搜档网
当前位置:搜档网 › 手机原理图

手机原理图

手机原理图

手机原理图是描述手机内部组成结构和工作原理的图示。一般包括以下主要组成部分:

1.中央处理器(CPU):负责处理手机的计算、控制和运行各种应用程序。

2.内存(RAM):用于临时存储手机的数据和运行的应用程序。

3.存储器(ROM):用于存储手机的操作系统、预装的应用程序和用户数据。

4.电池:提供电源给手机的各个部件。

5.显示器:用于显示手机界面和应用程序的信息。

6.触摸屏:用于用户输入和操作手机。

7.摄像头:用于拍摄照片和录制视频。

8.通信模块:包括移动通信模块(如GSM、CDMA、LTE 等)和无线局域网模块(如Wi-Fi、蓝牙等),用于手机的通信功能。

9.传感器:包括加速度传感器、陀螺仪、磁力计等,用于手机的感应和定位功能。

10.音频模块:包括扬声器、麦克风和耳机插孔,用于手机的音频功能。

以上是手机原理图的一些主要部分,不同手机品牌和型号可能有所不同,具体原理图可以参考手机的技术规格和设计图。

手机万能充电器原理图

三、我修改过的图纸(我认为原图可能有错误) 四、超力通电路原理 该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。 该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输出电压取样进行控制。因此这种电源也称非周期性开关电源。 220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。由V2和开关变压器组成间歇振荡器。开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。由于正反馈作用,V2 Ic 迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。V2的截止时间与其输出电压呈反比。VD17的导通/截止直接受电网电压和负载的影响。电网电压越低或负载电流越大,VD17的导通时间越短,V2的导通时间越长,反之,电网电压越高或负载电流越小,VD5的整流电压越高,V

手机充电器电路原理图分析(DOC)

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限

制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V 稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出 的功能。 而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速回复管,例如肖特基二极管

电路图英文翻译大全与电路图识别技巧(手机)

一、手机原理图的种类: 手机电路图共分四类:1、方框图;2、整机电原理图;3、元件排列图;4、彩图。 1、方框图: 利用方块形式粗略概述手机的结构与工作原理,方便初学者掌握手机的结构与工作原理,为初学者读懂电原理图打下基础。 2、整机电原理图: 利用电子元件符号清楚表示手机中各元器件的连接和工作原理,方便维修时分析电路原理及故障分析。 3、元件排列图: 利用元件编号在板位图上标明元件所在位置;方便维修时寻找元件在机板上的位置。 4、彩图: 即手机照片,方便维修时对照机板元件缺损、错位、元件方向。 二、手机电路图的读解原则: 1、读图前先要打好电子基础,熟悉各种电子元件符号、特性和用途;电子元件在电路中的接法;电路中电流、电压、电阳之间的关系(欧姆定律)。 2、先读懂方框图,大概了解本机的结构(如用哪种电源结构、哪种时钟电路);然后按所学的原理去分析原理图。 3、读图时应先弄懂直流供电电路,后弄懂交流信号通路。 4、手机电路图是有规律的,一般电源居左下;控制居右下。左射频右逻辑;上收下发中本振。 三、手机电路图的读解方法: 1、电源电路读图要点: 1)、先了解本机属哪种电源结构(分三种);以电源集成块为核心。 2)、从尾插或电池脚开始,找出电池电压(VBATT、B+)输入线;电池电压一般直接供到电源集成块、充电集成块、功放、背光灯、振铃、振动等电路;也可从上述电路往回找。 3)、在电源集成块、键盘、内联座处找到开机触发线(ON/OFF或标有开关符号)。 4)、在电源集成块上找出各路电压输出线(包括电压走向、电压值多少、是恒定的还是跳变的、在哪个元件上可测到该电压)。 1)VDD——逻辑电压给CPU、字库、暂存等电路(1.8V/2.8V) 2)SYN-VCC(XVCC)时钟电压,使13M电路工作(2.8V) 3)A VCC——音频电压(2.8V) 4)VREF——中频电压(2.8V跳变) 5)3VTX——发射电压(3V跳变) 6)SYN-VCC——频合电压(2.8V) 7)VRTC——实时时钟电压(3V) 8)SIM-VCC——SIM卡电路电压(3V/5V跳变) 9)RST(PURX)——复位信号(0-2.8V) 4)、在CPU与电源集成块间找到开机维持线(WD-CP、WA TCCH DOG)。 5)、从键盘、电源集成块旁边的开关符号到CPU找到关机检测线。 2)、充电电路读图要点: 1)、以电源集成块或充电集成块为核心,找到充电电路。 2)、从充电接口(尾插)到电源集成块或充电集成块找出外电输入线 3)、从外电输入线(DC-IN)到CPU(或电源)找到充电检测线(CHECK)。 4)、从CPU(或电源)到充电集成块找到充电开关控制线(CHARG-ON)。 5)、从充电集成块(或电源)到电池脚(VBATT)找到充电压输出线。 6)、从电池脚(VBA TT)到CPU(或电源)找到电池电量取样线。 3、13M时钟电路读图要点: 1)、以13 M晶体为核心,在中频或本振旁找到13M电路;分清属哪种电路结构。 2)、从电源到晶体电路,找出13M电路供电线(SYNCLK-VCC、XVCC)。 3)、从晶体到中频,从中频到CPU,找出13M的走向。一般13M走向: a)经放大后送给CPU作运行时钟。

手机充电器原理图

一款手机充电器用电源变换器电路的分析 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。 原理图如下: 前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速恢复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。

手机充电器原理图

一款手机充电器用电源变换器电路的分析 这个电路有稳压和限流功能,正好做LED驱动电源。磁芯改为EE19,线圈的匝数不知道怎么数,准备估计着多试试几次。另外查了一下,EE19功率是10W(50KHZ),功率应该够了吧。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管 13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。 由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管 C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而

烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003 的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的 1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。 原理图如下: 前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速恢复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。

手机充电器原理图详解

手机充电器电路图讲解 作者:分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这 个电路的结构 来看,可以推测 出来,这个电源 应该是反激式 的。左端的 510KΩ为启动 电阻,给开关管 提供启动用的 基极电流。 13003下方的10 Ω电阻为电流 取样电阻,电流 经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。 而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。 同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流

实用手机万能充电器电路原理图和分析说明

手机万能充电器 由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。 四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯TEST是否亮。若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T 1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T1-1初级绕组中有电流通过。由于正反馈作用,在变压器T 1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T 1-1初级绕组中产生的磁通量也开始减少。在变压器T 1-2绕组感应的反向电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T1-3绕组就感应出一个5.5V左右的交流电压,经VD3整流为直流电压,作为后级的充电电压。 2.充电电路 该电路主要由一块软塑封集成块IC1(YLT539)和三极管VT3等组成。从变压器T1-3绕组感应出的交流电压5.5V经二极管VD3整流、电容C3滤波后,输出一个直流8.5V左右电压(空载时),该电压一部分加到三极管VT3的e极;另一部分送到软塑封集成块IC1(YLT539)的1脚,为其提供工作电源。

手机各部分电路的结构

手机各部分电路的结构 第一节 逻辑电控制电路的结构和原理 一、该节重点。 1、了解逻辑电路的结构; 2、名元件的功能和作用; 3、逻辑电路的工作原理。 二、电路分析。 1、逻辑电路的结构: 普通GSM 手机的逻辑电路都是由CPU 、码片、字库、暂存器第组成。(如下图) 总线 电源(VCC) 13M 时钟 复位(RST ) 逻辑电路的结构图 2、各元件的功能和作用: 1)CPU 。 CPU 是整机的指挥中心。相当人的大脑,控制整机协调工作。其结合码片,字库,暂存器,根据软件指令送出相应控制电压去启动各电路工作(如灯光控制,接收发射控制等)。 CPU 暂存器 字库 字库 码片

CPU的工作条件: a) 1.8V或2.8V逻辑电压。 b) 13M时钟信号。 c) 2.8V复位电压。 值得注意的是:目前有些手机把音频,照相,MP3,MP4等功能IC也集成在CPU内部,使CPU的功能更多元化。典型型号有:大M6217,6218,,6219,6226等等。 2)码片(EEPROM)。 手机的一种存储器,主要存储手机的机身串号,检测程序(如电池电量检测),各种表格(如功率等级表),关机程序,用户电话另码等等。其内部资料可更改。容量比字库小。 3)字库(EPROM)。 和码片一样也是一种存储器,主要存储各种符号,显示字符,开机程序等等,其内部资料也可更改。其容量比码片大。4)暂存器(RAM)。 在逻辑电路工作时,为数据和信息在存输中提供一个存放空间。若运行过程中断电或退出,它存放的资料就会消失。 值得注意:目前大部分手机的码片和字库合成为一体,统称字库。典型型号有:28F320B3B。更有把码片、字库和暂存合成为一体,统称暂存。其典型型号有84VD22183EE等等。5)总线。 所谓总线就是CPU、字库、暂存器之间相互传输信息数据的通信线路。其分为: (1)地址线:CPU向储存器发送信息的线路,只能单向传输。 有16条,由A0--A15组成。 (2)数据线:CPU和储存器双向传输信息的线路。有8条,由A0--D7组成。 (3)控制线:CPU向储存器发送控制指令的线路。如:片选信号(CE)——CPU唤醒暂存器工作控制电压信号。允许读信

手机电路原理图

手机电路原理图 引言 手机电路原理图是指手机内部电路的逻辑图,它显示了各个组件和元件之间的连接方式和电流流动方向。了解手机电路原理图对于理解手机的工作原理以及进行维修和排除故障非常重要。本文将介绍手机电路原理图的基本知识和常见元件的连接方式。 手机电路原理图的基本结构 手机电路原理图通常由多个模块组成,每个模块负责不同的功能。以下是手机电路原理图的几个常见模块: 1.CPU模块:负责手机的计算和控制功能,包括处理 器、存储器和输入输出接口等。 2.通信模块:负责手机的无线通信功能,包括基带芯 片、射频芯片和天线等。 3.显示模块:负责手机的显示功能,包括显示屏驱动 电路和触摸屏控制电路等。

4.电源模块:负责为手机提供电源,包括电池管理电 路和充电电路等。 5.音频模块:负责处理手机的音频输入和输出,包括 麦克风、扬声器和耳机接口等。 这些模块之间通过电路连接,形成一个完整的手机电路系统。 手机电路原理图中的常见元件 手机电路原理图中有许多常见的元件,下面是其中几种常见元件的连接方式和功能: 1.电阻器:用于限制电流流动,通常用来稳定电路。 2.电容器:用于存储和释放电荷,通常用来滤波和储 能。 3.晶体管:用于放大和开关电流,常用于逻辑电路和 放大电路。 4.二极管:用于整流和保护电路,常用于电源管理和 信号处理。

5.变压器:用于改变电压大小和电流方向,常用于电 源适配和信号传输。 6.集成电路:由多个元件集成到一个芯片中,常用于 实现复杂功能。 这些元件按照电路原理图中的符号进行表示,通过电路图 上的连接线连接起来,构成具体的电路。 如何理解手机电路原理图 理解手机电路原理图需要掌握一些基本的电子电路知识, 例如电压、电流和电阻等。下面是一些提高理解手机电路原理图的方法: 1.学习基本电子电路理论:了解电子元件的基本原理 和功能。 2.分析电路结构:查找电路中的各个元件,理解它们 的连接方式和作用。 3.研究电路信号流动路径:追踪电流在电路中的路径, 了解信号是如何在各个模块之间传输的。

手机棱镜的应用和原理图

手机棱镜的应用和原理图 1. 引言 手机棱镜是一种透明的材料,通常由玻璃或塑料制成,具有棱镜形状。它在手机摄像头的镜头上使用,可以改变光线的传播路径,从而实现不同的应用。本文将介绍手机棱镜的应用领域以及其原理图。 2. 手机棱镜的应用 手机棱镜的应用十分广泛,下面列举了几个常见的应用领域: 2.1 摄影和视频拍摄 手机棱镜在摄影和视频拍摄中起着重要的作用。它可以在光线进入摄像头之前将光线折射,使得画面更加清晰、饱满。此外,手机棱镜还可以改变光线的传播路径,为拍摄不同角度的照片和视频提供了可能。 2.2 光学传感器 手机棱镜还可以用于光学传感器中。光学传感器是一种能够检测光线强度、颜色等信息的传感器。通过将光线引入手机棱镜,再引入光学传感器,可以提高传感器的灵敏度和准确性。 2.3 增强现实(AR)应用 增强现实是一种通过在真实世界中叠加虚拟物体以增强感知的技术。手机棱镜可以用于AR应用中,将虚拟物体的影像引入手机摄像头,使用户能够在手机屏幕上看到与真实世界交互的虚拟物体。 2.4 光通信 手机棱镜在光通信中也发挥重要作用。光通信是一种通过光信号传输数据的技术,具有高速、大带宽等优点。手机棱镜可以在光信号的传输过程中对信号进行调整和控制,提高光通信的性能。 2.5 光学传输和显示 手机棱镜还可以用于光学传输和显示领域。光学传输是指通过光线传输数据或信息,例如光导纤维传输电话信号等。光学显示是一种使用光来形成图像的显示技术,例如投影仪等。手机棱镜可以在这些领域中改变光线的传播路径,提高传输和显示的效率和质量。

3. 手机棱镜的原理图 手机棱镜的原理图如下所示: /| / | /__| / | / | / | /______| 手机棱镜的基本原理是光的折射。当光线从一个介质进入另一个介质时,会发生折射现象。手机棱镜利用了折射现象,通过改变光线的传播路径来实现不同的功能。 手机棱镜通常呈三棱形状,其中两个面是三角形,而另一个面是长方形。光线进入手机棱镜的一个面后,会经过折射,然后在棱镜内部多次反射,最后从另一个面射出。通过改变棱镜的形状和角度,可以改变光线的传播路径和折射角度。 4. 总结 手机棱镜是一种在手机摄像头镜头上使用的透明材料,具有棱镜形状。它在摄影、光学传感器、增强现实、光通信和光学传输等领域有广泛的应用。手机棱镜的原理是通过光的折射来改变光线的传播路径。手机棱镜的应用和原理图对于理解手机摄影和其他光学应用具有重要的意义。

手机充电宝原理电路图

手机充电宝原理电路图 手机充电宝原理电路图如下: 图中1MS为拨动开关:向上拨为照明。 中挡位为照明断开位置也是充电位置,向下为充电器充电输出及电源灯。LED4,LED7为高亮度发光的二极管用作照明。 LED2绿色发光二极管作为电池充电指示。 LED3为用市电充电时作电源监视指示和照明。 该开关电源部分U1采用NcP1000P集成电路,引脚数据?脚为vcc、?脚为反馈、?、?、?、?脚为地端、?脚为启动电压输入端、?脚为环路。U2EL817为光电耦合器(U3TL431和U1 NCP1000P及U2EL817组成稳压电路( 又一个电路图

亚力通万能充电器 亚力通万能充电器是比较典型的一款手机充电器,它将市电220V电源经一支1N4007二极管整流后,送到变频、偶和变压器和三管(13001)、三极管C1815、Z1稳压管竺元件组成的振荡电路。通过变压器次级绕组感应低压电源,经二极管整流、C4电容滤波后送到开关管(8550)然后输出,开关管受IC(YLT539)的控制,同时控制LED指示灯,以确定电池的充电程度。较好的万能充还可以用光电偶合管反馈充电程度用以控制电源的输入(如科奈信手机万能充电器)。

请解释一下这张手机充电器的电路图,详细点,谢谢,附图 是啊,本人基础比较差点,而且又扔下几年了,谢谢大家的回答帮助,感激不禁啊,可惜不能把分数没人都分一些,每个人回答的我都从中学到了不少东西,分数就给solank老师吧,他给我提供了很多开关电源的资料,同时也特别感谢一下rgbe2009老师向左转|向右转 2010-04-05 11:23 提问者采纳 请hi我,详细回复你

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

智能手机基带处理器电路原理

智能手机基带处理器电路原理 在普通手机中,通常将MCU(Micro Control Unit,微控制电路)、DSP( (Digital Signal Processing,数字信号处理)、ASIC(Application Specific Integrated Circuit,专用集成电路)电路集成在一起,得到数字基带信号处理器;将射频接口电路、音频编译码电路及一些ADC(模拟至数字转换器)、DAC(数字至模拟转换器)电路集成在一起,得到模拟基带信号处理器。 在智能手机中,一般是将数字基带信号处理器和模拟基带信号处理器集成在一起,称为基带处理器。不论移动电话的基带电路如何变化,它都包MCU 电路(也称CPU 电路)、DSP电路、ASIC 电路、音频编译码电路、射频逻辑接口电路等最基本的电路。 我们可以这样理解智能手机的无线部分,我们将智能手机无线部分电路再分为两部分,一部分是射频电路,完成了信号从天线到基带信号的接收和发射处理;一部分是基带电路,完成了信号从基带信号到音频终端(听筒或送话器)的处理。这样看来,基带处理器的主要工作内容和认为就比较容易理解了。 以基带处理器电路PMB8875 为例,框图如图1所示。 图1 基带处理器电路PMB8875 框图

1、模拟基带电路 模拟基带信号处理器(ABB)又被称为话音基带信号转换器,包含手机中所有的ADC与DAC 变换器电路。 模拟基带信号处理器包含基带信号处理电路、话音基带信号处理电路(也称音频处理电路)、辅助变换器单元(也被称为辅助控制电路)。 (1)基带信号处理电路 基带信号处理电路将接收射频电路输出的接收机基带信号RXIQ 转换成数字接收基带信号,送到数字基带信号处理器DBB。 在发射方面,该电路将DBB 电路输出的数字发射基带信号转换成模拟的发射基带信号TXIQ,送到发射射频部分的IQ 调制器电路。 基带信号处理电路是用来处理接收、发射基带信号的,连接数字基带与射频电路——射频逻辑接口电路,在基带方面,通过基带串行接口连接到数字基带信号处理器;在射频方面,它通过分离或复合的IQ 信号接口连接到接收I/Q 解调与发射I/Q 调制电路。 接收基带信号处理框图如图2所示。 图2接收基带信号处理框图 发射基带信号处理框图如图3所示。

GSM手机原理框图

蜂窝移动通信系统 GSM系统概述 GSM数字移动通信系统是由欧洲主要电信运营者和制造厂家组成的标准化 委员会设计出来的,它是在蜂窝系统的基础上发展而成。 蜂窝系统的概念和理论在二十世纪六十年代就由美国贝尔实验室等单位提了出来,但其复杂的控制系统,尤其是实现移动台的控制直到七十年代随着半导体技术的成熟,大规模集成电路器件和微处理器技术的发展以及表面贴装工艺的广泛应用,才为蜂窝移动通信的实现提供了技术基础。直到1979年美国在芝加哥开通了第一个AMPS(先进的移动电话业务)模拟蜂窝系统,而北欧也于1981年9月在瑞典开通了NMT(Nordic 移动电话)系统,接着欧洲先后在英国开通TACS系统,德国开通C-450系统等。 蜂窝移动通信的出现可以说是移动通信的一次革命。其频率复用大大提高了频率利用率并增大系统容量,网络的智能化实现了越区转接和漫游功能,扩大了客户的服务范围。 GSM系统的组成 蜂窝移动通信系统主要是由交换网路子系统(NSS)、无线基站子系统(BSS)和移动台(MS)三大部分组成,如图1所示。其中NSS与BSS之间的 接口为“A”接口,BSS与MS之间的接口为“Um”接口。在模拟移动通信系统中,TACS规范只对Um接口进行了规定,而未对A接口做任何的限制。因此,各设备生产厂家对A接口都采用各自的接口协议,对Um接口遵循TACS规范。也就是说,NSS系统和BSS系统只能采用一个厂家的设备,而MS可用不同厂家的设备。 图1 蜂窝移动通信系统的组成 由于GSM规范是由北欧一些运营公司“炒”出的规范,运营公司当然喜欢花最少的投资,用最好的设备来建最优良的通信网,因此GSM规范对系统的各个接口都有明确的规定。也就是说,各接口都是开放式接口。 GSM系统框图如图2,A接口往右是NSS系统,它包括有移动业务交换中心(MSC)、拜访位置寄存器(VLR)、归属位置寄存器(HLR)、鉴权中心(AUC)和移动设备识别寄存器(EIR),A接口往左Um接口是BSS系统,它包括有基站控制器(BSC)和基站收发信台(BTS)。Um接口往左是移动台部分(MS),其中包括移动终端(MS)和客户识别卡(SIM)。

手机电路原理

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

相关主题