对静止状态的等压面一定也是水平面。(错 误) 6.平面流只存在流函数,无旋流动存在势函数。(正 确) 7.流体的静压是指流体的点静压。 (正确) 8.流线和等势线一定正交。 (正确) 9.附面层内的流体流动是粘性有旋流动。(正 确) 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。(正确) 11.相对静止状态的等压面可以是斜面或曲面。(正 确) 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。(正确) 13.壁面静压力的压力中心总是低于受压壁面的形心。(正确) 14.相邻两流线的函数值之差,是此两流线间的单宽流量。(正确) 15.附面层外的流体流动时理想无旋流动。(正 确) 16.处于静止或相对平衡液体的水平面是等压面。(错 误) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。(错误 ) 18流体流动时切应力与流体的粘性有关,与其他无关。(错误) 四、填空题。 1、1mmH2O= 9.807 Pa 2、描述流体运动的方法有欧拉法和拉格朗日法。 3、流体的主要力学模型是指连续介质、无粘性和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时惯性力 与粘性力的对比关系。 5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量 Q为,总阻抗S为。串联后总管路的流量Q 为,总阻抗S为。

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

流体力学基础知识

流体力学基础知识 第一节流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母T表示,单位为kg/m3。流体单位体积内所具有的重量称为重度,重度用表示,单位为N/m?,两者之间的关系为 =「g , g 为重力加速度,通常g = 9. 806m/s2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用」来表示。 所谓运动粘度是指动力粘度」与相应的流体密度「之比,用、来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升咼而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60C时,由于粘滞性下 降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60C下。 第二节液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△卩,当厶F逐渐趋近于零时作用在厶F面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示 某点的实际液体静压力就需要引出点静压力的概念。

流体力学基本概念和基础知识..知识分享

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

第1章流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 连续介质与流体物理量 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022 个水分子,相邻分子间距离约为3×10-8 厘米。因而,从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

工程流体力学知识整理

流体:一种受任何微小剪切力作用,都能产生连续变形的物质。 流动性:当某些分子的能量大到一定程度时,将做相对的移动改变它的平衡位置。 流体介质:取宏观上足够小、微观上足够大的流体微团,从而将流体看成是由空间上连续分布的流体质点所组成的连续介质 压缩性:流体的体积随压力变化的特性称为流体的压缩性。 膨胀性:流体的体积随温度变化的特性称为流体的膨胀性。 粘性:流体内部存在内摩擦力的特性,或者说是流体抵抗变形的特性。 牛顿流体:将遵守牛顿内摩擦定律的流体称为牛顿流体,反之称为非牛顿流体。 理想流体:忽略流体的粘性,将流体当成是完全没有粘性的理想流体。 表面张力:液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。 表面力:大小与表面面积有关而且分布作用在流体微团表面上的力称为表面力。 质量力:所有流体质点受某种力场作用而产生,它的大小与流体的质量成正比。 压强:把流体的内法线应力称作流体压强。 流体静压强:当流体处于静止或相对静止时,流体的压强称为流体静压强。 流体静压强的特性:一、作用方向总是沿其作用面的内法线方向。二、任意一点上的压强与作用方位无关,其值均相等(流体静压强是一个标量)。 绝对压强:以完全真空为基准计量的压强。 相对压强:以当地大气压为基准计量的压强。 真空度:当地大气压-绝对压强 液体的相对平衡:指流体质点之间虽然没有相对运动,但盛装液体的容器却对地面上的固定坐标系有相对运动时的平衡。 压力体:曲面上方的液柱体积。 等压面:在平衡流体中,压力相等的各点所组成的面称为等压面。特性一、在平衡的流体中,过任意一点的等压面,必与该点所受的质量力互相垂直。特性二、当两种互不相混的液体处于平衡时,它们的分界面必为等压面。 流场:充满运动流体的空间称为流场。 定常流动:流场中各空间点上的物理量不随时间变化。 缓变流:当流动边界是直的,且大小形状不变时,流线是平行(或近似平行)的直线的流动状态为缓变流。

流体力学基础知识

第一章,绪论 1、质量力:质量力是作用在流体的每一个质点上的力。其单位是牛顿,N。 单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。其单位是N/kg。 2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。 3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。 4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。其单位为N/(㎡·s),以符号Pa·s表示。 运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。国际单位制单位㎡/s。 动力黏度μ与运动黏度ν的关系:μ=ν·ρ。 5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。 毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。 6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。(P12,还需看看书,了解什么是以上三种模型!)。 第二章、流体静力学 1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。 2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m3;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。两水头中的压强P必须采用相对压强表示。 b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。 3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。 4、压强的两种计算基准:绝对压强和相对压强。 以绝对真空为零点起算的压强,称为绝对压强,以P′表示。 以当地同高程的大气压强Pa为零点起算的压强,称为相对压强,以P表示。 当相对压强为负值时,称为负压。负压的绝对值称为真空度(即真空表读数),以Pv表示。 5、压强的三种质量单位:1atm=101.325KPa=10.33mH2O=760mmHg 1at=1Kgf/cm2=10mH2O=736mm 6、常用的液柱测压计有:测压管、压差管、微压计。 7、求作用于平面的液体压力的2种方法:①解析法:作用在任意位置,任意形状平面上的水静压力值等于受压面面积与其形心点所受水静压强的乘积。②图解法:作用于平面的水静压力数值上等于压强分布图形的体积。这个体积是以压强分布图形面积为底面积乘以矩形宽度b为高所组成。 8、求曲面上水静压力时,一般将其分为水平方向和铅直方向的分力分别进行计

第一章流体力学基础

液压复习参考题 注意:以下题目仅供参考,并非考试题目 一、填空题 1.液压系统中的压力取决于(负载),执行元件的运动速度取决于(流量)。 2.液压传动装置由(动力元件)、(执行元件)、(控制元件)和(辅助元件)四部分组成,其中(动力元件)和(执行元件)为能量转换装置。 3.液体在管道中存在两种流动状态,(层流)时粘性力起主导作用,(紊流)时惯性力起主导作用,液体的流动状态可用(雷诺数)来判断。 4.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损失和(局部压力)损失两部分组成。 5.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。 6.变量泵是指(排量)可以改变的液压泵,常见的变量泵有( 单作用叶片泵)、( 径向柱塞泵)、( 轴向柱塞泵)其中(单作用叶片泵)和(径向柱塞泵)是通过改变转子和定子的偏心距来实现变量,(轴向柱塞泵)是通过改变斜盘倾角来实现变量。 7.液压泵的实际流量比理论流量(小);而液压马达实际流量比理论流量(大)。 8.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为(柱塞与缸体)、(缸体与配油盘)、(滑履与斜盘)。 9.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是(吸油)腔,位于轮齿逐渐进入啮合的一侧是(压油)腔。 10.为了消除齿轮泵的困油现象,通常在两侧盖板上开(卸荷槽),使闭死容积由大变少时与(压油)腔相通,闭死容积由小变大时与(吸油)腔相通。 11.齿轮泵产生泄漏的间隙为(端面)间隙和(径向)间隙,此外还存在(啮合)间隙,其中(端面)泄漏占总泄漏量的80%~85%。 12.双作用叶片泵的定子曲线由两段(大半径圆弧)、两段(小半径圆弧)及四段(过渡曲线)组成,吸、压油窗口位于(过渡曲线)段。 13.调节限压式变量叶片泵的压力调节螺钉,可以改变泵的压力流量特性曲线上(拐点压力)的大小,调节最大流量调节螺钉,可以改变(泵的最大流量)。 14.溢流阀为(进口)压力控制,阀口常(闭),先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为(出口)压力控制,阀口常(开),先导阀弹簧腔的泄漏油必须(单独引回油箱)。 15.调速阀是由(定差减压阀)和节流阀(串联)而成,旁通型调速阀是由(差压式溢流阀)和节流阀(并联)而成。 16.两个液压马达主轴刚性连接在一起组成双速换接回路,两马达串联时,其转速为(高速);两马达并联时,其转速为(低速),而输出转矩(增加)。串联和并联两种情况下回路的输出功率(相同)。 17.在变量泵—变量马达调速回路中,为了在低速时有较大的输出转矩、在高速时能提供较大功率,往往在低速段,先将(马达排量)调至最大,用(变量泵)调速;在高速段,(泵排量)为最大,用(变量马达)调速。 18.顺序动作回路的功用在于使几个执行元件严格按预定顺序动作,按控制方式不同,分为(压力)控制和(行程)控制。同步回路的功用是使相同尺寸的执行元件在运动上同步,同步运动分为(速度)同步和(位置)同步两大类。 19.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。 20.液体流动时,液体中任意点处的压力、流速和密度都不随时间而变化,称为恒定流动。

流体力学基础知识

第一章流体力学基本知识 学习本章的目的与意义:流体力学基础知识就是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容与要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点与重点: 难点:流体的粘滞性与粘滞力 重点:牛顿运动定律的理解。 2.教学内容与知识要点: 2、1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动 性。 流体也被认为就是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度与重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ = V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13、6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ = V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9、8×103kg/ m3 γ水银=133、28×103kg/ m3 密度与重度随外界压强与温度的变化而变化 液体的密度随压强与温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2、、3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体阻抗

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

第一章-流体力学基础习题

~ 第一章 流体力学 【1-1】 椰子油流过一内径为20mm 的水平管道,其上装有一收缩管,将管径逐渐收缩至 12mm ,如果从未收缩管段和收缩至最小处之间测得的压力差为800Pa ,试求椰子油的流量。 【1-2】 牛奶以2×10-3m 3/s 的流量流过内径等于27mm 的不锈钢管,牛奶的粘度为×10-, 密度为1030kg/m 3,试确定管内流动是层流还是紊流。 【1-3】 用泵输送大豆油,流量为×10-4m 3/s ,管道内径为10mm ,已知大豆油的粘度为40 ×10-,密度为940kg/m 3。试求从管道一端至相距27m 的另一端之间的压力降。 】 【1-7】某离心泵安装在高于井内水面 5.5m 的地面上,吸水量为40m 3/h 。吸水管尺寸为 4114?φmm ,包括管路入口阻力的吸水管路上的总能量损失为kg 。试求泵入口处的真空度。(当地大气压为×105Pa ) 【1-9】每小时将10m 3常温的水用泵从开口贮槽送至开口高位槽。管路直径为357?φmm , 全系统直管长度为100m ,其上装有一个全开闸阀、一个全开截止阀、三个标准弯头、两个阻力可以不计的活接头。两槽液面恒定,其间垂直距离为20m 。取管壁粗糙度为0.25mm 、水的密度为1000kg/m 3、粘度为1×10-。试求泵的效率为70%时的轴功率。 【1-10】用泵将开口贮槽内密度为1060kg/m 3、粘度为×10-的溶液在稳定流动状态下送到蒸 发器内,蒸发空间真空表读数为40kPa 。溶液输送量为18m 3/h 。进蒸发器水平管中心线高于贮槽液面20m ,管路直径357?φmm ,不包括管路进、出口的能量损失,直管和管件当量长度之和为50m 。取管壁粗糙度为0.02mm 。试求泵的轴功率(泵的效率为65%)。 【1-13】拟用一台3B57型离心泵以60m 3/h 的流量输送常温的清水,已查得在此流量下的允 许吸上真空H s =5.6m ,已知吸入管内径为75mm ,吸入管段的压头损失估计为0.5m 。试求: 1) ; 2) 若泵的安装高度为5.0m ,该泵能否正常工作该地区大气压为×104Pa ; 3) 若该泵在海拔高度1000m 的地区输送40℃的清水,允许的几何安装高度为若干米当地大气压为×104Pa 。

流体力学第一章答案

第一章习题简答 1-3 为防止水温升高时,体积膨胀将水管胀裂,通常在水暖系统顶部设有膨胀水箱,若系统内水的总体积为10m 3,加温前后温差为50°С,在其温度范围内水的体积膨胀系数αv =0.0005/℃。求膨胀水箱的最小容积V min 。 锅炉 散热器 题1-3图 解:由液体的热胀系数公式dT dV V 1V = α , 据题意, αv =0.0005/℃,V=10m 3,dT=50°С 故膨胀水箱的最小容积 325.050100005.0m VdT dV V =??==α 1-4 压缩机压缩空气,绝对压强从4 108067.9?Pa 升高到5 108840.5?Pa ,温度从20℃升高到78℃,问空气体积减少了多少? 解:将空气近似作为理想气体来研究,则由 RT P =ρ 得出 RT P = ρ 故 () 34 111/166.120273287108067.9m kg RT P =+??==ρ () % 80841 .5166.1841.5/841.578273287108840.52121 211213 5 222=-=-=-=-=?=+??==ρρρρρρρm m m V V V V m kg RT P 1-5 如图,在相距δ=40mm 的两平行平板间充满动力粘度μ=0.7Pa·s 的液体,液体中 有一长为a =60mm 的薄平板以u =15m/s 的速度水平向右移动。假定平板运动引起液体流

动的速度分布是线性分布。当h=10mm时,求薄平板单位宽度上受到的阻力。 解:平板受到上下两侧黏滞切力T1和T2作用,由 dy du A Tμ =可得 12 U1515 T T T A A0.70.0684 0.040.010.01 U N h h μμ δ ?? =+=+=??+= ? -- ?? (方向与u相 反) 1-6 两平行平板相距0.5mm,其间充满流体,下板固定,上板在2 N/m2的力作用下以0.25m/s匀速移动,求该流体的动力黏度μ。 解:由于两平板间相距很小,且上平板移动速度不大,则可认为平板间每层流体的速 度分布是直线分布,则 σ μ μ u A dy du A T= =,得流体的动力黏度为 s Pa u A T u A T ? ? = ? ? = ? = =- - 4 3 10 4 25 .0 10 5.0 2 σ σ μ 1-7 温度为20°С的空气,在直径为2.5cm的管中流动,距管壁上1mm处的空气速度为3cm/s。求作用于单位长度管壁上的黏滞切力为多少? 解:温度为20°С的空气的黏度为18.3×10-6 Pa·s 如图建立坐标系,且设u=ay2+c 由题意可得方程组 ?? ? ? ? + - = + = c a c a 2 2 ) 001 .0 0125 .0( 03 .0 0125 .0 解得a= -1250,c=0.195 则u=-1250y2+0.195

生活中的流体力学知识研究报告

工程流体力学三级项目报告multinuclear program design Experiment Report 项目名称: 班级: 姓名: 指导教师: 日期:

摘要 简要介绍了流体力学在生活中的应用,涉及到体育,工业,生活小窍门等。讨论了一些流体力学原理。许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。 关键字:伯努利定律;层流;湍流;空气阻力;雷诺数;高尔夫球

前言 也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

一、麻脸的高尔夫球(用雷诺数定量解释) 不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球 图1-1光滑面1-2粗糙面 反而打的更远。原来是临界Re数不同的结果。光滑的球由于这种边界层分离得早,形成的前后压差阻力就很大,所以高尔夫球在由皮革改用塑胶后飞行距离便大大缩短了,因此人们不得不把高尔夫球做成麻脸的,即表面布满了圆形的小坑。麻脸的高尔夫球有小坑,飞行时小坑附近产生了一些小漩涡,由于这些小漩涡的吸力,高尔夫球附近的流体分子被漩涡吸引,

流体力学基础知识

流体力学基础知识 第一节 流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母ρ表示,单位为kg/m 3。流体单位体积内所具有的重量称为重度,重度用γ表示,单位为N/m 3,两者之间的关系为g ργ=,g 为重力加速度,通常g =9.806m/s 2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用μ来表示。 所谓运动粘度是指动力粘度μ与相应的流体密度ρ之比,用ν来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升高而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60℃时,由于粘滞性下降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60℃下。 第二节 液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa 。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△F ,当△F 逐渐趋近于零时作用在△F 面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示

工程流体力学学习心得

工程流体力学学习心得 工程流体力学对于过程装备与控制工程专业的我来说,属于专业必备课程,对专业后续的无论是就业还是研究生学习研究都是必备的知识。 工程流体力学介绍了工业生产中的基本流体特性、流体流动的基本特性以及流体在储运设备以及管道中储存和流动时流体对储运设备的影响等相关知识。对于自己的专业来讲,工程流体力学对以后自己在选择设计承压储运工程流体设备的工作中,为不同流体对不同形式的承压储运设备的力学及性能影响提供理论依据,从而使工作顺利进行下去。 对于本门课程主要的知识点归结如下: 1、柏努力方程 2、流体流动时的动量守恒方程 3、连续性方程 4、流体流动时的动量矩守恒方程 5、流体管程流动阻力计算 6、流体局部流动阻力计算 另一个自己感觉重要的知识便是获得上述各方程前期的假设性,在假设的基础上,由最简单形式开始展开对公式的推导以及验证。 事务研究的基础任务,例如假设性条件和忽略性因素,才是研究取得成功的根本,因此,要探究事物的根本,就应该努力培养如何提出假设的这种能力,培养先创性及大胆实践探求的精神。同时,作为工科专业,又应该具有工程概念,工程概念中的一个很大特点就是“人各异性”。同一个工程建设中,很可能有多种施工方案,并且每一种方案都会有自己的特点及优势,而且也并不存在真正绝对的答案供自己选择。因此,在培养先创性及大胆实践探求的精神同时,一定不要钻死牛角尖,同时要根据实际情况选择自己的设计方案。 在学习这门课程中,有些基础知识掌握的不是很到位,并且,在自己感觉相对简单的知识点方面,本以为自己已经掌握了,但是,当真正拿到手亲身做的时候,就会发现很多问题,因此,在今后的学习及生活中,也要克服自以为是的坏毛病,亲身实践去获取所需。 对这个学期的课程来讲,我并没有因考察考试的区分来看待所学的各门课程,而是对照自己的毕业从业计划有目的的投入到学习中,这虽是一门考查课,但是在以后的工作中,这门课程将会给予我实际的操作应用。 一门课程的结束都会教会我很多专业必备的知识技能,这也将会是我今后学习以及工作的宝贵财富。

浙大工程流体力学试卷及答案知识分享

浙大工程流体力学试 卷及答案

2002-2003学年工程流体力学期末试卷 一、单选题(每小题2分,共20分) 1、一密闭容器内下部为水,上部为空气,液面 下4.2米处的测压管高度为2.2m,设当地压强 为98KPa,则容器内液面的绝对压强为水 柱。 (a) 2m (b)1m (c) 8m (d)-2m 2、断面平均流速υ与断面上每一点的实际流速u 的关系是。 (a)υ =u (b)υ >u (c)υ

的流量。 (a)等于 (b)大于 (c)小于 (d) 不能判定 8、圆管流中判别液流流态的下临界雷诺数为。 (a) 2300 (b)3300 (c)13000 (d) 575 9、已知流速势函数,求点(1,2)的速度分量为。 (a) 2 (b) 3 (c) -3 (d) 以上都不是 10、按与之比可将堰分为三种类型:薄壁堰、实用堰、宽顶堰 (a)堰厚堰前水头 (b) 堰厚堰顶水头 (c) 堰高堰前水头 (d) 堰高堰顶水头 二、简答题(共24分) 1.静水压强的特性(6分) 2.渐变流的定义及水力特性(6分) 3.边界层的定义及边界层中的压强特性(6分) 4.渗流模型简化的原则及条件(6分) 三、计算题(共56分) 1、(本小题14分) 有一圆滚门,长度L=10m,直径D=4m,上游水深H1=4m,下游水深H2=2m,求作用在圆滚门上的水平和铅直分压力。 题1图题2图 2、(本小题12分) 设导叶将水平射流作的转弯后仍水平射出,如图所示。若已知最大可能的支撑力为F,射流直径为d,流体密度为 ,能量损失不计,试求最大射流速度V1。

工程流体力学复习知识总结

是非题。 1. 流体静止或相对静止状态的等压面一定是水平面。(错误) 2. 平面无旋流动既存在流函数又存在势函数。(正确) 3. 附面层分离只能发生在增压减速区。(正确) 4. 等温管流摩阻随管长增加而增加,速度和压力都减少。(错误) 5. 相对静止状态的等压面一定也是水平面。(错误) 6. 平面流只存在流函数,无旋流动存在势函数。(正确) 7. 流体的静压是指流体的点静压。(正确) 8. 流线和等势线一定正交。(正确) 9. 附面层内的流体流动是粘性有旋流动。(正确) 10. 亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。(正确) 11. 相对静止状态的等压面可以是斜面或曲面。(正确) 12. 超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。(正确) 13. 壁面静压力的压力中心总是低于受压壁面的形心。(正确) 14. 相邻两流线的函数值之差,是此两流线间的单宽流量。(正确) 15. 附面层外的流体流动时理想无旋流动。(正确) 16. 处于静止或相对平衡液体的水平面是等压面。(错误) 17. 流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。(错误) 18流体流动时切应力与流体的粘性有关,与其他无关。(错误)二填空题。 1、1mmH 2。= 9.807 ______ Pa

2、描述流体运动的方法有欧拉法___________ 和 __________ 。 3、流体的主要力学模型是指连续介质、无粘性 _____________ 和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时惯性力 与粘性力的对比关系。 5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量Q 为__________ ,总阻抗S为__________ 。串联后总管路的流量Q为_____________ ,总阻抗S为_________ 。 6、流体紊流运动的特征是脉动现像_________ ,处理方法是时均法_________ 。 7、流体在管道中流动时,流动阻力包括沿程阻力________ 和 ________ 。 8、流体微团的基本运动形式有:平移运动__________ 、旋转流动 ___________ 和_变 形运动_________ 。 9、马赫数气体动力学中一个重要的无因次数,他反映了惯性力 ___________ 与弹性力 ____________ 的相对比值。 10、稳定流动的流线与迹线重合___________ 。 2 11、理想流体伯努力方程z p—常数中,其中z p称为 ___________ 水 r 2g r 头。 12、一切平面流动的流场,无论是有旋流动或是无旋流动都存在流线_________ ,因而 一切平面流动都存在流函数,但是,只有无旋流动才存在______ 。 13、雷诺数之所以能判别邈态___________ ,是因为它反映了惯性力___________ 和粘性力的对比关系。 14、流体的主要力学性质有粘滞性_________ 、惯性___________ 、重力性_________ 、表面张力性_______ 和 __________ 。

流体力学基本概念和基础知识

流体力学基本概念和基础知识

————————————————————————————————作者:————————————————————————————————日期: ?

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体)? 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流体质

相关主题