搜档网
当前位置:搜档网 › 一种点云数据噪声点的随机滤波处理方法

一种点云数据噪声点的随机滤波处理方法

一种点云数据噪声点的随机滤波处理方法
一种点云数据噪声点的随机滤波处理方法

一种点云数据噪声点的随机滤波处理方法

董明晓;郑康平

【期刊名称】《中国图象图形学报》

【年(卷),期】2004(009)002

【摘要】目前逆向工程中广泛采用激光扫描法来获取数据,测量过程中不可避免地混有不合理的噪声点,导致重构的曲线、曲面不光滑,因此,需要去除数据中的噪声点.对激光线扫描法获取数据的噪声点处理方法进行了研究.噪声点处理方法与点云数据的排列形式有关,通过对点云数据噪声数学模型的分析,认为激光线扫描法获取数据时,噪声点的产生主要是由随机误差引起的,其特点是幅值大,在光刀扫描线上引起较大的尖峰,据此提出一种简单、快速、实用的降噪方法--随机滤波法.该方法通过比较连续点之间的相对位置,给定一个阈值,将其中位置起伏较大的点判定为噪声点并予以去除.通过实例验证该方法能满足曲线、曲面重构的要求.

【总页数】4页(245-248)

【关键词】曲面重构;点云数据;数据预处理;噪声误差

【作者】董明晓;郑康平

【作者单位】山东建筑工程学院,济南,250014;西安交通大学,西安,710049【正文语种】中文

【中图分类】TP391.72

【相关文献】

1.基于双边滤波的点云数据预处理方法 [J], 公羽; 吕志鹏

2.一种基于曲面约束的点云数据滤波方法 [J], 尚大帅; 黎恒明; 赵羲

融合点、对象、关键点等3种基元的点云滤波方法

一2016年11月A c t aG e o d a e t i c ae tC a r t o g r a p h i c aS i n i c a N o v e m b e r,2016一一第45卷一第11期测一绘一学一报V o l.45,N o.11引文格式:林祥国,张继贤,宁晓刚,等.融合点二对象二关键点等3种基元的点云滤波方法[J].测绘学报,2016,45(11):1308G1317.D O I:10.11947/j.A G C S.2016.20160372. L I N X i a n g g u o,Z HA N GJ i x i a n,N I N G X i a o g a n g,e ta l.F i l t e r i n g o fP o i n tC l o u d sU s i n g F u s i o no fT h r e eT y p e so fP r i m i t i v e s I n c l u d i n g P o i n t s,O b j e c t sa n d K e y P o i n t s[J].A c t aG e o d a e t i c ae tC a r t o g r a p h i c aS i n i c a,2016,45(11):1308G1317.D O I:10. 11947/j.A G C S.2016.20160372. 融合点二对象二关键点等3种基元的点云滤波方法 林祥国,张继贤,宁晓刚,段敏燕,臧一艺 中国测绘科学研究院,北京100830 F i l t e r i n g o fP o i n tC l o u d sU s i n g F u s i o no fT h r e eT y p e so fP r i m i t i v e s I n c l u d i n g P o i n t s,O b j e c t sa n dK e y P o i n t s L I NX i a n g g u o,Z H A N GJ i x i a n,N I N GX i a o g a n g,D U A N M i n y a n,Z A N GY i C h i n e s eA c a d e m y o f S u r v e y i n g a n dM a p p i n g,B e i j i n g100830,C h i n a A b s t r a c t:P r i m i t i v e,b e i n g t h eb a s i c p r o c e s s i n g u n i t,i s o n eo f t h e k e y f a c t o r s t od e t e r m i n e t h ea c c u r a c y a n de f f i c i e n c y o f p o i n t c l o u d f i l t e r i n g.T r i a n g u l a r i r r e g u l a r n e t w o r k(T I N)p r o g r e s s i v ed e n s i f i c a t i o n(T P D) a n do b j e c tGb a s e dT I N p r o g r e s s i v ed e n s i f i c a t i o n(O T P D)a r et w oe x i s t i n g f i l t e r i n g m e t h o d s,b u ts i n g l e p r i m i t i v e i s e m p l o y e db y t h e m.Am u l t i p l eGp r i m i t i v e sGb a s e dT I N p r o g r e s s i v ed e n s i f i c a t i o n(M P T P D)f i l t e r i n g m e t h o d i s p r o p o s e d.I t i s c o m p o s e do f t h r e e k e y s t a g e s,i n c l u d i n gp o i n t c l o u d s e g m e n t a t i o n,e x t r a c t i o no f k e y p o i n t s o f o b j e c t s,t h e k e yGp o i n t sGb a s e d j u d g i n g o f t h eo b j e c t s.S p e c i f i c a l l y,p o i n t,o b j e c t a n d t h ek e y p o i n t sa r et h e p r i m i t i v eo ft h e a b o v et h r e es t a g e sr e s p e c t i v e l y.F o u rt e s t i n g d a t a s e t s,i n c l u d i n g t w o a i r b o r n e L i D A Ra n d t w o p h o t o g r a m m e t r i c p o i n t c l o u d s,a r eu s e d t ov e r i f y t h eo v e r a l l p e r f o r m a n c e so f t h e a b o v e t h r e e f i l t e r i n g m e t h o d s.E x p e r i m e n t a l r e s u l t s s u g g e s t t h a t t h e p r o p o s e dM P T P Dh a s t h eb e s t o v e r a l l p e r f o r m a n c e.I nt h ev i e w p o i n to fa c c u r a c y,M P T P D a n d O T P D h a v et h es i m i l a ra c c u r a c y.M o r e o v e r, c o m p a r e dw i t h t h eT P D,M P T P D i sa b l e t o r e d u c eo m i s s i o ne r r o r sa n d t o t a l e r r o r sb y22.07%a n d8.44%r e s p e c t i v e l y.I n t h ev i e w p o i n to fe f f i c i e n c y,u n d e rm o s to f t h ec a s e s,T P Di s t h eh i g h e s t,M P T P Di s t h e s e c o n d,a n dO T P D i s t h es l o w e s t.M o r e o v e r,t h e t o t a l t i m ec o s t o fM P T P D i so n l y57.93%o f t h eo n eo f O T P D. K e y w o r d s:f i l t e r i n g;L i D A R p o i n t c l o u d;p h o t o g r a m m e t r i c p o i n t c l o u d;o b j e c t s;t r i a n g u l a r i r r e g u l a r n e t w o r k F o u n d a t i o n s u p p o r t:T h eN a t i o n a l N a t u r a l S c i e n c e F o u n d a t i o n s o f C h i n a(N o.41371405);T h e F o u n d a t i o n f o r R e m o t eS e n s i n g Y o u n g T a l e n t sb y t h e N a t i o n a l R e m o t e S e n s i n g C e n t e r o f C h i n a;T h e B a s i c R e s e a r c h F u n d o f t h eC h i n e s eA c a d e m y o f S u r v e y i n g a n dM a p p i n g(N o.777161103) 摘一要:基元是影响点云滤波精度和效率的关键因素之一.本文提出了一种基于多基元的三角网渐进加密(M P T P D)滤波方法.它包括点云分割二对象关键点提取二基于关键点的对象类别判别3个主要阶段,且3个阶段的基元分别为点二对象二关键点.使用了4景机载激光雷达和摄影测量点云数据对M P T P D二三角网渐进加密(T P D)二基于对象的三角网渐进加密(O T P D)3种滤波方法进行了性能测试.试验表明,M P T P D方法具有整体上最优的性能:在精度方面,M P T P D与O T P D两种方法的精度相当, M P T P D方法的一类误差I二总误差T比T P D的相应误差分别低约22.07%和8.44%;在效率方面,多数情况下T P D二M P T P D二O T P D方法的效率依次降低,且M P T P D的平均耗时是O T P D平均耗时的57.93%. 关键词:滤波;激光雷达点云;摄影测量点云;对象;三角网 中图分类号:P237一一一一文献标识码:A一一一一文章编号:1001G1595(2016)11G1308G10 基金项目:国家自然科学基金(41371405);遥感青年科技人才创新资助计划;中国测绘科学研究院基本

心电数据处理与去噪

燕山大学 课程设计说明书题目心电数据处理与去噪 学院(系):电气工程学院 年级专业: 11级仪表一班 学号: 110103020036 学生姓名:张钊 指导教师:谢平杜义浩 教师职称:教授讲师

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年7月 5 日

摘要 (2) 第1章设计目的、意义 (3) 1.1 设计目的 (3) 1.2设计内容 (3) 第2章心电信号的频域处理方法及其分析方法 (4) 2.1小波分析分析 (4) 2.2 50hz工频滤波分析 (10) 第3章 GUI界面可视化 (14) 学习心得 (15) 参考文献 (15)

信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电 它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 关键字:信号处理心电信号Matlab

第一章设计目的、意义 1 设计目的 进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。课程设计的主要目的: (1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。 (2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。 (3)培养学生综合分析问题、发现问题和解决问题的能力。 (4)培养学生用maltab处理图像与数据的能力。 2 设计内容 2.1 设计要求: 要求设计出心电数据处理的处理与分析程序。 (1) 处理对象:心电数据; (2) 内容:心电数据仿真,心电数据处理(仿真数据,真实数据); (3) 结果:得到处理结果。 2.2 设计内容: (1)心电数据仿真; (2)心电数据处理; (3)分析处理结果。 (4)可视化界面设计 2.3 实验原理 2.3.1心电产生原理 我们常说的心电图一般指体表心电图,反映了心脏电兴奋在心脏传导系统中产生和传导的过程。正常人体的每一个心动周期中,各部分兴奋过程中

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

数字图像去噪典型算法及matlab实现

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 代码 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5

LIDAR点云数据全自动滤波算法研究

2016年一一1月郑州大学学报(工学版) Jan.一2016第37卷一第1期Journal of Zhengzhou University (Engineering Science)Vol.37一No.1 一一收稿日期:2015-04-02;修订日期:2015-10-28 一一基金项目:国家自然科学基金青年基金资助项目(41404096);河南省教育厅基金资助项目(14A420002,15A420002)一一作者简介:李健(1983 ),男,河南孟州人,郑州大学讲师,博士,主要从事点云数据处理,E-mail:jianli@https://www.sodocs.net/doc/a75901291.html,.一一 引用本文:李健,方宏远,崔雅博,等.LIDAR 点云数据全自动滤波算法研究[J].郑州大学学报(工学版),2016,37 (1):92-96. 一一文章编号:1671-6833(2016)01-0092-05 LIDAR 点云数据全自动滤波算法研究 李一健1,方宏远1,崔雅博2,范一涛3 (1.郑州大学水利与环境学院,河南郑州450001;2.开封大学实验实训中心,河南开封475004;3.河南省地质环境监测院,河南郑州450001) 摘一要:提出了一种基于移动最小二乘法的点云数据全自动滤波算法,该方法首先对LIDAR 点云数据进行合理分块,并建立分块网格的动态四叉树空间索引,便于数据操作和管理.对分块网格中的点云数据利用精简移动最小二乘法拟合出参考地形,将拟合得到的参考地形用于LIDAR 点云高程阈值的迭代计算,将每次迭代前后高差小于阈值的点划为地面点,其余点划分为非地面点,迭代运算直至阈值满足要求为止.实验表明,精简移动二乘法效率高,计算量小,并且精度高,适合点云数据DEM (digital eleva-tion model )拟合,利用该算法对LIDAR 点云数据进行滤波的速度快二精度高,能够有效地识别地面点和非地面点,并保留地形的细节信息. 关键词:点云数据;数字地面模型;滤波算法;动态四叉树;移动最小二乘法 中图分类号:P237一一一文献标志码:A一一一doi :10.3969/j.issn.1671-6833.201504004 0一引言 随着激光技术的快速发展和完善,激光数据在众多领域得到了广泛的应用.由于激光能在短时间内获得地物三维坐标信息,并且数据量极大,故而如何快速从海量LIDAR 点云数据中提取有用的信息是目前研究的热点和难点[1].国内外许多学者都对点云滤波进行了讨论和研究,并且提出了许多滤波算法,包括基于数学形态学的滤波算法 [2-3] 二基于坡度的滤波算法 [4-6] 二基于TIN 的 渐进加密算法 [7-8] 等,都取得了一些研究成果,但 其中还存在一些问题尚未解决.不管是机载LI-DAR 数据还是地面LIDAR 数据大部分是基于激光点云中高程突变信息进行滤波,假定点云中高程低的点为地面点,高程较高的点为非地面点,由于系统误差的存在,这种情况未必完全正确.另外一些滤波算法适用范围有限.从上述问题可看出,提出一种简单二快速二适用范围广二效率高的点云滤波算法是非常必要的[9]. 由于激光点数据量大,并且点云数据的不规 则二散乱复杂等性质决定了点云数据处理工作的复杂困难[10-11].针对LIDAR 点云数据的特点,笔 者提出了先将点云数据进行网格分块,保证点云数据的原始性,减少单次数据处理量.对分块数据建立空间索引,提高点云数据处理的效率. 1一关键技术与算法 1.1一LIDAR 点云数据的滤波流程 将海量激光点云分块并建立相应的空间索引 关系后,进行地物的自动过滤处理,滤波要考虑当前点所在的网格,并对其进行计算,每次计算的结果再以索引的方式动态存储,作为下次迭代计算的基础数据,具体滤波流程如图1所示. 1.2一点云数据的网格分块与动态四叉树空间索引 为了进行激光点云的海量数据管理二处理与显示,对激光点云分块处理显得尤为必要.分块的大小直接影响到数据处理层次及深度,相应地影响算法的效率.分块越小,分割越细,效率就越低,其合并的区域相对增大,数据的压缩比就越高;反之,效率就越高,而压缩比相对降低.最小格网大小的选择应是最小采样间距的整数倍,具体数值的确定取决于被测对象的复杂度二仪器的最小采样间距以及期望的数据压缩比.

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件内部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法

是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在 f?sf(x,y),其中,s为模板,M为该点上的灰度g(x,y),即g x,y=1 M 该模板中包含当前像素在内的像素总个数。这种算法简单,处理速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。

点云数据去噪光顺的基本原理

点云数据去噪光顺的基本原理 近几年来三维模型获取的软硬件技术正不断深入,人们可以通过多种数据采样方法来获取现实物体的计算机表示,并对之进行预处理,加工,分析和应用。在获取数据的过程中,因为人为的扰动或者扫描仪本身的缺陷使得生成三维数据往往带有噪声,从而使所获得的测量数据与实物存在一定的偏差,因此在对实测三维数据进行相关数字几何处理和应用之前必须对其进行去噪光顺。点云的去噪光顺是三维数据预处理和建模的重要环节,目的是有效剔除噪声点、使重建表面模型光顺平滑,并保持采样表面原有的拓扑和几何特征不变。 一、点云的概念和分类 点云就是使用各种三维数据采集仪采集得到的数据,它记录了有限体表面在离散点上的各种物理参量。根据点云中点的分布特点(如排列方式、密度等)将点云可分为: a.散乱点云:测量点没有明显的几何分布特征,呈散乱无序状态。随机扫描方式下的CMM、 激光点测量等系统的点云呈现散乱状态。 b.扫描线点云:点云由一组组扫描线组成,扫描线上的所有点位于扫描平面内。CMM、激光 点三角测量系统沿直线扫描的测量数据和线结构光扫描测量数据呈现该特征。 c.网格化点云:点云中所有点都与参数域中一个均匀网格的顶点对应。将CMM、激光扫描系 统、投影光栅测量系统及立体视差法获得的数据经过网格化插值后得到的点云即为网格化点云。 d.多边形点云:测量点分布在一系列平行平面内,用小线段将同一平面内距离最小的若干 相邻点依次连接可形成一组有嵌套的平面多边形。莫尔等高线测量、工业CT、层切法、磁共振成像等系统的测量点云呈现多边形特征。 此外,测量点云按点的分布密度可分为高密度和低密度点云。CMM的测量点云为低密度点云,通常在几十到几千个点。而测量速度及自动化程度较高的光学法和断层测量法获得的测量数据为高密度点云,一般可达几百万点。 二、异常点的剔除 在曲面造型中,数据中的“跳点”和“坏点”对曲线的光顺性影响较大。“跳点”也叫做失真点,通常是由于测量设备的标定参数发生改变和测量环境突然变化造成的。因此测量数据的预处理首先是从数据点集中找出可能存在的“跳点”。如果在同一截面的数据扫描中,存在一个点与其相邻的点偏距较大,可以认为这样的点是“跳点”,判断“跳点”的方法有以下3种。 a.直观观察法:通过图形终端,用肉眼直接将与截面数据点集偏离较大的点或存在于屏幕 上的孤点剔除。这种方法适合于数据的初步检查,可以从数据点集中筛选出一些偏差比较大的异常点。 b.曲线检查法。通过截面的首末数据点, 用最小二乘法拟合得到一条样条曲线, 曲线的阶 次可根据曲面截面的形状决定, 通常为3 ~ 4 阶, 然后分别计算中间数据点P i到样条曲线的距离‖e‖,如果‖e‖≥[ε]([ε] 为给定的允差),则认为P i是坏点,应予以剔除(见图1)。

图像滤波去噪处理

摘要 图像是信息社会人们获取信息的重要来源之一。在通过图像传感器将现实世界中的有用图像信号进行采集、量化、编码、传输、恢复的过程中,存在大量影响图像质量的因素。因此图像在进行使用之前,一般都要经过严格的预处理如去噪、量化、压缩编码等。噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。图像处理技术在20世纪首先应用于图像的远距离传送,而改善图像质量的应用开始于1964年美国喷气动力实验室用计算机对“徘徊者七号”太空船发回的月球照片进行处理,并获得巨大成功。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要。 因此我选择图像去噪方面进行了解及研究,现将自己已了解的知识进行汇总。

目录 摘要 (2) 一、图像滤波的应用 (4) 二、均值滤波 (5) 2.1 均值滤波的思想 2.2 均值滤波的算法 2.3 均值滤波的实验结果 三、中值滤波 (7) 3.1 中值滤波的思想 3.2 中值滤波的算法 3.3 中值滤波的实验结果 四、维纳滤波 (8) 4.1 维纳滤波的思想 4.2 维纳滤波的算法 4.3 维纳滤波的实验结果 五、小波变换 (9) 5.1 小波变换滤波的思想 5.2 小波变换滤波的算法 5.3 小波变换滤波的实验结果 六、Contourlet变换的图像去噪 (11) 6.1 Contourlet变换的基本思想 6.2Contourlet变换的算法 七、全变差正则化的Shearlet收缩去噪 (12) 7.1 Shearlet收缩去噪原理简介 7.2 Shearlet收缩去噪算法 八、结果分析及自己的收获 (12) 8.1结果分析 8.2自己的收获 参考文献 (13)

MATLAB图像滤波去噪分析及其应用

《MATLAB图像滤波去噪分析及其应用》,双线性滤波、Kirsch滤波、超限邻域滤波、逆滤波、双边滤波、同态滤波、小波滤波、六抽头滤波、约束最小平方滤波、非线性复扩散滤波、Lee滤波、Gabor滤波、Wiener 滤波、Kuwahara滤波、Beltrami流滤波、Lucy Richardson滤波、NoLocalMeans滤波等研究内容。 《MATLAB图像滤波去噪分析及其应用》全面而系统地讲解了MATLAB图像滤波去噪分析及其应用;结合算法理论,详解算法代码(代码全部可执行且验证通过),以帮助读者更好地学习本书内容。对于网上讨论的大部分疑难问题,本书均有涉及。 第1章图像颜色空间相互转换与MATLAB实现 1.1图像颜色空间原理 1.1.1RGB颜色空间 1.1.2YCbCr颜色空间 1.1.3YUV颜色空间 1.1.4YIQ颜色空间 1.1.5HSV颜色空间 1.1.6HSL颜色空间 1.1.7HSI颜色空间 1.1.8CIE颜色空间 1.1.9LUV颜色空间 1.1.10LAB颜色空间 1.1.11LCH 颜色空间 1.2颜色空间转换与MATLAB实现 1.2.1图像YCbCr与RGB空间相互转换及MATLAB实现 1.2.2图像YUV与RGB空间相互转换及MATLAB实现 1.2.3图像YIQ与RGB空间相互转换及MATLAB实现 1.2.4图像HSV与RGB空间相互转换及MATLAB实现 1.2.5图像HSL与RGB空间相互转换及MATLAB实现 1.2.6图像HSI与RGB空间相互转换及MATLAB实现 1.2.7图像LUV与RGB空间相互转换及MATLAB实现 1.2.8图像LAB与RGB空间相互转换及MATLAB实现 1.2.9图像LCH 与RGB空间相互转换及MATLAB实现 第2章图像噪声概率密度分布与MATLAB实现 2.1噪声概率密度分布函数 2.1.1均匀分布 2.1.2正态分布 2.1.3卡方分布 2.1.4F分布 2.1.5t分布 2.1.6Beta分布 2.1.7指数分布 2.1.8Gamma分布 2.1.9对数正态分布 2.1.10瑞利分布 2.1.11威布尔分布

点云滤波方法

点云滤波方法-CAL-FENGHAI.-(YICAI)-Company One1

激光雷达点云数据滤波算法综述 滤波对象及目的:通过机载激光雷达快速获取高精度三维地理数据,对它所获取的点云数据的滤波过程就是将LIDAR点云数据中的地面点和非地面点分离的过程。 滤波方法:对数学形态学的滤波算法、基于坡度的滤波法、基于TIN的LIDAR点云过滤算法、基于伪扫描线的滤波算法、基于多分辨率方向预测的LIDAR点云滤波方法。 (一)LIDAR数据形态学滤波算法: (1)离散点云腐蚀处理。遍历LIDAR点云数据,以任意一点为中心开w×w大小的窗口,比较窗口内各点的高程,取窗口内最小高程值为腐蚀后的高程(2)离散点膨胀处理。再次遍历LIDAR点云数据,对经过腐蚀后的数据用同样大小的结构窗口做膨胀。即以任意一点为中心开w×w大小的窗口,此时,用腐 蚀后的高程值代替原始高程值,比较窗口内各点的高程,取窗口内最大高程值 为膨胀后的高程 (3)地面点提取。设Z p是p点的原始高程,t为阈值,在每点膨胀操作结束时,对该点是否是地面点作出判断。如果p点膨胀后的高程值和其原始高程值Z p 之差的绝对值小于或等于阈值t,则认为p点为地面点,否则为非地面点 该算法有两种滤波方式:一种是按离散点进行滤波,一种是按格网滤波。(1)按离散点滤波:是对每个激光点进行腐蚀和膨胀操作各一次,结构窗口内数据的选取按距离来量度。 (2)按格网滤波:指将每个格网看成一个“像素”,按照数字图像处理中取邻域的方法来开取结构窗口。腐蚀时,格网的“像素值”即为w×w邻域所包含格网的最小高程值;膨胀时,格网的“像素值”即为w×w邻域所包含格网的最大高程值。 优缺点:总体上,数学形态学算法存在的主要问题是坡度阈值的人工选取和细节地形的方块效应。如果阈值设定太大,可能保留一些低矮的地物目标,设定太小,则可能削平地形特征。现在各种阈值的选取一般根据研究者的经验设定,或者根据地形特征设定的,没有考虑全局的特征因素,不具有普适性。解决这些问题的方法是根据地形的起伏大小和高程变化自适应的进行滤波窗口调整。但此方法在大范围地区及地形变化强烈山区的有效性还有待进一步 研究。 实际应用:从应用上,Lindenberger将数字形态学方法引人到机载激光雷达数据滤波中,首先采用水平结构单元对机载激光测高数据进行开运算,过滤剖面式激光扫描数据,然后利用自回归过程改善了开运算结果。 (二)基于坡度变化的滤波算法 滤波基本思想:基于坡度变化的滤波算法是根据地形坡度变化确定最优滤波函数,对于给定的高差值,随着两点间距离的减小,高程值大的激光脚点属于地面点的可能性就越小。

MATLAB实现频域平滑滤波以及图像去噪代码

MATLAB实现频域平滑滤波以及图像去噪代码用MATLA实现频域平滑滤波以及图像去噪代码 悬赏分:50 - 解决时间 :2008-11-8 14:21 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在 MATLAE t运行成功,必然给分。具体的实验指导书上的要求如下 : 频域平滑滤波实验步骤 1. 打开 Matlab 编程环境 ; 2. 利用’imread '函数读入图像数据; 3. 利用' imshow' 显示所读入的图像数据 ; 4. 将图像数据由' uint8 ' 格式转换为' double ' 格式,并将各点数据乘以 (-1)x+y 以便 FFT 变换后的结果中低频数据处于图像中央; 5. 用' fft2 ' 函数对图像数据进行二维 FFT 变换,得到频率域图像数据; 6. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示频率域图像; 7. 在频率图像上去除滤波半径以外的数据 (置 0); 8. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示处理过的 频域图像数据; 9. 用' ifft2 ' 函数对图像数据进行二维 FFT 逆变换,并用' real '函数取其实部,得到处理过的空间域图像数据; 10. 将图像数据各点数据乘以 (-1)x+y; 11. 利用' imshow' 显示处理结果图像数据; 12. 利用' imwrite '函数保存图像处理结果数据。 图像去噪实验步骤 : 1. 打开 Matlab 编程环境;

2. 利用' imread' 函数读入包含噪声的原始图像数据 ; 3. 利用' imshow' 显示所读入的图像数据 ; 4. 以 3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声图像进行滤波处理 ; 5. 利用' imshow' 显示处理结果图像数据 ; 6. 利用' imwrite ' 函数保存图像处理结果数据。 即使不是按这些步骤来的也没关系,只要是那个功能,能实现就0K谢谢大家%%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%% % the SF filter is unselective to orientation (doughnut-shaped in the SF % domain). [FileName,PathName,FilterIndex] = uigetfile ; filename = fullfile(PathName, FileName) ; [X map] = imread(filename, fmt); % read image L = double(X); % transform to double %%%%%%%%%%%%% need to add (-1)x+y to L % calculate the number of points for FFT (power of 2) fftsize = 2 .A ceil(log2(size(L))); % 2d fft Y = fft2(X, fftsize(1), fftsize (2)); Y = fftshift(Y); % obtain frequency (cycles/pixel) f0 = floor([m n] / 2) + 1; fy = ((m: -1: 1) - f0(1) + 1) / m; fx = ((1: n) - f0(2)) / n; [mfx mfy] = meshgrid(fx, fy); % calculate radius SF = sqrt(mfx .A 2 + mfy .A 2);

PCL从0到1点云滤波之直通滤波与体素法滤波

PCL从0到1|点云滤波之直通滤波与体素法滤波今天呢,想和大家聊一聊点云滤波处理的相关模块。 我对点云模块了解得也不算深入,此处单纯地想和大家分享一下这几天我所学习到的点云滤波知识,如有不到之处,还请后台留言多多指正。在获取点云数据时,由于设备精度、操作者经验、环境因素等带来的影响,点云数据中将不可避免地出现一些噪声点。这便需要我们队点云进行后处理。 在点云的处理流程中,滤波处理作为预处理的第一步,往往对后续处理管道影响最大,只有在滤波预处理中将噪声点、离群点、空洞等按照后续处理定制,才能更好地进行配准、特征提取、曲面重建、可视化等。 PCL中的点云处理模块提供了很多灵活实用的滤波处理算法,例如双边滤波、高斯滤波、条件滤波、直通滤波、基于随机采样一致性滤波等。 PCL中总结了几种需要进行点云滤波处理的情况,这几种情况如下: (1)点云数据密度不规则需要平滑;(2)因为遮挡等问题造成离群点需要去除;(3)大量数据需要进行下采样;(4)噪音数据需要去除。 对应的方法主要如下:

(a)按具体给定的规则限制过滤去除点。(b)通过常用滤波算法修改点的部分属性。(c)对数据进行下采样。 PCL中对常规的滤波手段进行了良好地封装,主要的滤波器有直通滤波、体素法滤波、统计滤波、条件滤波等。组合使用完成任务,效果更佳。 1、如果是线结构光的采集方式得到的点云,则沿z向的分布较广,但沿x、y方向的分布则处于有限的范围内。此时,可采用直通滤波,确定x 或者y方向的范围,快速裁剪离群点。 2、如果使用高分辨率相机等设备对点云进行采集,则点云往往较为密集。过多的点云数据对后续的分割工作带来困难。体素法滤波可以达到下采样的同时不破坏点云本身几何结构的功能。 3、统计滤波器用于去除明显的离群点(离群点往往由噪声引入)。噪声信息属于无用信息,信息量较小。所以离群点表达的信息可以忽略不计。考虑到离群点的特征,则可以定义某处点云小于某个密度,既点云无效。计算每个点到其最近的k个点平均距离。则点云中所有点的距离应构成高斯分布。给定均值与方差,可剔除3∑之外的点。 4、半径滤波器与统计滤波器相比更加简单粗暴。以某点为中心画一个圆计算落在该圆中点的数量,当数量大于给定值时,则保留该点,数量小于

图像去噪方法

图像去噪方法 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声(一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在),但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差(在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。)最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。

小波变换降噪处理及其Matlab实现

万方数据

万方数据

万方数据

小波变换降噪处理及其Matlab实现 作者:冯毅, 王香华, Feng Yi, Wang Xianghua 作者单位:华南理工大学工业装备与控制工程学院,广州,510640 刊名: 数据采集与处理 英文刊名:JOURNAL OF DATA ACQUISITION & PROCESSING 年,卷(期):2006,21(z1) 被引用次数:24次 参考文献(4条) 1.Chui C K An introduction to wavelets 1992 2.Zhu Hailong;Kwok J T Improving de-noising by coefficient de-noising and dyadic wavelet transform pattern recognition 2002 3.潘显兵一种改进的小波阈值降噪方法性能分析[期刊论文]-微计算机信息 2006(7) 4.王亚,吕新华,王海峰一种改进的小波阈值降噪方法及Matlab实现[期刊论文]-微计算机信息 2006(6) 本文读者也读过(3条) 1.朱来东.廉小亲.江远志.ZHU Lai-dong.LIAN Xiao-qin.JIANG Yuan-zhi小波变换在信号降噪中的应用及MATLAB实现[期刊论文]-北京工商大学学报(自然科学版)2009,27(2) 2.赵海英.纪超辉.ZHAO Hai-ying.JI Chao-hui小波变换降噪技术及其在Matlab中的实现[期刊论文]-兵工自动化2006,25(2) 3.仝飞.顾晓辉.吕艳新基于小波变换的战场声信号去噪方法研究[期刊论文]-电脑知识与技术2010,6(4) 引证文献(22条) 1.朱来东,廉小亲,江远志小波变换在信号降噪中的应用及MATLAB实现[期刊论文]-北京工商大学学报(自然科学版) 2009(02) 2.刘浩波,韩宝栋,余道友小波去噪在缓变机械故障检测中的应用[期刊论文]-电子世界 2012(19) 3.刘伟,朱玉婷,付平勇基于小波降噪的铁路边坡测斜监测分析[期刊论文]-四川建筑 2011(06) 4.张鹏军,薄玉成,王惠源,李强基于小波和PCA的火炮输弹系统故障诊断研究[期刊论文]-计算机工程与设计 2012(12) 5.蒯伟,段佳佳基于小波变换的图像重构算法研究[期刊论文]-电子测试 2011(09) 6.李黎基于小波变换的信号噪声平滑处理[期刊论文]-河南科技 2013(09) 7.狄芳,顾辉弹痕三维数据与图像处理研究[期刊论文]-兵工自动化 2011(12) 8.朱启兵,覃莎,杨慧中基于二进小波的相合束广义特征分解盲源分离算法[期刊论文]-数据采集与处理 2010(05) 9.宋佳忆,李斌,黄绍锋基于DSP的涡街流量计小波去噪研究平台[期刊论文]-工业控制计算机 2015(04) 10.刘力天,刘小兵,刘盛铭基于小波变换的频谱检测算法改进[期刊论文]-装备指挥技术学院学报 2011(06) 11.朱来东,廉小亲,江远志小波变换在信号降噪中的应用及Matlab实现[期刊论文]-电子元器件资讯 2008(12) 12.鲍光海,张培铭基于高速摄像机的电磁电器动态特性测试及其图像处理的研究[期刊论文]-南昌大学学报(工科版) 2009(04) 13.曹堃锐,陈砚圃,谭薇基于互相关改进法的高精度测量电信号效果研究[期刊论文]-电测与仪表 2014(20) 14.吴晓静光纤故障定位系统的设计与实现[学位论文]硕士 2010 15.周宏晟小波变换在光缆监测系统中的研究与应用[学位论文]硕士 2008

相关主题