搜档网
当前位置:搜档网 › 荧光分析法基本概念(20210127011514)

荧光分析法基本概念(20210127011514)

荧光分析法基本概念(20210127011514)
荧光分析法基本概念(20210127011514)

紫外可见吸收光谱

一紫外吸收光谱分析

基于物质对200-80Onm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。

二紫外光谱的产生

物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化

学键的性质上考虑,与电子光谱有关的主要是三种电子:(1)形成单键的°电子;(2)形成双键的n电子;(3)分子中非键电子即n 电子。

化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是:

(c)v(n)v(n)V(n * )V (厂)°, n是成键轨道,n是非键轨道,° * , n *是反键轨道

由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。

二紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。

横坐标表示吸收光的波长,用nm (纳米)为单位。

纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、(吸收系数)中的任何一个来表示。

吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标

为该吸收峰的位置,纵坐标为它的吸收强度。

入/nm

翠胺的紫外光谱图

四、紫外光谱中常用的几个术语

1. 发色基团和助色基团

发色基团:是能导致化合物在紫外及可见光区产生吸收的基团,不论是否显示颜色都称为发色基团。一般不饱和的基团都是发色基团(C=C C=O N=N、三键、苯环等)

助色基团:指那些本身不会使化合物分子产生颜色或者在紫外

及可见光区不产生吸收的一些基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时使吸收强度增加。助色基

团通常是由含有孤对电子的元素所组成( -NH2 , -NR 2 , -OH ,

-OR , -Cl等),这些基团借助P- n共轭使发色基团增加共轭程度,从而使电子跃迁的能量下降。

2. 红移、蓝移、增色效应和减色效应

由于有机化合物分子中引入了助色基团或其他发色基团而产生结构的改变、或者由于溶剂的影响使其紫外吸收带的最大吸收波长向长波方向移动的现象称为红移。与此相反,如果吸收带的最大吸收波长向短波方向移动,则称为蓝移。

由于化合物分子结构中引入取代基或受溶剂的影响,使吸收带

的强度即摩尔吸光系数增大或减少的现象称为增色效应或减色效应、

分子荧光分析法

一、荧光的产生

物质分子的能级包括一系列电子能级、振动能级和转动能级。分子吸收能量后,从基态最低振动能级跃迁到第一电子激发态或更高电子激发态的不同振动能级(这一过程速度很快,大约10-15 s ),成为激发

单重态分子。激发态分子不稳定,可以通过以下几种途径释放能量返

上。由于这一部分能量以热的形式释放,而不是以光辐射形式发出,

故振动驰豫属于无辐射跃迁。

2. 内转换

即激发态分子将多余的能量转变为热能,从较高电子能级降至较

低的电子能级。内转换也属于无辐射跃迁

3. 系间窜跃

有些物质的激发态分子通过振动驰豫和内转换下降到第一电子

激发态的最低振动能级后,有可能经过另一个无辐射跃迁转移至激发三重态,这一过程伴随着自旋方向的改变,称为系间窜跃。对于大多数物质,系间窜跃是禁阻的。如果分子中有重原子(如I、Br等)存在,由于自旋-轨道的强偶合作用,电子自旋方向可以改变,系间窜跃就变得容易了

4. 磷光

经系间窜跃的分子再通过振动驰豫降至激发三重态的最低振动能级,停留一段时间(10-4?10s,称作磷光寿命),然后以光辐射形式放出能量返回到基态各振动能级,这时发出的光称为磷光

(phosphoresce nee)。由于激发三重态能量比激发单重态最低振动能级

能量低,故磷光辐射的能量比荧光更小,即磷光的波长比荧光更长

5

、|/

.荧光

较高激发态分子经无辐射跃迁降至第一电子激发单重态的最低振动能级后,仍不稳定,停留较短时间后(约10-8 s,称作荧光寿命),以光辐射形式放出能量,回到基态各振动能级,这时所发射的光称为

荧光。当然也可以无辐射跃迁形式返回基态二、激发光谱和荧光光谱

荧光检测光源发出的紫外可见光通过激发单色器分出不同波长的激发光,照射到样品溶液上,激发样品产生荧光。样品发出的荧光为宽带光谱,需通过发射单色器分光后再进入检测器,检测不同发射波长下的荧光强度F。由于激发光不可能完全被吸收,可透过溶液,为了防止透射光对荧光测定的干扰,常在与激发光垂直的方向检测荧光(因荧光是向各个方向发射的)。

激发光谱与荧光发射光谱的形成任何荧光物质,都具有两种特征光谱,即激发光谱(excitation spectrum)和荧光发射光谱(fluorescence emission spectrum)。

1. 激发光谱

保持荧光发射波长不变(即固定发射单色器),依次改变激发光波长(即调节激发单色器),测定不同波长的激发光激发下得到的荧光强度F (即激发光波长扫描)。然后以激发光波长为横坐标,以荧光强度F为纵坐标作图,就可得到该荧光物质的激发光谱。

激发光谱上荧光强度最大值所对应的波长就是最大激发波长,是激发荧光最灵敏的波长。物质的激发光谱与它的吸收光谱相似,所不同的是纵坐标。

2. 荧光光谱

荧光光谱,又称发射光谱。保持激发光波长不变(即固定激发单色

器),依次改变荧光发射波长,测定样品在不同波长处发射的荧光强度F。以发射波长为横坐标,以荧光强度F为纵坐标作图,得到荧光发射光谱。荧光发射光谱上荧光强度最大值所对应的波长就是最大发射波长发射光谱与激发光谱的关系

1. 发射光谱形状与激发光波长无关由于荧光是分子从第一电子激发态的最低振动能级返回到基态的各振动能级时释放的光辐射,与分子被激发至哪一个电子激发态无关。

2. 发射光谱比激发光谱波长为长

由于分子吸收激发光被激发至较高激发态后,先经无辐射跃迁(振动驰豫、内转换)损失掉一部分能量,到达第一电子激发态的最低振动能级,再由此发出荧光。因此,荧光发射能量比激发光能量低,发射光谱波长比激发光波长长。

3. 镜像对称

对于高度对称的有机分子,其荧光发射光谱与吸收光谱呈镜像对称关系。解释:能级结构相似性荧光为第一电子激发单重态的最低振动能级跃迁到基态的各个振动能级而形成,即其形状与基态振动能级分布有关。

激发光谱是由基态最低振动能级跃迁到第一电子激发单重态的各个振动能级而形成,即其形状与第一电子激发单重态的振动能级分布有关。由于激发态和基态的振动能级分布具有相似性,因而呈镜像

对称三、影响荧光产生及荧光强度的因素

1. 物质产生荧光的必要条件一种物质能否发荧光以及荧光强度的高低,与它的分子结构及所处的环境密切相关。能够发射荧光的物质都应同时具备两个条

件:

1. 物质分子必须有强的紫外吸收(有?*跃迁);

2. 物质具有较高的荧光效率(fluorescence efficiency )。荧光效率也称荧光量子产率,用f 表示。

可见,凡是使k F 增加,使其它去活化常数降低的因素均可增加荧光量子产率。通常,k F 由分子结构决定(内因),而其它参数则由化学环境和结构共同决定。

2. 影响荧光及其强度的因素

跃迁类型:如上所述,物质必须在紫外可见区有强吸收和高荧光效率才能产生荧光。具有—* 跃迁的分子才有强吸收。—* 跃迁的大。

共轭效应:大多数能产生荧光的物质都含有芳香环或杂环,具有共轭的?* 跃迁。其共轭程度愈大,荧光效率也愈大,且最大激发和发射波长都向长波长方向移动,如苯、萘、蒽三种物质。

刚性平面结构:当荧光分子共轭程度相同时,分子的刚性和共平面性越大,荧光效率越大。

荧光物质(荧光素)非荧光物质(酚酞)

芴(①=1.0 )联苯(①=0.2 )

有些物质本身不发荧光或荧光较弱,但和金属离子形成配合物后,如

免疫荧光操作步骤及注意事项

免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。它是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光基团,再用这种荧光抗体(或抗原)作为探针检查细胞或组织内的相应抗原(或抗体)。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。 紫外光激发荧光物质放射荧光示意图 免疫荧光实验的主要步骤包括细胞片制备、固定及通透(或称为透化)、封闭、抗体孵育及荧光检测等。细胞片制备(通俗的说法是细胞爬片)是免疫荧光实验的第一步,细胞片的质量对实验的成败至关重要,原因很简单,如果发生细胞掉片,一切都无从谈起。这一步关键的是玻片(Slides or Coverslips)的处理以及细胞的活力,有人根据成功经验总结出许多有益的细节或小窍门,非常值得借鉴。固定和通透步骤最重要的是根据所研究抗原的性质选择适当的固定方法,合适的固定剂和固定程序对于获得好的实验结果是非常重要的。免疫荧光中的封闭和抗体孵育与其它方法(如ELISA或Western Blot)中的相同步骤是类似的,最重要的区别在于免疫荧光实验中要用到荧光抗体,因此必须谨记避光操作,此外抗体浓度的选择可能更加关键。最后需要注意的是,标记好荧光的细胞片应尽早观察,或者用封片剂封片后在4℃或-20℃避光保存,以免因标记蛋白解离或荧光减弱而影响实验结果。 由于操作步骤比较多,同时在分析结果时无法像WB那样可以根据分子量的大小区分非特异性识别,所以要得到一个完美的免疫荧光实验结果,除了需要高质量的抗体,以及对实验条件进行反复优化外,还必须设立严谨的实验对照。总之,免疫荧光实验从细胞样品处理、固定、封闭、抗体孵育到最后的封片及观察拍照,每步都非常关键,需要严格控制实验流程中每个步骤的质量,才能最终达到你的实验目的。 基本实验步骤:

荧光分析法基本概念

紫外可见吸收光谱一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。 紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征) 。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱 分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子: (1)形成单键的c电子;(2)形成双键的n电子;(3) 分子中非键电子即n电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是: (c)v(n)v( n) v(n * )v( c * ) c,冗是成键轨道,n是非键轨道, c* , n *是反键轨道 由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含 有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。

紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的 横坐标表示吸收光的波长,用nm (纳米)为单位。 纵坐标表示吸收光的吸收强度,可以用 A (吸光度)、T (透射比或透光率或透过率)、 1-T (吸收率)、?(吸收系数)中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置, 纵坐标为它的吸收强度。 250 A /nm 翠腔的紫外光谨图 四、紫外光 谱中常用的几个术语 1. 发色基团和助色基团 发色基团:是能导致化合物在紫外及可见光区产 生吸收的基团,不论是否显示颜色 都称为发色基团。一般不饱和的基团都是发色基团( C=C C=O N=N 、三键、苯环等) 200 300

荧光分析法练习题82675

第十二章荧光分析法(药学) 一、A型题 1.若需测定生物试样中的微量氨基酸应选用下述哪种分析方法()。 A、荧光光度法 B、磷光光度法 C、化学发光法 D、X荧光光谱法 E、原子荧光光谱法 答案:A 2.分子荧光分析比紫外-可见分光光度法选择性高的原因是()。 A、分子荧光光谱为线状光谱,而分子吸收光谱为带状光谱 B、能发射荧光的物质比较少 C、荧光波长比相应的吸收波长稍长 D、荧光光度计有两个单色器,可以更好地消除组分间的相互干扰 E、分子荧光分析线性范围更宽 答案:B 3荧光量子效率是指()。 A、荧光强度与吸收光强度之比 B、发射荧光的量子数与吸收激发光的量子数之比 C、发射荧光的分子数与物质的总分子数之比 D、激发态的分子数与基态的分子数之比 E、物质的总分子数与吸收激发光的分子数之比 答案:B 4.激发光波长和强度固定后,荧光强度与荧光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱

C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:C 5.荧光波长固定后,荧光强度与激发光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱 C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:B 6.一种物质能否发出荧光主要取决于()。 A、分子结构 B、激发光的波长 C、温度 D、溶剂的极性 E、激发光的强度 答案:A 7.下列结构中荧光效率最高的物质是()。 A、苯酚 B、苯 C、硝基苯 D、苯甲酸 E、碘苯 答案:A

8.下列因素会导致荧光效率下降的有()。 A、激发光强度下降 B、溶剂极性变小 C、温度下降 D、溶剂中含有卤素离子 E、激发光强度增大 答案:D 9.为使荧光强度和荧光物质溶液的浓度成正比,必须使()。 A、激发光足够强 B、吸光系数足够大 C、试液浓度足够稀 D、仪器灵敏度足够高 E、仪器选择性足够好 答案:C 10.在测定物质的荧光强度时,荧光标准溶液的作用是()。 A、用做调整仪器的零点 B、用做参比溶液 C、用做定量标准 D、用做荧光测定的标度 E、以上都不是 答案:D 11.荧光分光光度计与分光光度计的主要区别在于()。 A、光源 B、光路 C、单色器 D、检测器

免疫荧光操作步骤及注意事项

免疫荧光操作步骤及注意事项 免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。它是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光基团,再用这种荧光抗体(或抗原)作为探针检查细胞或组织内的相应抗原(或抗体)。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。 紫外光激发荧光物质放射荧光示意图 免疫荧光实验的主要步骤包括细胞片制备、固定及通透(或称为透化)、封闭、抗体孵育及荧光检测等。细胞片制备(通俗的说法是细胞爬片)是免疫荧光实验的第一步,细胞片的质量对实验的成败至关重要,原因很简单,如果发生细胞掉片,一切都无从谈起。这一步关键的是玻片(Slides or Coverslips)的处理以及细胞的活力,有人根据成功经验总结出许多有益的细节或小窍门,非常值得借鉴。固定和通透步骤最重要的是根据所研究抗原的性质选择适当的固定方法,合适的固定剂和固定程序对于获得好的实验结果是非常重要的。免疫荧光中的封闭和抗体孵育与其它方法(如ELISA或Western Blot)中的相同步骤是类似的,最重要的区别在于免疫荧光实验中要用到荧光抗体,因此必须谨记避光操作,此外抗体浓度的选择可能更加关键。最后需要注意的是,标记好荧光的细胞片应尽早观察,或者用封片剂封片后在4?或-20?避光保存,以免因标记蛋白解离或荧光减弱而影响实验结果。

由于操作步骤比较多,同时在分析结果时无法像WB那样可以根据分子量的大小区分非特异性识别,所以要得到一个完美的免疫荧光实验结果,除了需要高质量的抗体,以及对实验条件进行反复优化外,还必须设立严谨的实验对照。总之,免疫荧光实验从细胞样品处理、固定、封闭、抗体孵育到最后的封片及观察拍照,每步都非常关键,需要严格控制实验流程中每个步骤的质量,才能最终达到你的实验目的。 基本实验步骤: (1) 细胞准备。对单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片,PBS洗两次;对悬浮生长细胞,取对数生长细胞,用PBS离心洗涤(1000rpm,5min)2次,用细胞离心甩片机制备细胞片或直接制备细胞涂片。 (2) 固定。根据需要选择适当的固定剂固定细胞。固定完毕后的细胞可置于含叠氮纳的PBS中4?保存3个月。PBS洗涤3×5 min. (3) 通透。使用交联剂(如多聚甲醛)固定后的细胞,一般需要在加入抗体孵育前,对细胞进行通透处理,以保证抗体能够到达抗原部位。选择通透剂应充分考虑抗原蛋白的性质。通透的时间一般在5-15min.通透后用PBS洗涤3×5 min. (4) 封闭。使用封闭液对细胞进行封闭,时间一般为30min. (5) 一抗结合。室温孵育1h或者4?过夜。PBST漂洗3次,每次冲洗5min. (6) 二抗结合。间接免疫荧光需要使用二抗。室温避光孵育1h.PBST漂洗3次,每次冲洗5min后,再用蒸馏水漂洗一次。 (7) 封片及检测。滴加封片剂一滴,封片,荧光显微镜检查。 (一)细胞准备 用于免疫荧光实验的细胞可以是直接生长在盖玻片上的贴壁细胞,也可以是经过离心后涂片的悬浮细胞或者是将取自体内的组织细胞悬液离心后涂片。贴壁良好

分子荧光分析法基本原理

分子荧光分析法基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即 ?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比“单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的 10-6~10-7。 (二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的最低振动能级,这一过程称为振动弛豫。

第十一章荧光分析法复习过程

第十一章 荧光分析法 、选择题 1.荧光分析法是通过测定 ( ) 而达到对物质的定性或定量分析。 A 、激发光 D 、散射光 2.下面 ( )分析方法不属于分子发射光谱法。 3.荧光发射光谱含有 ( )个发射带。 A 、 1 B 、 2 C 、 3 4.下列关于荧光光谱的叙述错误的是( ) A 、 荧光光谱的形状与激发光的波长无关 B 、 荧光光谱与激发光谱一般是对称镜像 C 、 荧光光谱属于分子的受激发射光谱 D 、 荧光激发射光谱与紫外吸收光谱重合 5.下列叙述错误的是( ) A 、 荧光光谱的最长波长和激发光谱的最长波长相对应 B 、 荧光光谱的最短波长和激发光谱的最长波长相对应 C 、 荧光光谱的形状与激发光波长无关 D 、 荧光波长大于激发光波长 6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激 发三重态, 再经振动弛豫降至三重态的最低振动能级, 然后发出光辐射跃迁至基态的各个振 动能级,这种光辐射称为 ( )。 A 、分子荧光 B 、分子磷光 C 、瑞利散射光 D 、拉曼散射光 7.关于振动弛豫,下列叙述中错误的是 ( )。 A 、振动弛豫只能在同一电子能级内进行 B 、振动弛豫属于无辐射跃迁 C 、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动 能级 D 、振动弛豫是产生 Stokes 位移的原因之一 8.荧光寿命指的是 ( )。 A 、 从激发光开始照射到发射荧光的时间 B 、 受激分子从第一电子激发态的最低振动能级返回到基态所需的时间 C 、 从除去激发光光源至分子的荧光熄灭所需的时间 D 、 除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的 1/e 所需的时间 9.关于荧光效率,下面叙述不正确的是( ) A 、 具有长共轭的 n~ ;跃迁的物质具有较大的荧光效率 B 、 分子的刚性和共平面性越大,荧光效率越大 C 、 顺式异构体的荧光效率大于反式异构体 学习资料 D 、共轭体系上的取代基不同,对荧光效率的影响不同 10.采用下列 ( )措施可使物质的荧光效率提高。 学习资料 B 、磷光 C 、发射光 A 、紫外一可见分光光度法 C 、磷光分析法 B 、荧光分析法 D 、化学发光分析法 D 、不一定

免疫荧光方法

(2)实验方法 (1)用PBS浸洗准备好的细胞涂片3次,每次3min。 (2)0.1%的TritonX-100(用PBS配制)处理涂片5-10min。 (3)PBS洗净载玻片上的TritonX-100,加0.1%的牛血清白蛋白BSA溶液(用PBS 配制)孵育固定好的细胞30min。 (4)弃去BSA,滴加0.1%BSA稀释的一抗(1:200),即软骨多糖诱导48hH22细胞免疫的小鼠血清,免疫湿盒中4℃过夜。同时用正常小鼠血清作对照。 (5)用PBS浸洗细胞涂片3次,每次3min,以确保一抗清洗彻底。 (6)避光条件下滴加BSA稀释的荧光标记的山羊抗小鼠IgG二抗(1:200),然后室温、暗室中孵育1.5-2h。 (7)PBS洗净荧光二抗,用荧光显微镜观察。 为了防止由于一抗未洗净带来的假阳性现象,实验中同时设置一组阴性对照,涂片染色操作步骤同上,把一抗换成PBS。 3.4.1.1免疫荧光染色法检测抗原、抗体结合情况将H22鼠肝癌细胞制成细胞涂片,分别以空白组小鼠血清、模型组小鼠血清和免疫组小鼠

血清为一抗,经荧光二抗染色后得到免疫荧光检测结果,并计算各组细胞的阳性表达率,结果如图3-1所示。 (a) (b) (c) (d)*P<0.01vs模型 组,#P<0.01 vs空白组图3-1免疫荧光染色法检测抗体生成 Fig.3-1 Theimmunofluorescent staining for antibody test图3-1中(a)、(b)、 (c)一抗分别为空白组小鼠血清、模型组小鼠血清、免疫成功小鼠血清, (d)为免疫荧光阳性表达率。从图3-1中可以看出,一抗为空白小鼠血清的荧光极弱,一抗为模型组小鼠血清的荧光仍然不强,而一抗为治

仪器分析作业第十二章

2、激发态分子的常见去活化过程有哪几种? 答:振动弛豫内转换系间窜越外转换荧光发射磷光发射 3、何谓荧光的激发光谱和发射光谱?它们之间有什么关系?答:固定荧光的发射波长,不断改变激发光波长,以所测得的该发射波长下的荧光强度对激发光波长作图,即得到荧光化合物的激发光谱。 使激发光的强度和波长固定不变,测定不同发射波长下的荧光强度,即得到发射光谱。 任何荧光(磷光)物质都具有激发光谱和发射光谱这两种特征光谱。 4、何谓荧光效率?荧光定量分析的基本依据是什么? 答:物质发出荧光量子数和吸收激发光量子数的比值称为荧光效率。依据:溶液的荧光强度和该溶液的吸收光强度以及荧光效率成正比。 5、下列化合物中那个荧光效率大,为什么? 答:第一个荧光效率大。因为两个物质都有大π键,但第一个物质具有刚性平面结构,荧光量子产率高。 6、影响荧光强度的环境因素有哪些? 答:溶剂温度溶液pH 各种散射光激发光照荧光猝灭 7、为什么荧光分析法比紫外-可见法具有更高的灵敏度和选择性? 答:因为荧光或磷光分析法是在入射光的直角方向测定荧光强度,即在黑背景下进行检测,因此可以通过增加入射光强度或增大荧光或

磷光信号的放大倍数来提高灵敏度。而紫外-可见光分光光度法中测定的参数是吸光度,该值与入射光强度和透射光强度的比值有关,入射光强度增大,透射光强度也随之增大,增大检测器的放大倍数液同时影响入射光和透射光的检测。又因荧光光谱既包括激发光谱又包括发射光谱,凡是能发射荧光的物质,必须首先吸收一定波长的紫外线,而吸收了紫外线后不一定就发射荧光。能发射荧光的物质,其荧光波长也不尽相同。如果即使荧光光谱相同的话,而它的激光光谱也不一定相同。反之如果它们的激发光谱相同,则可用发射光谱把它们区分开来,因此供选择的余地是比较多的。所以荧光分析的选择性很强。

细胞免疫荧光实验步骤

细胞免疫荧光实验步骤 细胞免疫荧光实验步骤 简单实验步骤如下: 1.漂洗血清蛋白H7.2-7.4 37度 PBS 2小时. 2.-20度甲醇固定20分钟后,自然、干燥 10分钟 3.PBS洗净:3min*3 4.1%Triton:25min-30min.配成50ultriton+5mlpBS 5.PBS洗净:2*5min 6.羊血清封闭:37度,20分钟 7.一抗,4度过夜,一般要大于18小时或者37度1-2小时 8.4度PBS洗净,3min*5次 9.二抗37度小于一小时 10.37度PBS洗净,3*5min 凉干封片(封闭液PH8.5) 活细胞免疫荧光技术-流式细胞仪标本的制备 (一)制备活性高的细胞悬液(培养细胞系、外周血单个核细胞、 胸腺细胞、脾细胞等均可用于本法) ↓ 用10%FCS RPMI1640调整细胞浓度为 5×106~1×107/ml ↓ 取40μl细胞悬液加入预先有特异性McAb(5~50μl) 的小玻璃管或塑料离心管,再加50μl 1∶20(用DPBS 稀释)灭活正常兔血清 ↓4℃ 30min 用洗涤液洗涤2次,每次加洗涤液2ml左右 1000rpm×5min

↓ 弃上清,加入50μl工作浓度的羊抗鼠 (或兔抗鼠)荧光标记物,充分振摇 ↓4℃ 30min 用洗涤液洗涤2次,每次加液2ml左右 1000rpm×5min ↓ 加适量固定液(如为FCM制备标本,一般加入 1ml固定液,如制片后在荧光显微镜下观察, 视细胞浓度加入100~500μl固定液) ↓ FCM检测或制片后荧光显微镜下观察 (标本在试管中可保存5~7天) (二)试剂和器材 1. 各种特异性单克隆抗体。 2. 荧光标记的羊抗鼠或兔抗鼠第二抗体,灭活正常兔血清。 3. 10% FCS RPMI1640, DPBS、洗涤液、固定液(见附录)。 4. 玻璃管、塑料管、离心机、荧光显微镜等。 (三)注意事项 1. 整个操作在4℃下进行,洗涤液中加有比常规防腐剂量高10倍的NaN 3,上述实验条件是防止一抗结合细胞膜抗原后发生交联、脱落。 2. 洗涤要充分,以避免游离抗体封闭二抗与细胞膜上一抗相结合,出现假阴性。 3. 加适量正常兔血清可封闭某些细胞表面免疫球蛋白Fc受体,降低和防止非特异性染色。 4. 细胞活性要好,否则易发生非特异性荧光染色。 附: 1. DPBS (×10, 贮存液)

荧光分析法基本概念

紫外可见吸收光谱 一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,就是由于分子内电子跃迁而产生的光谱。 二紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱分子的紫外吸收光谱就是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要就是三种电子: (1)形成单键的σ电子;(2)形成双键的π电子;(3) 分子中非键电子即n电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致就是: (σ)<(π)<(n)<(π*)<( σ* ) σ,π就是成键轨道,n 就是非键轨道,σ* ,π* 就是反键轨道 由于电子能级间跃迁的同时总伴随有振动与转动能级间的跃迁。即电子光谱中总包含有振动能级与转动能级间跃迁产生的若干谱线而呈现宽谱带。 二紫外光谱的表示方法 紫外光谱图就是由横坐标、纵坐标与吸收曲线组成的。 横坐标表示吸收光的波长,用nm(纳米)为单位。

纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、 (吸收系数) 中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。 四、紫外光谱中常用的几个术语

1、发色基团与助色基团 发色基团:就是能导致化合物在紫外及可见光区产生吸收的基团,不论就是否显示颜色都称为发色基团。一般不饱与的基团都就是发色基团(C=C、C=O、N=N 、三键、苯环等) 助色基团:指那些本身不会使化合物分子产生颜色或者在紫外及可见光区不产生吸收的一些基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时使吸收强度增加。助色基团通常就是由含有孤对电子的元素所组成(-NH2, -NR2, -OH , -OR , -Cl等),这些基团借助P-π共轭使发色基团增加共轭程度,从而使电子跃迁的能量下降。 2.红移、蓝移、增色效应与减色效应 由于有机化合物分子中引入了助色基团或其她发色基团而产生结构的改变、或者由于溶剂的影响使其紫外吸收带的最大吸收波长向长波方向移动的现象称为红移。与此相反,如果吸收带的最大吸收波长向短波方向移动,则称为蓝移。 由于化合物分子结构中引入取代基或受溶剂的影响,使吸收带的强度即摩尔吸光系数增大或减少的现象称为增色效应或减色效应、分子荧光分析法 一、荧光的产生 物质分子的能级包括一系列电子能级、振动能级与转动能级。分子吸收能量后,从基态最低振动能级跃迁到第一电子激发态或更高电子激发态的不同振动能级(这一过程速度很快,大约10-15s),成为激发单重

免疫荧光双标法

免疫荧光双标记在心肌石蜡切片中的应用 陈绪军肖明第吕志前卢成宝薛松袁忠祥徐根兴 作者单位:200080 上海市第一人民医院心血管外科 细胞性心肌塑型术(cellular cardiomyoplasty)用于缺血性心肌病的治疗受到人们越来越多的关注[1],在证实移植的人干细胞在缺血/损伤的环境中分化为人心肌细胞方面,免疫荧光技术的运用逐渐增多,但多用的是新鲜冰冻切片,在石蜡心肌切片中应用较少,而且多是单一抗原的荧光标记[2]。有研究表明,酪胺信号放大( tyramide signal amplifications, TSA)技术可以提高反应的灵敏性[3]。为此,我们以人心肌石蜡切片标本为例,运用TSA-免疫荧光法与常规间接免疫荧光法分别对人心肌连接蛋白(connexin-43,Cx-43)蛋白及肌凝蛋白(myosin)进行标记,旨在为心肌石蜡切片建立一个免疫荧光双标记的方法。 一、材料与方法 1. 主要试剂:兔抗人肌凝蛋白(myosin)多克隆IgG抗体购自美国Chemicon 公司,标记异硫氰酸酯荧光素(FITC)的驴抗兔多克隆IgG抗体与标记有辣根过氧化物酶(HRP)的驴抗小鼠多克隆IgG抗体均购自美国Jackson Immunity 公司, 小鼠抗人Cx-43单克隆抗体、碘化丙啶(PI)与牛血清白蛋白(BSA)购自美国Sigma 公司,酪胺 (tyramide)-coumrian 结合物试剂盒购自美国PerkinElmer公司。 2.标本的取材、固定、切片及抗原修复: 人心肌取自一例6岁先天性心脏病小孩右房耳,中性福尔马林固定,4°C过夜固定,梯度酒精脱水,石蜡包埋,5 μm石蜡切片。石蜡切片常规脱蜡、梯度酒精浸泡后行抗原修复:浸入0.01 mol/L的柠檬酸缓冲液(pH 6.0)中,95℃,浸泡30 min, 室温冷却10 min。 3.Cx-43的免疫荧光标记:采用TSA-免疫荧光法[4],按试剂盒说明书进行。磷酸盐缓冲液(PBS)室温洗涤2次,每次5 min。置入3% 过氧化氢/甲醇溶液中,室温,孵育10 min。再室温PBS洗涤3次,每次5 min。 3%的BSA室温孵育30 min。加入小鼠抗人Cx-43单克隆IgG抗体,4℃孵育过夜。TnT缓冲液(0.1 mol/L Tri-HCI, pH 7.5, 0.15 mol/L NaCl, 0.05% 吐温-20)室温洗涤3次,每次5 min。加入标记有HRP的驴抗小鼠IgG抗体,室温孵育1 h。TnT液室温洗涤3次,每次5 min。配制酪胺-coumrian 工作液:将酪氨-coumrian 结合物加入放大缓冲液中配成酪胺-coumrian 工作液(1∶50),避光,室温孵育15 min。再次TnT液洗涤3次。 4. Myosin的免疫荧光标记:接上一步。采用间接免疫荧光法[5]。兔抗人肌凝蛋白多克隆IgG抗体(1∶20), 37°C孵育1 h,PBS洗涤3次。加入标记FITC的驴抗兔多克隆IgG抗体(1∶100),避光,室温孵育1 h。PBS室温洗涤3次,每次5 min。 5.PI染细胞核:加入碘化丙啶(PI/PBS,1 μg/ml),室温避光孵育3 min。PBS室温洗涤3次后甘油封片。 6.荧光显微镜观察:运用带有3通道的AX-80型Olympus 荧光显微镜镜检:绿通道中观察FITC信号;蓝通道中观察coumrian信号;红通道中观察PI信号。图像的编辑采用Advanced SPOT 软件。 二、结果 在3通道的AX-80型Olympus 荧光显微镜中红、绿、蓝通道中分别可以观察到PI、FITC 及coumrian的信号,再经Advanced SPOT 软件叠加得到图1~4,红色代表PI标记的人心肌细胞核,绿色代表FITC标记的人心肌肌凝蛋白蛋白,蓝色为coumrian标记的人心肌Cx-43蛋白。图1显示为未加myosin抗体而加Cx-43抗体的人心肌石蜡切片; 图2中均加myosin 抗体与Cx-43抗体; 图3中加myosin抗体而未加入Cx-43抗体;图4均未加入 myosin抗体与Cx-43抗体。 三、讨论 1.心肌石蜡切片的免疫荧光双标记:在本研究中,图1与图2相比,人心肌石蜡切片中,不加myosin抗体的心肌纤维不着色,而加了myosin抗体的心肌纤维呈绿色,这表明心肌纤维被成功地标记上抗人myosin抗体,而且特异性高。Cx-43蛋白位于心肌细胞的周围,在本研究中由图1、图2与图3可以观察到,加Cx-43抗体的人心肌Cx-43蛋白呈

免疫荧光技术的实验方法及其分类模板

免疫荧光技术的实验方法及其分类 一、免疫标记法及其分类 1.荧光免疫法 原理是应用一对单克隆抗体的夹心法。底物用磷酸-4-甲基伞形酮, 检测产物发出的荧光, 荧光强度与Mb浓度呈正比, 可在 8min内得出结果。结果以Mb每小时释放的速率表示(△Mb)表示。该法重复性好, 线性范围宽, 具有快速、敏感、准确的特点。 以双抗夹心法为例, 首先将特异性抗体与固相载体连接, 形成固相抗体。除去未结合抗体, 然后加受检标本, 使其中的蛋白抗原与固相抗体形成抗原抗体复合物。洗涤除去未结合物, 接着加入荧光标记的抗体, 使之与抗原特异性结合, 形成抗体—抗原—抗体复合物。最后根据荧光强度, 即可对蛋白抗原进行定量。 传统的荧光免疫法受本底荧光的干扰较大, 时间分辨荧光免 疫测定法是以具有特长寿命的稀土金属如铕, 作为标记物, 加入正常液后激发测定, 能有效去除短寿命本底荧光的干扰。 2.放射免疫法

放射免疫法是以过量的未标记抗原与放射性物质标记的抗原, 竞争性地与抗体结合, 形成有放射性的抗原—抗体复合物与无放射性的抗原—抗体复合物, 并有过剩的标记抗原与未标记的抗原。然后经过离心沉淀等方法, 将抗原—抗体复合物与游离抗原分离, 分别测定其放射性强度与标准曲线比较, 即可对未标记的待测抗原进行定量。 RIA法测定血清蛋白灵敏度高、特异性强, 可准确定量到 ng/ml水平。但早期的方法操作麻烦, 耗时长, 且有放射性污染。近年来, 随着单克隆抗体的应用, RIA的灵敏度又有了较大提高, 且操作大为简化, 并已有商品试剂盒供应, 使用方便。 3.酶联免疫法(ELISA) ELISA法有竞争法和夹心法两种。竞争法是基于标准或血清Mb和微孑L板上包被的Mb竞争性地与单克隆抗体相结合的原理而建立, 该法的最低检测限为10μg/L, 线性范围达1 000ug/L。夹心ELISA法与EIA具有良好的相关性(r=0.92)。ELISA法具有灵敏度高, 特异性强, 精密度好, 操作简单, 适用于多份标本的检测, 不需特殊仪器设备等优点, 易于推广普及。但不适合急诊的快速检测。

免疫荧光实验步骤大全(精华版)

免疫荧光染色大全(精华版) 组织免疫荧光法 (1)将待染组织切片置于65摄氏度恒温箱烤片1h,脱蜡 (2)1×PBS 洗涤 3 次,每次 5min。 (3)0.5%Triton X-100(PBS 配制)室温通透 10min (4)1×PBS 洗涤 3 次,每次 5min。 注意:步骤(3)和(4)用于检测细胞核抗原,细胞膜抗原直接跳过此步骤(5)抗原修复:使用柠檬酸盐缓冲液进行抗原修复,微波炉微波高火3min,后转成低火 15min。 (6)1×PBS 洗涤 3 次,每次 5min。 (7)3% H2O2,室温孵育30min,目的是灭活内源性过氧化物酶。 (8)1×PBS 洗涤 3 次,每次 5min。 (9)使用1% BSA进行室温封闭 30min,用于封闭非特异性抗原表位。 (10)按抗体推荐使用说明书孵育特异性一抗,4°C 湿盒中静置过夜。(11)次日取出切片,室温下复温 30min。 (12)1×PBS 洗涤 3 次,每次 5min。 (13)选取相应的免疫荧光二抗滴加于血管组织上,37°C避光孵育30min。(14)1×PBS洗涤 3 次,每次 5min。 (15)避光条件下,DAPI 染液染细胞核,浓度和时间根据试剂说明书使用(16)1×PBS洗涤 3 次,每次5min。 (17)在血管组织上滴加抗荧光淬灭剂进行封片。 (18)使用荧光显微镜进行观察拍照。 贴壁细胞免疫荧光法 (1)在培养板中接种的带染色的细胞爬片用PBS泡洗3次×3min (2)4%多聚甲醛固定细胞爬片15min (3)1×PBS洗涤 3 次,每次5min。 (4)0.5%Triton X-100(PBS配制)室温通透10min (5)1×PBS洗涤 3 次,每次5min。 (6)1%BSA室温封闭30min (7)弃掉封闭液,细胞爬片滴加适量稀释至适当比例的一抗,4℃孵育过夜(8)1×PBS洗涤 3 次,每次5min。 (9)细胞爬片滴加稀释至适当比例的荧光二抗 (10)1×PBS洗涤 3 次,每次5min。 (11)DAPI染细胞核,浓度和时间根据试剂说明书使用 (12)1×PBS洗涤 3 次,每次5min。 (13)用抗荧光淬灭剂封片 (14)荧光显微镜下观察采集图像 细胞免疫荧光(悬浮细胞方法一) (1)收集悬浮细胞,细胞在冰浴中冷却,然后用台式离心机于4℃以800 g 离心5 min,吸去培养液并以4℃ 1×PBS重悬细胞。

不用爬片的免疫荧光实验方法-雷萌生物

【ibidi--focus on cells】通道载玻片--新的免疫荧光方法 细胞的免疫荧光实验是一个基础的细胞实验,传统的方法是在培养板中放入预先处理好的盖玻片,待细胞贴壁后,使用镊子将盖玻片拿出再开始进行固定,染色等系列工作。 现在分享一种简便的免疫荧光方法,无需爬片,培养-操作-镜检,在一个培养皿/载玻片上完成所有工作!一气呵成! 使用如图的培养皿和载玻片,免疫荧光步骤将简化为: 1.直接细胞培养 2.冲洗玻片/培养皿 3.固定细胞 4.冲洗玻片/培养皿 5.染色 6.冲洗玻片/培养皿 7.冻存液处理细胞 8.直接镜检观察 免去了指甲油封片的传统免疫荧光方法中的冗长步骤: 1.无需对盖玻片和载玻片消毒灭菌 2.无需对盖玻片进行包被 3.无需等细胞爬片 4.无需指甲油封片 之所能如此简便完成免疫荧光实验,是因为这些ibidi培养皿和载玻片的底部为特殊处理的材质,绝大多数细胞可以直接贴壁生长,而不需要另外包被。同时,这些耗材的底部薄如盖玻片,可以直接使用倒置显微镜进行观察,得到高质量的成像,适用于高端显微镜比如共聚焦显微镜。 成像效果:

下面再分享一种极致的免疫荧光方法,不仅更加简化实验步骤,而且可以节约试剂和细胞,同时还能得到更出色的成像效果。 如图的ibidi通道载玻片,简单快速完成免疫荧光实验。 步骤:培养-固定-染色-镜检,只需在这个载玻片上进行4个步骤,免疫荧光实验轻松完成~ 优点总结: 1、节约细胞和试剂 ibidi通道载玻片里的通道只有400μm高,以μ-slide VI为例,通道的容积只有30μl,而普通8well的腔式载玻片一个孔的容积有300μl。这意味着通道需要的试剂和细胞量仅需约十分之一!对于非常珍贵的细胞和试剂来说,这可是非常重要的。 2、成像效果好 使用通道载玻片时,能在相差显微镜下获得更好的成像效果。因为通道上下都是平坦的,不会因为凹液面的折射现象影响到相差显微镜成像。而well式的开放小室的相差成像会受到培养皿盖和液面的折射现象影响。

(完整版)荧光分析法练习题

第十二章荧光分析法(药学) A型题 1.若需测定生物试样中的微量氨基酸应选用下述哪种分析方法()。 A、荧光光度法 B、磷光光度法 C、化学发光法 D、X荧光光谱法 E、原子荧光光谱法 答案:A 2.分子荧光分析比紫外-可见分光光度法选择性高的原因是()。 A、分子荧光光谱为线状光谱,而分子吸收光谱为带状光谱 B、能发射荧光的物质比较少 C、荧光波长比相应的吸收波长稍长 D、荧光光度计有两个单色器,可以更好地消除组分间的相互干扰 E、分子荧光分析线性范围更宽 答案:B 3荧光量子效率是指()。 A、荧光强度与吸收光强度之比 B、发射荧光的量子数与吸收激发光的量子数之比 C、发射荧光的分子数与物质的总分子数之比 D、激发态的分子数与基态的分子数之比 E、物质的总分子数与吸收激发光的分子数之比 答案:B 4.激发光波长和强度固定后,荧光强度与荧光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱 C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:C 5.荧光波长固定后,荧光强度与激发光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱 C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:B 6.一种物质能否发出荧光主要取决于()。 A、分子结构 B、激发光的波长 C、温度 D、溶剂的极性

E、激发光的强度 答案:A 7.下列结构中荧光效率最高的物质是()。 A、苯酚 B、苯 C、硝基苯 D、苯甲酸 E、碘苯 答案:A 8.下列因素会导致荧光效率下降的有()。 A、激发光强度下降 B、溶剂极性变小 C、温度下降 D、溶剂中含有卤素离子 E、激发光强度增大 答案:D 9.为使荧光强度和荧光物质溶液的浓度成正比,必须使()。 A、激发光足够强 B、吸光系数足够大 C、试液浓度足够稀 D、仪器灵敏度足够高 E、仪器选择性足够好 答案:C 10.在测定物质的荧光强度时,荧光标准溶液的作用是()。 A、用做调整仪器的零点 B、用做参比溶液 C、用做定量标准 D、用做荧光测定的标度 E、以上都不是 答案:D 11.荧光分光光度计与分光光度计的主要区别在于()。 A、光源 B、光路 C、单色器 D、检测器 E、吸收池 答案:B 12.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激发三重态,再经过振动弛豫降至三重态的最低振动能级,然后发出光辐射跃迁至基态的各个振动能级,这种光辐射称为()。 A、分子荧光 B、分子磷光 C、瑞利散射光 D、拉曼散射光

免疫荧光染色

荧光免疫染色和DAPI染色实验 1.实验原理 免疫染色的实验原理类似于Western Blotting,两者都是运用抗体的特异性识别作用来显示目的蛋白,但是由于免疫染色需要在原位进行,而且蛋白没有经过富集,因此其实验难度较高。 实验的基本原理是:利用固定剂(通常是甲醛或多聚甲醛)将细胞固定,使得细胞膜的通透性大大增加,并且利用Triton-X-100使得一部分膜蛋白变性,从而使通透性进一步加强。利用正常羊血清封闭,可以令许多蛋白先与血清内的非特异性抗体结合,而特异性的抗体由于动力学的关系可以通过竞争性的反应与目的蛋白结合,这一过程可以保证抗体识别的特异性。二抗可以特异性识别一抗的Fc区域,利用二抗连接不同的荧光基团,就可以在荧光显微镜下观察到不同的荧光,从而显示目的基因的表达情况。 另外,免疫荧光实验由于其较高的敏感性可以显示出基因表达的亚细胞情况(核内,核外,膜上以及一些较大的细胞器上),所以通常被用来作为基因定位的方法。 DAPI的中文名称是4,6-联脒-2-苯基吲哚,是一种常用的荧光染料,其作用机理与溴化乙锭(EB)等染色剂的机理类似:它们与DNA双螺旋的凹槽部分可以发生相互作用,从而与DNA 的双链紧密结合。结合后产生的荧光基团的吸收峰是358nm而散射峰是461nm,正好UV (紫外光)的激发波长是356nm,使得DAPI成为了一种常用的荧光检测信号。 Jagielski M. et. Al在1976年首次运用该技术检测细胞培养中的支原体感染。后来随着技术的进步,该技术被运用于各种微生物的检测、生长监测,胚胎发育过程的检测,细胞周期的检测和各种核定位的实验。 本实验就是利用DAPI染色标记细胞核的位置。 免疫染色实验方法和步骤 免疫染色(immunol staining)包括免疫荧光(immunol fluorescence)、免疫组化(immunol histochemistry)、免疫细胞化学(immunol cytochemistry)等,可以参考如下步骤进行操作。 1. 样品准备(Sample preparation) 对于贴壁细胞: 可以直接用多孔板,例如6孔板、24孔板等,培养细胞,然后到预定时间时进行固定等后续操作。 也可以用洁净的盖玻片,70%乙醇中浸泡后,用无菌的镊子放置到6孔板内,然后用无菌的生理盐水、PBS或培养液洗去残留的乙醇。这时就可以种入细胞进行培养,待细胞贴在盖玻片上生长良好后,即可进行固定等后续操作。 对于悬浮细胞: 把细胞先在固定液中固定,然后把细胞滴加在载玻片上,干燥后细胞会紧贴在载玻片上。然后就可以进行后续操作。如果细胞的粘附能力不佳,可以在载玻片上用PDL等物质进行处理,以增强载玻片的粘附能力。 对于冷冻切片: 切片放置在载玻片上后,可以直接进行固定等后续操作。 对于石蜡切片:

第十一章 荧光分析法

第十一章荧光分析法 一、选择题 1.荧光分析法是通过测定( )而达到对物质的定性或定量分析。 A、激发光 B、磷光 C、发射光 D、散射光 2.下面( )分析方法不属于分子发射光谱法。 A、紫外一可见分光光度法 B、荧光分析法 C、磷光分析法 D、化学发光分析法 3.荧光发射光谱含有( )个发射带。 A、1 B、2 C、3 D、不一定 4.下列关于荧光光谱的叙述错误的是() A、荧光光谱的形状与激发光的波长无关 B、荧光光谱与激发光谱一般是对称镜像 C、荧光光谱属于分子的受激发射光谱 D、荧光激发射光谱与紫外吸收光谱重合 5.下列叙述错误的是() A、荧光光谱的最长波长和激发光谱的最长波长相对应 B、荧光光谱的最短波长和激发光谱的最长波长相对应 C、荧光光谱的形状与激发光波长无关 D、荧光波长大于激发光波长 6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激发三重态,再经振动弛豫降至三重态的最低振动能级,然后发出光辐射跃迁至基态的各个振动能级,这种光辐射称为( )。 A、分子荧光 B、分子磷光 C、瑞利散射光 D、拉曼散射光 7.关于振动弛豫,下列叙述中错误的是( )。 A、振动弛豫只能在同一电子能级内进行 B、振动弛豫属于无辐射跃迁 C、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动能级 D、振动弛豫是产生Stokes位移的原因之一 8.荧光寿命指的是( )。 A、从激发光开始照射到发射荧光的时间 B、受激分子从第一电子激发态的最低振动能级返回到基态所需的时间 C、从除去激发光光源至分子的荧光熄灭所需的时间 D、除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的1/e所需的时间9.关于荧光效率,下面叙述不正确的是() A、具有长共轭的π→π﹡跃迁的物质具有较大的荧光效率 B、分子的刚性和共平面性越大,荧光效率越大 C、顺式异构体的荧光效率大于反式异构体

免疫荧光实验步骤

免疫荧光实验步骤 Modified by JACK on the afternoon of December 26, 2020

免疫荧光实验步骤 1. 直接免疫荧光法测抗原 (1)基本原理 将荧光素标记在相应的抗体上,直接与相应抗原反应。其优点是方法简便、特异性高,非特异性荧光染色少。缺点是敏感性偏低;而且每检查一种抗原就需要制备一种荧光抗体。此法常用于细菌、病毒等微生物的快速检查和肾炎活检、皮肤活检的免疫病理检查。 (2)试剂与仪器 磷酸盐缓冲盐水(PBS):L, 荧光标记的抗体溶液:以L,的PBS进行稀释 缓冲甘油:分析纯无荧光的甘油9份+ 碳酸盐缓冲液1份配制 搪瓷桶三只(内有L,的PBS 1500ml) 有盖搪瓷盒一只(内铺一层浸湿的纱布垫) 荧光显微镜 玻片架 滤纸 37℃温箱等。 (3)实验步骤 ① 滴加L,的PBS于待检标本片上,10min后弃去,使标本保持一定湿度。 ② 滴加适当稀释的荧光标记的抗体溶液,使其完全覆盖标本,置于有盖搪瓷盒内,保温一定时间(参考:30min)。

③ 取出玻片,置玻片架上,先用L,的PBS冲洗后,再按顺序过L,的PBS三缸浸泡,每缸3-5 min,不时振荡。 ④ 取出玻片,用滤纸吸去多余水分,但不使标本干燥,加一滴缓冲甘油,以盖玻片覆盖。 ⑤ 立即用荧光显微镜观察。观察标本的特异性荧光强度,一般可用“+”表示: (-)无荧光;(±)极弱的可疑荧光;(+)荧光较弱,但清楚可见;(++)荧光明亮;(+++ --++++)荧光闪亮。待检标本特异性荧光染色强度达“++”以上,而各种对照显示为(±)或(-),即可判定为阳性。 (4)注意事项 1)对荧光标记的抗体的稀释,要保证抗体的蛋白有一定的浓度,一般稀释度不应超过1:20,抗体浓度过低,会导致产生的荧光过弱,影响结果的观察。 2)染色的温度和时间需要根据各种不同的标本及抗原而变化,染色时间可以从10 min到数小时,一般30 min已足够。染色温度多采用室温(25℃左右),高于37℃可加强染色效果,但对不耐热的抗原(如流行性乙型脑炎病毒)可采用0-2℃的低温,延长染色时间。低温染色过夜较37℃30 min效果好的多。 3)为了保证荧光染色的正确性,首次试验时需设置下述对照,以排除某些非特异性荧光染色的干扰。 ① 标本自发荧光对照:标本加1-2滴L,的PBS。 ② 特异性对照(抑制试验):标本加未标记的特异性抗体,再加荧光标记的特异性抗体。

相关主题