搜档网
当前位置:搜档网 › 第34课时——函数模型及其应用(2)配套练习

第34课时——函数模型及其应用(2)配套练习

第34课时——函数模型及其应用(2)配套练习
第34课时——函数模型及其应用(2)配套练习

第34课 函数模型及其应用(2)

分层训练

1.某种细胞分裂时,由1个变成2个,由2个变成4个,┅┅,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数关系式是______________,在这个关系式中,x 的取值范围是 .,

2.某厂1992年的产值为a 万元,预计产值每年以5%递增,则该厂到2004年的产值(万元)为 ( )

()A 13(15%)a + ()B 12(15%)a +

()C 11(15%)a + ()D 1210(15%)9

a

- 3.某新型电子产品2002年初投产,计划到2004年初使其成本降低36%,那么平

均每年应降低成本( )

A 10%

B 20%

C 25%

D 30% 4.有5000元存款,储蓄一年后从利息中取出100元,其余的钱加到本金里再储蓄一年,第二年的年利率比第一年高1%,利息比第一年多70元,则第一年的年利率为 .

5.已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则y 关于x 的函数关系式是 . 6.某城市现在人口总数为100万人,如果每年自然增长率为1.2%,试解答下列问题:

(1)写出该城市人口总数y (万人)与年份x (年)的函数关系式;

(2)计算10年以后该城市人口总数(精确到0.1万人);

(3)计算大约多少年以后该城市人口将达到120万人(精确到1年).

7.据报道,1992年底世界人口达到54.8亿,若世界人口的年平均增长率为%x ,到

2005年底全世界人口为y 亿,则y 与x 的

函数关系

是 .

8.某种通过电子邮件传播的计算机病毒,在开始爆发后的5个小时内,每小时有1000台计算机被感染,从第6小时起,每小时被感染的计算机以增长率为50%的速度增长,则每小时被感染的计算机数y 与开始爆发后t (小时)的函数关系为 .

9.某债券市场发行的三种债券:A 种面值100元,一年到期本利共获103元;B 种面值50元,半年到期,本利共获50.9元;C 种面值为100元,但买入时只需付97元,一年到期拿回100元.则三种投资收益比例从小到大排列为 ( ) ()A BAC ()B ACB

()C ABC ()D CAB

10.某种商品,如果月初售出可获利100

元,再将本利存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,问这种商品月初出售好,还是月末出售好?

11.某人承包了一片荒山,承包期限为10年,准备栽种5年可成材的树木.该树木从树苗到成材期间每年的木材增长率为18%,以后每年的木材增长率为10%,树木成材后,既可出售树木,重栽新树苗,也可让其继续生长至承包期满.问:哪一种方案可获得较多的成材木材量? (参考数据:5

1.1 1.61=)

拓展延伸

12.甲、乙两人于同一天分别携款1万元到银行储蓄.甲存五年期定期储蓄,年利率为2.88%(不记复利);乙存一年期定期储蓄,年利率为2.25%,并在每年到期时将本息续存一年期定期储蓄.按规定每次记息时,储户须交纳利息的20%作为利息税.若存满五年后两人同时从银行取出存款,则甲与乙所得利息的差为 ________ 元.(假定利率五年内保持不变,结果精确到0.01元)

13.某公司为了实现1000万元的利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:

70.25,l o g 1, 1.002

x

y x y x y ==

+

=

,其中哪个模型能符合公司的要求.

第二章 第10节 函数模型及其应用

第二章 第十节 函数模型及其应用 1.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地, B 地 停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时t (小时)的 函数表达式是 ( ) A.x =60t +50t (0≤t ≤6.5) B.x =60,0 2.5 150,2.5 3.515050,3.5 6.5<3.5 t t t t ??-?≤≤ D.x =60,0 2.5 150,2.5 3.515050 3.5< 3. 6.5<5t t t t t ????--? ≤≤≤(),≤ 解析:依题意,函数为分段函数,求出每一段上的解析式即可. 答案:D 2.某文具用品店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每只定价5元,该店制定了两种优惠方法:①买一副球拍赠送一只羽毛球;②按总价的92%付款.某人计划购买4副球拍,羽毛球30只,两种优惠方法中,更省钱的一种是 ( ) A.不能确定 B.①②同样省钱 C.②省钱 D.①省钱 解析:①种方法需20×4+5×(30-4)=210元,②种方法需(20×4+5×30)×92%=211.6元.故①种方法省钱. 答案:D 3.(2010·邯郸模拟)图形M(如图所示)是由底为1,高为1的等腰 三角形及高为2和3的两个矩形所构成,函数S =S (a )(a ≥0)是 图形M 介于平行线y =0及y =a 之间的那一部分面积,则函数 S (a )的图象大致是 ( )

《单元10 函数模型及其应用》系列测试卷(A)

《单元10 函数模型及其应用》A佳H系列测试卷(A) 一、选择题(每小题只有一个选项符合题意,共10小题,每小题4分,共40分) 1.当x越来越大时,下列函数中,增长速度最快的应该是(). A.y=100x B.y=log100x C.y=x100D.y=100x 2.如图,能使不等式log2x<x2<2x成立的自变量x的取值范围是(). A.x>0 B.x>2 C.x<2 D.0<x<2 3. 已知y1=2x,y2=x2,y3=log2x,当2<x<4时,有(). A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y1 4.已知某工厂8年来某种产品的产量c与时间f(单位:年)的函数关系如图所示,则下面四种说法中,正确的是(). ①前三年中产量增加的速度越来越快; ②前三年中产量增加的速度越来越慢; ③第三年后,这种产品停止生产; ④第三年后,这种产品产量保持不变 A.②③B.②④C.①③D.①④ 5.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均

仓储时间为 8 x 天,且每件产品每天的仓储费用为1元.把平均每件产品的生产准备费用与仓储费用之和S 表示为x 的函数的是( ). A .S =800+ 8x B .S =800x +8x C .S =x 800+ 8x D .S =x 800+x 6.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则蜡烛燃烧剩下的髙度h (cm )与燃烧时间t (小时)的函数关系用图象表示为( ). A . B . C . D . 7.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为: ?? ? ??>≤<+≤≤=1005.1100101021014x x x x x x y ,,, ,其中x 代表拟录用人数,y 代表面试人数.若应聘的面试人数 为60人,则该公司拟录用人数为( ). A .15人 B .40人 C .25人 D .70 人 8.有一组实验数据如下表所示: 下列所给函数模型较适合的是( ). A .y =log a x (a >1) B .y =ax +b (a >1) C .y =ax 2+b (a >0) D .y =log a x +b (a >l ) 9.某商场在国庆促销期间规定商场内所有商品按标价的80%出售,同时, 当顾客在该商

函数模型及其应用教案_00002

适用学科
高中数学
适用年级
高一
适用区域 苏教版区域
课时时长(分钟)
2 课时
知识点 几类不同增长的函数模型的特点、用已知函数模型解决实际问题、建立函数模型解决实际
问题
教学目标 利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、
指数爆炸、对数增长等不同函数类型增长的含义;
了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实
例。
教学重点 了解函数模型的广泛应用。
教学难点 了解函数模型的广泛应用。
【知识导图】
教学过程
一、导入
函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升 的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创 设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函 数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。
函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训 练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。
(1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题; (2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最 值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。
二、知识讲解
考点 1 解决实际问题的解题过程第 1 页

高一数学函数模型及其应用练习题2

函数模型及其应用测试题 一、选择题 1.某工厂的产值月平均增长率为P,则年平均增长率是() A.11 +-D.12 (1)1 P P +- (1)P +B.12 (1)P +C.11 (1)1 答案:D 2.某人2000年7月1日存入一年期款a元(年利率为r,且到期自动转存),则到2007年7月1日本利全部取出可得() A.7 a r +元 (1) (1) a r +元B.6 C.7 (1)(1)(1) +++++++ …元 a a r a r a r (1) a a r ++元D.26 答案:A 3.如图1所示,阴影部分的面积S是h的函数(0) ≤≤,则该函数的图象可 h H 能是() 答案:C 4.甲、乙两个经营小商品的商店,为了促销某一商品(两店的零售价相同),分别采取了以下措施:甲店把价格中的零头去掉,乙店打八折,结果一天时间两店都卖出了100件,且两店的销售额相同,那么这种商品的价格不可能是()A.4.1元B.2.5元C.3.75元D.1.25元 答案:A 5.某厂工人收入由工资性收入和其他收入两部分构成.2003年该工厂工人收入3150元(其中工资性收入1800元,其他收入1350元).预计该地区自2004年开始的5年内,工人的工资性收入将以每年6%的年增长率.其他收入每年增加160元.据此分析,2008年该厂工人人均收入将介于() A.42004400 元 元B.44004600 C.46004800 元D.48005000 元 答案:B 二、填空题 6.兴修水利开渠,其横断面为等腰梯形,如图2,腰与水平线夹角为60 ,要求浸水周长(即断面与水接触的边界长)为定值l,同渠深h=,可使水渠量最大.

函数模型的应用实例(Ⅲ)

函数模型的应用实例(Ⅲ) 一、教学目标 1、知识与技能能够收集图表数据信息,建立拟合函数解决实际问题。 2、过程与方法体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。 3、情感、态度、价值观深入体会数学模型在现实生产、生活及各个领域中的广泛应用及其重要价值。 二、教学重点、难点: 重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。 难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。 三、学学与教学用具 1、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。 2、教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题 2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。 这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典

至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人。 这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。 本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。 (二)尝试实践探求新知 例1.某地区不同身高的未成年男性的体重平均值发下表 (身高:cm;体重:kg) 1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。 2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男

第2章第9讲 函数模型及其应用

第9讲函数模型及其应用 基础知识整合 1.常见的函数模型 函数模型函数解析式 一次函数型f(x)=ax+b(a,b为常数,a≠0) 二次函数型f(x)=ax2+bx+c(a,b,c为常数,a≠0) 指数函数型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数型f(x)=ax n+b(a,b为常数,a≠0) 2.指数、对数及幂函数三种增长型函数模型的图象与性质 函数 性质 y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞) 上的增减性 □01单调递增□02单调递增□03单调递增增长速度越来越快越来越慢相对平稳 图象的变化 随x的增大逐渐表 现为与□04y轴平行 随x的增大逐渐表 现为与□05x轴平行 随n值变化而各有 不同值的比较 存在一个x0,当 x>x0时,有 log a x

上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a . 1.(2019·嘉兴模拟)为了预防信息泄露,保证信息的安全传输,在传输过程中需要对文件加密,有一种加密密钥密码系统(Private -Key Cryptosystem),其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文(解密).现在加密密钥为y =kx 3,若明文“4”通过加密后得到密文“2”,则接收方接到密文“1 256 ”,解密后得到的明文是( ) A .12 B .14 C .2 D .18 答案 A 解析 由已知,可得当x =4时,y =2,所以2=k ·43,解得k =243=1 32,故y =132x 3.令y =132x 3=1256,即x 3=18,解得x =1 2.故选A . 2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表: x 0.50 0.99 2.01 3.98 y -0.99 0.01 0.98 2.00 则对x ,y 最适合的拟合函数是( ) A .y =2x B .y =x 2-1 C .y =2x -2 D .y =log 2x 答案 D 解析 根据x =0.50,y =-0.99,代入各选项计算,可以排除A ;根据x =2.01,y =0.98,代入其余各选项计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.故选D . 3.(2019·山东烟台模拟)某城市对一种售价为每件160元的商品征收附加税,

函数模型及其应用

2021年新高考数学总复习第二章《函数与基本初等函数》 函数模型及其应用 1.几类函数模型 函数模型函数解析式 一次函数模型f(x)=ax+b(a,b为常数,a≠0) 反比例函数模型f(x)= k x+b(k,b为常数且k≠0) 二次函数模型 f(x)=ax2+bx+c (a,b,c为常数,a≠0) 指数函数模型 f(x)=ba x+c (a,b,c为常数,b≠0,a>0且a≠1) 对数函数模型 f(x)=b log a x+c (a,b,c为常数,b≠0,a>0且a≠1) 幂函数模型f(x)=ax n+b (a,b为常数,a≠0) 2.三种函数模型的性质 函数 性质 y=a x(a>1) y=log a x(a>1) y=x n(n>0) 在(0,+∞)上 的增减性 单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳 图象的变化 随x的增大逐渐表 现为与y轴平行 随x的增大逐渐表 现为与x轴平行 随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x

题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × ) (2)函数y =2x 的函数值比y =x 2的函数值大.( × ) (3)不存在x 0,使0x a 0,b ≠1)增长速度越来越快的形象比喻.( × ) 题组二 教材改编 2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( ) A .收入最高值与收入最低值的比是3∶1 B .结余最高的月份是7月 C .1至2月份的收入的变化率与4至5月份的收入的变化率相同 D .前6个月的平均收入为40万元 答案 D 解析 由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为1 6 ×(40+60+30+30+50+60)=45(万元),故D 错误.

3.2.2几种函数模型的应用举例

第三章 函数的应用 3.2.2几种函数模型的应用举例 【导学目标】 1.通过实例感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用; 2.初步了解对统计数据表的分析与处理. 【自主学习】 1、根据散点图设想比较接近的可能的函数模型: ①一次函数模型:()(0);f x kx b k =+≠ ②二次函数模型:2()(0);g x ax bx c a =++≠ ③指数函数模型:()x f x a b c =+g (0,a b ≠>0,1b ≠) ④对数函数模型:()log a f x m x b =+g (0,m ≠01a a >≠且) ⑤幂函数模型:12 ()(0);h x ax b a =+≠ 2、一般函数模型应用题的求解方法步骤: 1) 阅读理解,审清题意:逐字逐句,读懂题中的文字叙述,理解题中所反映的实际问题,明白已知什么,所求什么,从中提炼出相应的数学问题。 2)根据所给模型,列出函数表达式:合理选取变量,建立实际问题中的变量之间的函数关系,而将实际问题转化为函数模型问题。 3)运用所学知识和数学方法,将得到的函数问题予以解答,求得结果。 4)将所解得函数问题的解,翻译成实际问题的解答。 在将实际问题向数学问题的转化过程中,能画图的要画图,可借助于图形的直观性,研究两变量间的联系. 抽象出数学模型时,注意实际问题对变量范围的限制. 【典型例题】 例1:某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元. 销售单价与日均销售量的关系如下表所示: 请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?

湖南省新田一中高中数学 32 函数模型及其应用课后习题(无答案) 新人教A版必修1

一、选择题 1.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费.某职工某月缴费20元,则该职工这个月实际用水为( ) A.10吨B.13吨 C.11吨D.9吨 2.某种商品2013年提价25%,2014年欲恢复成原价,则应降价( ) A.30% B.25% C.20% D.15% 3.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x、y应为( ) A.x=15,y=12 B.x=12,y=15 C.x=14,y=10 D.x=10,y=14 4.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一 个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话 150分钟时,这两种方式电话费相差( ) A.10元B.20元 C.30元 D.40 3 元 5.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( ) A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 二、填空题 6.有一批材料可以建成200 m的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形最大面积为________.(围墙厚度不计)

函数模型的应用实例

函数模型的应用实例习题(含答案) 一、单选题 1上是增函数,则a的取值范围是(). A 2.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是() A.B.C. D. 3.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图象是( ) A.B.. C.D.

4.某市出租汽车的车费计算方式如下:路程在3km 以内(含3km )为8.00元;达到3km 后,每增加1km 加收1.40元;达到8km 后,每增加1km 加收2.10元.增加不足1km 按四舍五入计算.某乘客乘坐该种出租车交了44.4元车费,则此乘客乘该出租车行驶路程的km 数可以是( ). A . 22 B . 24 C . 26 D . 28 5.已知奇函数()f x 的定义域为(,0)(0,)-∞+∞,当0x >时,()ln(|1|1)f x x =-+,则函数()f x 的图象大致为( ) 6.甲用1000元人民币购买了一支股票,随即他将这支股票卖给乙,甲获利10%,而后乙又将这支股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格九折将这支股票卖给了乙,在上述股票交易中 A .甲刚好盈亏平衡 B .甲盈利1元 C .甲盈利9元 D .甲亏本1.1元 7 ) 8.已知函数22,0()2cos ,0 x x f x x x ?->=?≤?,则下列结论正确的是( ) A .()f x 是偶函数 B .()f x 是增函数 C .()f x 是周期函数

D .()f x 的值域为),2[+∞- 9.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y = 其中,x 代表拟录用人数,y 代表面试人数,若面试人数为60,则该公司拟录用人数为 ( ) A . 15 B . 40 C . 25 D . 130 二、填空题 10.某出租车租赁公司收费标准如下:起价费10元(即里程不超过5公里,按10元收费),超过5公里,但不超过20公里的部分,每公里按1.5元收费,超过20公里的部分,每公里再加收0.3元. (1)请建立租赁纲总价y 关于行驶里程x 的函数关系式; (2)某人租车行驶了30公里,应付多少钱?(写出解答过程) 11.经测算,某型号汽车在匀速行驶过程中每小时耗油量y (升)与速度x (千米/每小时) ()50120x ≤≤的关系可近似表示为: 0,50,80 (Ⅰ)该型号汽车速度为多少时,可使得每小时耗油量最低? (Ⅱ)已知,A B 两地相距120公里,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少? 12.某商品在近30天内每件的销售价格P (元)与时间t (天)的函数关系是 30,015,60,1530,t t t N P t t t N +<<∈?=?-+≤≤∈?,该商品的日销售量Q (件)与时间t (天)的函数关系是40(030,)Q t t t N =-+<≤∈,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天. 13.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=n (n +1)(2 n +1)吨,但如果年产量超过150

第二章 第十节 函数模型及其应用

一、选择题 1.某企业去年销售收入1 000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p%为( ) A.10% B.12% C.25% D.40% 解析:利润300万元,纳税300·p%万元, 年广告费超出年销售收入2%的部分为 200-1000×2%=180(万元), 纳税180·p%万元, 共纳税300·p%+180·p%=120(万元), p%=1 4=25%. 答案:C 2.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件 时的生产成本为C(x)=1 2x 2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企 业一个月应生产该商品数量为( ) A.36万件B.18万件C.22万件D.9万件 解析:利润L(x)=20x-C(x)=-1 2(x-18) 2+142, 当x=18时,L(x)有最大值. 答案:B 3.某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提升1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( ) A.100元B.110元 C.150元D.190元 解析:设售价提升x元,则依题意 y=(1 000-5x)×(20+x) =-5x2+900x+20 000 =-5(x-90)2+60 500.

故当x =90时,y max =60 500,此时售价为每件190元. 答案:D 4.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,汽车离开A 地的距离x (千米)与时间t (小时)之间的函数表达式是( ) A .x =60t B .x =60t +50t C .x =????? 60t (0≤t ≤2.5)150-5t (x >3.5) D .x =????? 60t (0≤t ≤2.5),150(2.5<t ≤3.5) 150-50(t -3.5)(3.5<t ≤6.5) 解析:到达B 地需要15060 =2.5小时, 所以当0≤t ≤2.5时,x =60t ; 当2.5<t ≤3.5时,x =150; 当3.5<t ≤6.5时,x =150-50(t -3.5). 答案:D 5.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( ) A .y =100x B .y =50x 2-50x +100 C .y =50×2x D .y =100log 2x +100 解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型. 答案:C 二、填空题 6.某厂有很多形状为直角梯形的铁皮边角料(如图),为降低消耗, 开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则 截取的矩形面积的最大值为________. 解析:依题意知:20-x x =y -824-y ,即x =54(24-y ), ∴阴影部分的面积 S =xy =54(24-y )y =54 (-y 2+24y ), ∴当y =12时,S 有最大值为180.

高中数学人教版必修1函数模型及其应用教学设计

适用学科 高中数学
适用年级
高一
适用区域 通用
课时时长(分钟)
2 课时
知识点
1.几类不同增长的函数模型的特点
2.用已知函数模型解决实际问题
3.建立函数模型解决实际问题
教学目标 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上
升、指数爆炸、对数增长等不同函数类型增长的含义;
2.了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)
的实例。
教学重点 了解函数模型的广泛应用。
教学难点 了解函数模型的广泛应用。
【教学建议】 本课内容是函数的应用,它的本质就是我们学习过的函数做为模型在现实问题刻画过程
中的基本操作过程和常见函数图象与性质在应用中的升华.本课内容是课本必修 1 中第三章 的重点内容之一,课本中还渗透了函数拟合的基本思想,这也为后面高中的学习做了铺垫。 通过本节的学习,要使学生从中体会函数模型刻画现实问题的基本过程并体会函数在数学及 其它地方的应用的广泛性,能初步运用函数的思想解决现实生活中的一些简单问题, 函数 模型本身就来源于现实,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知 识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成. 【知识导图】

【教学建议】
导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状
态。
导入的方法很多,仅举两种方法:
① 情境导入,比如讲一个和本讲内容有关的生活现象;
② 温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学
生建立知识网络。
提供一个教学设计供讲师参考:
环节
教学内容设计
师生双边互动
材料:澳大利亚兔子数“爆炸”
师:指出:一般而言,在理想条件
在教科书第三章的章头图中,有一大群 (食物或养料充足,空间条件充裕,
喝水、嬉戏的兔子,但是这群兔子曾使澳 气候适宜,没有敌害等)下,种群
大利亚伤透了脑筋.1859 年,有人从欧洲 在一定时期内的增长大致符合“J”
带进澳洲几只兔子,由于澳洲有茂盛的牧 型曲线;在有限环境(空间有限,

草,而且没有兔子的天敌,兔子数量不断 食物有限,有捕食者存在等)中,

增加,不到 100 年,兔子们占领了整个澳 种群增长到一定程度后不增长,曲

大利亚,数量达到 75 亿只.可爱的兔子变 线呈“S”型.可用指数函数描述一

得可恶起来,75 亿只兔子吃掉了相当于 75 个种群的前期增长,用对数函数描
亿只羊所吃的牧草,草原的载畜率大大降 述后期增长的
低,而牛羊是澳大利亚的主要牲口.这使
澳大利亚头痛不已,他们采用各种方法消
灭这些兔子,直至二十世纪五十年代,科
学家采用载液瘤病毒杀死了百分之九十的

第07讲 函数模型及其应用

普通高中课程标准实验教科书—数学[人教版] 高三新数学第一轮复习教案(讲座7)—函数模型及其应用 一.课标要求: 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义; 2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 二.命题走向 函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。 预测2007年的高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。 (1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题; (2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。 三.要点精讲 1.解决实际问题的解题过程 (1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间 的主、被动关系,并用x、y分别表示问题中的变量; (2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模 型一般都是函数的解析式; (3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择 函数知识求得函数模型的解,并还原为实际问题的解. 这些步骤用框图表示:

范文函数模型的应用实例练习题及答案解析

1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与产量x 的关系,则可选用( ) A .一次函数 B .二次函数 C .指数型函数 D .对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降; 而指数函数是爆炸式增长,不符合“增长越来越慢”; 因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2.某种植物生长发育的数量y A .y =2x -1 B .y =x 2-1 C .y =2x -1 D .y =-+2 解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D. 3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km 的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息: ①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了小时后,追上了骑自行车者. 其中正确信息的序号是( ) A .①②③ B .①③ C .②③ D .①② 解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了小时后,追上了骑自行车者,正确. 4.长为4,宽为3的矩形,当长增加x ,且宽减少x 2 时面积最大,此时x =________,面积S =________. 解析:依题意得:S =(4+x )(3-x 2)=-12 x 2+x +12 =-12(x -1)2+1212,∴当x =1时,S max =1212 . 答案:1 1212 1 ) A .指数函数 B .反比例函数 C .一次函数 D .二次函数 解析:选C.画出散点图,结合图象(图略)可知各个点接近于一条直线,所以可用一次函数表示. 2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩 解析:选=10000×(1+20%)3=17280. 3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格相比,变化情况是( ) A .增加% B .减少% C .减少% D .不增不减 解析:选B.设该商品原价为a , 四年后价格为a (1+2·(1-2=. 所以(1-a ==%a , 即比原来减少了%.

函数模型及其应用

函数模型及其应用 [考纲传真]1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用. 【知识通关】 1.常见的几种函数模型 (1)一次函数模型:y=kx+b(k≠0). (2)反比例函数模型:y=k x+b(k,b为常数且k≠0). (3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0). (4)指数函数模型:y=a·b x+c(a,b,c为常数,b>0,b≠1,a≠0). (5)对数函数模型:y=m log a x+n(m,n,a为常数,a>0,a≠1,m≠0). (6)幂函数模型:y=a·x n+b(a≠0). 2.三种函数模型之间增长速度的比较 (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型; (3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:

[常用结论] 形如f(x)=x+a x(a>0)的函数模型称为“对勾”函数模型: (1)该函数在(-∞,-a]和[a,+∞)内单调递增,在[-a,0]和(0,a]上单调递减. (2)当x>0时,x=a时取最小值2a, 当x<0时,x=-a时取最大值-2a. 【基础自测】 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y=2x与函数y=x2的图象有且只有两个公共点.() (2)幂函数增长比直线增长更快.() (3)不存在x0,使ax0<x n0<log a x0.() (4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).() [答案](1)×(2)×(3)×(4)√ 2.在某个物理实验中,测量得变量x和变量y的几组数据,如下表,则x,y最适合的函数是() x 0.500.992.013.98 y -0.990.010.982.00 C.y=2x-2 D.y=log2x D 3.一个工厂生产一种产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=0.1x2+10x+300(0<x≤240,x∈N),若每台产品的售价为25万元,生产的产品全部卖出,则该工厂获得最大利润(利润=销售收入-产品成本)时的产量是() A.70台B.75台 C.80台D.85台 B

10函数模型及其应用-学生版

1 第 1 页 共 13 页 教学辅导教案 学生姓名 年 级 高一 学 科 数学 上课时间 2017年 月 日 教师姓名 课 题 人教A 版必修一 函数与方程 1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x (1≤x ≤4,x ∈N *)之间关系的是( ) A .y =100x B .y =50x 2-50x +100 C .y =50×2x D .y =100x 2.已知A ,B 两地相距150千米,某人开汽车以60千米/时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (时)的函数解析式是( ) A .x =60t B .x =150-50t C .x =????? 60t ,0≤t ≤2.5 150-50t ,t >3.5 D .x =?? ??? 60t ,0≤t ≤2.5 150,2.5<t ≤3.5150-50t -3.5,3.5<t ≤6.5 3.三个变量y 1,y 2,y 3,随着自变量x 的变化情况如下表: x 1 3 5 7 9 11 y 1 5 135 625 1 715 3 645 6 655 y 2 5 29 245 2 189 19 685 177 149 y 3 5 6.10 6.61 6.985 7.2 7.4 则关于x 分别呈对数函数、指数函数、幂函数变化的变量依次为( ) A .y 1,y 2,y 3 B .y 2,y 1,y 3 C .y 3,y 2,y 1 D .y 1,y 3,y 2 4.若a >1,n >0,那么当x 足够大时,a x ,x n ,log a x 的大小关系是________. 5.如图所示,折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (分)之间的函数关系图象,根据图象填空: (1)通话2分钟,需付的电话费为________元; (2)通话5分钟,需付的电话费为________元; (3)如果t ≥3,则电话费y (元)与通话时间t (分)之间的函数关系式为________.

函数模型及其应用

函数模型及其应用 Hessen was revised in January 2021

函数模型及其应用 一、构建函数模型的基本步骤: 1、审题:弄清题意,分析条件和结论,理顺数量关系; 2、建模:引进数学符号,一般地,设自变量为x,函数为y,必要时引入其他相关辅助变量,并用x、y和辅助变量表示各相关量,然后根据已知条件建立关系式,即所谓的数学模型; 3、求模:利用数学方法将得到的常规函数问题予以解答,求得结果; 4、还原:将所得的结果还原为实际问题的意义,再转译成具体问题的回答。 二、常见函数模型: 1、一次函数模型; 2、二次函数模型; 3、分段函数模型; 4、指数函数模型; 5、对数函数模型; 6、对勾函数模型; 7、分式函数模型。 题型1:一次函数模型 k≠)的图象是一条直线,因而该模型又称为直线模型,当因一次函数y kx b =+(0 k>时,函数值的增长特点是直线上升;当0 k<时,函数值则是直线下降。 例1:某工厂在甲、乙两地的两个分工厂各生产同一种机器12台和6台。现销售给A地10台,B地8台。已知从甲地到A地、B地的运费分别是400元和800元,从乙地到A地、B地的运费分别是300元和500元, (1)设从乙地运x台至A地,求总运费y关于x的函数解析式; (2)若总运费不超过9000元,共有几种调运方案; (3)求出总运费最低的方案和最低运费。

题型2:二次函数模型 a≠)为生活中最常见的一种数学模型,因二次函数可求二次函数2 =++(0 y ax bx c 其最大值(或最小值),故常常最优、最省等最值问题是二次函数的模型。 例2:渔场中鱼群的最大养殖量为m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留下适当的空闲量,已知鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为(0) k k>。 (1)写出y关于x的函数关系式,并指出这个函数的定义域; (2)求鱼群年增长量的最大值; (3)当鱼群的年增长量达到最大值时,求k的取值范围。 例3:某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。 (1)当每辆车的月租金定为3600元时,能租出多少辆车 (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大最大月收益是多少

高中数学教案 必修1 第十一讲:函数模型及其应用

博途教育学科教师辅导讲义(一) 学员姓名: 年级:高一日期:辅导科目:数学学科教师:刘云丰时间:课题第十一讲:函数模型及其应用 授课日期 1、培养学生根据实际问题进行信息综合列出函数解析式; 教学目标 2、会利用函数图象性质对函数解析式进行处理得出数学结论. 教学内容

函数模型及其应用 〖教学重点与难点〗 ◆教学重点:根据实际问题分析建立数学模型和根据实际问题拟合判断数学模型; ◆教学难点:根据数学模型解决实际问题。 〖教学过程〗[来源:https://www.sodocs.net/doc/a29411196.html,] 一、创设情境,导入课题 在课本第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只. 可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚人头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气. 这段话道出了其中的意蕴:对于一个种群的数量,如果在理想状态(如没有天敌、食物充足等)下,那么它将呈指数增长;但在自然状态下,种群数量一般符合对数增长模型. 二、提出问题,探索新知 ①我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时. 设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x). ②A、B两城相距100 km,在两地之间距A城x km处D地建一核电站给A、B两城供电,为保证城市安全.核电站距城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月. 把月供电总费用y表示成x的函数,并求定义域. ③分析以上实例属于那种函数模型.

函数模型及其应用-知识点与题型归纳

熹李节尿莫型-及其应用 ?高考明方向 1. 了解指数函数、对数函数、幕函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类 型增长的含义. 2. 了解函数模型(如指数函数、对数函数、幕函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用? ★备考知考情 1. 利用函数图象刻画实际问题及建立函数模型解决实际问题,是咼考命题的热点. 2. 常与函数的图象、单调性、最值以及基本不等式、导数的应用交汇命题,考查建模能力及分析问题和解决问题的能力. 3. 选择题、填空题、解答题三种题型都有考查,但以解答题为主. 一、知识梳理《名师一号》P35 知识点一几类函数模型

知识点二三种增长型函数之间增长速度的比较 1. 指数函数y= a x(a> 1)与幕函数y= x n(n> 0): 在区间(0,+x )上,无论n比a大多少,尽管在x的一定范围内a x会小于x n,但由于 a x的增长快于x n的增长,因而总存在一个x o,当x>x o时,有a x>x n. 2. 对数函数y= log a x(a> 1)与幕函数y= x n(n>0): 对数函数y= log a x(a> 1)的增长速度,不论a与n值的大小如何,总会慢于y= x n 的增长速度,因而在定义域内总存在一个实数x o,当x >x o时,有log a x v x n 由1、2可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0, +^) 上,总会存在一个X0,当x>X0时,有a x>x n> log a x. 注意:《名师一号》P36问题探究问题1、2 问题1解决实际应用问题的一般步骤是什么?

相关主题